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Solving the Einstein equations globally

• solving the local problem told us how to replace the small object with a
moving puncture in the field equations:

G(1)
µν [hR(1)] = −G(1)

µν [hP(1)]
G(1)

µν [hR(2)] = −G(2)
µν [h(1), h(1)] −G(1)

µν [hP(2)]
D2zµ

dτ2 = −1
2(gµν + uµuν)(gν

δ − hR
ν

δ)(2hR
δβ;γ − hR

βγ;δ)uβuγ

where G(1)
µν [h] ∼ □hµν , G(2)

µν [h, h] ∼ ∇h∇h+ h∇∇h
• the global problem: how do we solve these equations in practice in a

particular background?
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Symmetries of Kerr

Kerr metric in Boyer-Lindquist coordinates:

ds2 = −
(

1 − 2Mr

Σ

)
dt2 − 4aMr sin2 θ

Σ dt dϕ+ Σ
∆ dr2 + Σ dθ2

+
[
∆ + 2Mr(r2 + a2)

Σ

]
sin2 θ dϕ2

Σ := r2 + a2 cos2 θ and ∆ := r2 − 2Mr + a2

Symmetries:
• two Killing vectors ξα

(t) = δα
t and ξα

(ϕ) = δα
ϕ (∇(αξβ) = 0)

• one Kiling tensor Kαβ (∇(αKβγ) = 0)
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Geodesic motion is integrable [Carter]

• three constants of geodesic motion: E = −uαξ
α
(t), Lz = uαξ

α
(ϕ), and the

Carter constant C = uαuβKαβ . Also normalization gαβuαuβ = −1
• can invert these four equations to obtain uα(r, θ, E, Lz, C):

Σ2
(
dr

dτ

)2
= R(r)

Σ2
(
dz

dτ

)2
= Z(z)

Σ dt

dτ
= Tr(r) + Tz(z) + aLz := ωt(r, z)

Σdϕ
dτ

= Φr(r) + Φz(z) − aE := ωϕ(r, z)

orbital inclination z := cos θ
• radial and polar motion oscillate between turning points:

R(r) = −(1 − E2)(r − r1)(r − r2)(r − r3)(r − r4)
Z(z) = a2(1 − E2)(z2 − z2

1)(z2 − z2
2)
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Decoupling the r-θ motion

r(τ) and z(τ) are immediately decoupled by adopting Mino time as parameter:

dλ

dτ
= Σ−1

⇒
(
dr

dλ

)2
= R(r)(

dz

dλ

)2
= Z(z)

dt

dλ
= ωt(r, z)

dϕ

dλ
= ωϕ(r, z).
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Quasi-Keplerian description [Schmidt, Drasco and Hughes]

• manifestly periodic parametrizations:

r(ψr) = pM

1 + e cosψr

z(ψz) = zmax cosψz

with
dψr

dλ
= ωr(ψr) and dψz

dλ
= ωz(ψz)

• {p, e, zmax} ↔ {E,Lz, Q}
• {p, e, zmax} describe “shape”:

rp = pM

1 + e
and ra = pM

1 − e

Adam Pound Self-force & the two-body problem Warsaw, July 2023 6 / 15



Precession of periapsis

r and ϕ periods are (generically) incommensurate
⇒ orbit does not come back to itself

mild planar orbit

[image credit: K. R. Lang]
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Precession of orbital plane

z and ϕ periods are (generically) incommensurate

mild spherical orbit extreme spherical orbit
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Orbits are generically space-filling

r and z periods are (generically) incommensurate

Generate orbits yourself:
• http://nielswarburton.net/geodesics/interactive/Kerr_

geodesic.html
• https://bhptoolkit.org/KerrGeodesics/
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Mino-time action angles [Schmidt, Fujita and Hikida]

• Let ψα = (t, ψr, ψz, ϕ) and Jα = (p, e, zmax)

⇒ dψα

dλ
= ωα(ψr, ψz)

dJα

dλ
= 0

• Better: (ψα, J
α) → (qα, J

α) such that

dqα

dλ
= Υα(Jβ)

dJα

dλ
= 0

• qα is “averaged” ψα: Υα = ⟨ωα⟩λ = limΛ→∞
1

2Λ
∫ Λ

−Λ ωαdλ

• zα(qβ , J
β) known analytically in terms of Jacobi elliptic functions
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Boyer-Lindquist action angles [Moxon et al., Pound and Wardell]

• qα oscillate wrt Boyer-Lindquist t. Bad for field equations.
• Better: (qα, J

α) → (φA, J
A) such that

dφA

dt
= ΩA(JB)

dJA

dt
= 0

• φA = (φr, φz, φϕ), JA = (p, e, zmax)

• ΩA = ΥA

Υt
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Perturbed equations of motion in terms of action angles

• D2zα

dτ2 = ϵFα
(1) + ϵ2Fα

(2) +O(ϵ3)

• If we keep fixed the relationship (zα, uα) → (φA, J
A), then

dφA

dt
= Ω(0)

A (JB) + ϵΩ(1)
A (JB , φB) +O(ϵ2)

dJA

dt
= ϵGA

(1)(JB , φB) + ϵ2GA
(2)(JB , φB) +O(ϵ3)
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Perturbed equations in terms of deformed action angles
[van de Meent and Warburton, Pound and Wardell]

• oscillations all over the place
• Better: (φA, J

A) → (φ̃A, J̃
A) such that

dφ̃A

dt
= ΩA(J̃B)

dJ̃A

dt
= ϵG̃A

(1)(JB) + ϵ2G̃A
(2)(JB) +O(ϵ3)

• Let t̃ = ϵt. Equations admit asymptotic solution

φ̃A(t̃, ϵ) = 1
ϵ

[
φ̃

(0)
A (t̃) + ϵφ̃

(1)
A (t̃) +O(ϵ2)

]
J̃A(t̃, ϵ) = J̃A

(0)(t̃) + ϵJ̃A
(1)(t̃) +O(ϵ2)

• 0PA and 1PA terms dictated by dissipative and conservative pieces of
Fα

(n) as per Hinderer and Flanagan
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Orbital resonances

• orbital frequencies can be commensurate: e.g., rational Ωz/Ωr

• shape of orbit strongly depends on relative φr-φz initial phase

Ωz/Ωr = 3/2
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Passage through resonance [Hinderer and Flanagan]

• passage takes time ∆t ∼ 1/
√
ϵ

⇒ frequencies change by ∆ΩA ∼
√
ϵ

⇒ causes cumulative shift ∆φA ∼ 1/
√
ϵ by end of inspiral

• new form of solution:

φ̃A(t̃, ϵ) = 1
ϵ

[
φ̃

(0)
A (t̃) +

√
ϵφ̃

(1/2)
A (t̃) + ϵφ̃

(1)
A (t̃) +O(ϵ3/2)

]
J̃A(t̃, ϵ) = J̃A

(0)(t̃) +
√
ϵJ̃A

(1/2)(t̃) + ϵJ̃A
(1)(t̃) +O(ϵ2)

Ωz/Ωr = 3/2
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