Outline

(1) Lecture 1: gravitational wave astronomy, the two-body problem, and self-force theory
(2) Lecture 2: the local problem: how to deal with small bodies
(3) Lecture 3: the global problem: orbital dynamics in Kerr
(4) Lecture 4: the global problem: black hole perturbation theory Multiscale expansion of the field equations Results at OPA order Results at 1PA order

Outline

(1) Lecture 1: gravitational wave astronomy, the two-body problem, and self-force theory
(2) Lecture 2: the local problem: how to deal with small bodies
(3) Lecture 3: the global problem: orbital dynamics in Kerr
(4) Lecture 4: the global problem: black hole perturbation theory Multiscale expansion of the field equations

Results at OPA order
Results at 1PA order

Typical calculation at first order [Capra community]

- approximate the source orbit as a bound geodesic
- impose outgoing-wave BCs at \mathcal{I}^{+}and \mathcal{H}^{+}
- unphysical on long timescales. Breaks down on dephasing time $t \sim M / \sqrt{\epsilon}$

Solving the first-order field equations [Capra community]

- directly solve Lorenz-gauge linearized Einstein equation for $h_{\mu \nu}^{(1)}$
- advantage: most expressions for singular field are in Lorenz gauge. Easily separated into ℓm modes in Schwarzschild
- disadvantage: not separable in Kerr
- solve Regge-Wheeler and Zerilli equations for master functions $\Psi_{\ell m}$
$\Rightarrow h_{\mu \nu}^{(1) \ell m} \sim \partial \Psi_{\ell m}$
- advantage: simple scalar ODEs
- disadvantages: not defined in Kerr. Pathological singularities away from particle
- solve Teukolsky equation for curvature scalar $\psi_{4}^{\ell m \omega}$
$\Rightarrow h_{\mu \nu}^{(1) \ell m \omega} \sim \partial \partial \iiint \int \psi_{4}^{\ell m \omega}$
- advantage: fully separable into $\ell m \omega$ modes in Kerr
- disadvantage: pathological singularities away from particle

Multiscale expansion [Miller \& AP; AP \& Wardell; Flanagan, Hinderer, Moxon, AP]

- all time dependence in $h_{\mu \nu}$ follows from puncture's motion and black hole's evolution
- recall $\left(z^{\mu}, u^{\mu}\right) \rightarrow\left(\tilde{\varphi}_{A}, \tilde{J}^{A}\right)$. Define full set of system parameters $\mathcal{J}^{A} \sim\left(\tilde{J}^{A}, M, a\right)$

$$
\begin{aligned}
\frac{d \tilde{\varphi}_{A}}{d t} & =\Omega_{A}\left(\mathcal{J}^{B}\right) \\
\frac{d \mathcal{J}^{A}}{d t} & =\epsilon \tilde{G}_{(1)}^{A}\left(\mathcal{J}^{B}\right)+\epsilon^{2} \tilde{G}_{(2)}^{A}\left(\mathcal{J}^{B}\right)+O\left(\epsilon^{3}\right)
\end{aligned}
$$

- treat $h_{\mu \nu}$ as function on extended manifold: in spacetime coords $\left(t, x^{i}\right)$,

$$
h_{\mu \nu}=\epsilon h_{\mu \nu}^{(1)}\left(\tilde{\varphi}_{A}, \mathcal{J}^{A}, x^{i}\right)+\epsilon^{2} h_{\mu \nu}^{(2)}\left(\tilde{\varphi}_{A}, \mathcal{J}^{A}, x^{i}\right)+O\left(\epsilon^{3}\right)
$$

- in Einstein equations, $\frac{\partial}{\partial t}=\Omega_{A} \frac{\partial}{\partial \tilde{\varphi}_{A}}+\frac{d \mathcal{J}^{A}}{d t} \frac{\partial}{\partial \mathcal{J}_{A}}$

Multiscale expansion [Miller \& AP; AP \& Wardell; Flanagan, Hinderer, Moxon, AP]

- Fourier series:

$$
\begin{aligned}
& h_{\mu \nu}^{n}=\sum_{k^{A}} h_{\mu \nu}^{n, \Omega_{k}}\left(\mathcal{J}^{A}, x^{i}\right) e^{-i k^{A} \varphi_{A}} \\
& \Omega_{k}:=k^{A} \Omega_{A}
\end{aligned}
$$

- solve field equations for amplitudes
$h_{\mu \nu}^{n, \Omega_{k}}$ on grid of \mathcal{J}^{A} values

Outline

(1) Lecture 1: gravitational wave astronomy, the two-body problem, and self-force theory
(2) Lecture 2: the local problem: how to deal with small bodies
(3) Lecture 3: the global problem: orbital dynamics in Kerr
(4) Lecture 4: the global problem: black hole perturbation theory Multiscale expansion of the field equations
Results at OPA order
Results at 1PA order

Adiabatic waveforms

Outline

(1) Lecture 1: gravitational wave astronomy, the two-body problem, and self-force theory
(2) Lecture 2: the local problem: how to deal with small bodies
(3) Lecture 3: the global problem: orbital dynamics in Kerr
(4) Lecture 4: the global problem: black hole perturbation theory

Multiscale expansion of the field equations
Results at OPA order
Results at 1PA order

Complete first-order self-force

- complete inspirals simulated in
Schwarzschild using full F_{1}^{μ} (including spin force) [Warburton et al]
- and F_{1}^{μ} has been computed on generic orbits in Kerr [van de Meent]
- but still need F_{2}^{μ} for post-adiabatic inspiral

Complete first-order self-force

- complete inspirals simulated in Schwarzschild using full F_{1}^{μ} (including spin force) [Warburton et al]
- and F_{1}^{μ} has been computed on generic orbits in Kerr [van de Meent]
- but still need F_{2}^{μ} for post-adiabatic inspiral

First-order results: improving other binary models

Binary parameter space

- PN and EOB models have been improved using data for effects of the self-force
- fixed high-order PN coefficients, completed 4PN, settled controversy at 4PN

Complete 1PA for quasicircular orbits [AP. Warburton, Wardel 2013-1

- parameters: $\mathcal{J}^{A}=\{\Omega, M, a\}$, small a
- phase: $\frac{d \phi_{p}}{d t}=\Omega$
- $h_{\mu \nu}^{(n)} \sim \sum_{\ell m} h_{\mu \nu}^{(n) \ell m}\left(\mathcal{J}^{A}, r\right) e^{-i m \phi_{p}} Y_{\ell m}$
- solve field equations for amplitudes $h_{\mu \nu}^{(n) \ell m}$

1PA waveforms [Wardell, AP, Warburton, Miller, Durkan, Le Tiec]

Summary

- self-force theory is currently the only viable method of modelling EMRIs
- surprisingly accurate even for comparable masses -use in LVK data analysis?
- can generate waveforms rapidly
- some work remains to populate parameter space for OPA waveforms
- a lot of recent work on spinning secondaries
- only have 1PA waveforms for quasicircular, nonspinning binaries

