@ Lecture 1: gravitational wave astronomy, the two-body problem, and
self-force theory

@ Lecture 2: the local problem: how to deal with small bodies

© Lecture 3: the global problem: orbital dynamics in Kerr
Geodesic motion in Kerr
Perturbed motion in Kerr
Transient resonances

O Lecture 4: the global problem: black hole perturbation theory
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Solving the Einstein equations globally

® solving the local problem told us how to replace the small object with a
moving puncture in the field equations:
GLIRD) = GO
G = G, hV] — GEB) [nP)]
D%+ 1, ..
arz _§(gu +ufu”) (g hRé)(th?ﬁ il hg'm)uﬂuv
where G4 [h] ~ Ohy, G, h] ~ VhVh + hVVh

® the global problem: how do we solve these equations in practice in a
particular background?

Adam Pound Self-force & the two-body problem Warsaw, July 2023



@ Lecture 1: gravitational wave astronomy, the two-body problem, and
self-force theory

@ Lecture 2: the local problem: how to deal with small bodies

© Lecture 3: the global problem: orbital dynamics in Kerr
Geodesic motion in Kerr

O Lecture 4: the global problem: black hole perturbation theory

Adam Pound Self-force & the two-body problem Warsaw, July 2023



Symmetries of Kerr

Kerr metric in Boyer-Lindquist coordinates:

2Mr 4aMr sin? 0 by
2 _ (1= 2 T 7 Zdr? + ¥ do?
ds ( > ) dt = dtdp + —dr* + X db

2Mr(r? + a?)
b))

+ [A + ] sin? 0 d¢?

Y:=7r24+a2cos?6 and A ;=712 — 2Mr + a2

Symmetries:
* two Killing vectors &) = 07" and {(,) = 07 (Viaép) = 0)
® one Kiling tensor K,z (ViaKpy) = 0)
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Geodesic motion is integrable (i

® three constants of geodesic motion: F = —ua%, L,= uaﬁgb), and the
Carter constant C = u®uP K,p. Also normalization g*u,us = —1

Adam Pound Self-force & the two-body problem Warsaw, July 2023



Geodesic motion is integrable (i

® three constants of geodesic motion: F = —ua%, L,= uaﬁgb), and the

Carter constant C = u®uP K,p. Also normalization g*u,us = —1
® can invert these four equations to obtain u®(r,0, E, L., C):

2 <Z:)2 = R(r)

¥? (f;f = Z(z)

zjl = T.(r) + To(2) + aL. == wy(r, )
-
do

D22 = B, (1) + .(2) — a = wy(r, 2)
T

orbital inclination 2z := cos
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Geodesic motion is integrable (i

® three constants of geodesic motion: F = —ua%, L,= uaé&), and the

Carter constant C = u®uP K,p. Also normalization g*u,us = —1
® can invert these four equations to obtain u®(r,0, E, L., C):

2 <Z:)2 = R(r)

¥? (f;f = Z(z)

zjl = T.(r) + To(2) + aL. == wy(r, )
-
do

D22 = B, (1) + .(2) — a = wy(r, 2)
T

orbital inclination z := cos @
® radial and polar motion oscillate between turning points:

R(r)y=—-(1- Ez)(r —7r1)(r —ro)(r —r3)(r —r4)
Z(z) = a®(1 = E?)(2* = 27)(2% = 23)
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Decoupling the -6 motion

r(7) and z(7) are immediately decoupled by adopting Mino time as parameter:

D _
dr

= (;l;)Q = R(r)
(%) -2

Z—l

a = Wt (Ta Z)
do
7\ wg(r, 2)

Adam Pound Self-force & the two-body problem Warsaw, July 2023



Quasi-Keplerian description ismet, orse s e

® manifestly periodic parametrizations:
__ M
r(r) = 1+ ecos,

Z(sz) = Zmax COS wz

" W) and 22 =)
dA T T d)\ z z
® {paeazmax} <~ {E, LzaQ} P

® {p,e, Zmax} describe “shape”:

Ty = pM and 7, = pM
P 1+4e “T 1—e
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Precession of periapsis

r and ¢ periods are (generically) incommensurate
= orbit does not come back to itself

mild planar orbit

extreme planar orbit
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Precession of orbital plane

z and ¢ periods are (generically) incommensurate

mild spherical orbit extreme spherical orbit

=

i
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Orbits are generically space-filling

r and z periods are (generically) incommensurate

Generate orbits yourself:

® http://nielswarburton.net/geodesics/interactive/Kerr_
geodesic.html

® https://bhptoolkit.org/KerrGeodesics/
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Mino-time action angles s fues na e

Let '(/)a = <t7wrawzv¢) and J* = (p,eazmax)

= d;/;\a = wa(wra wz)

dJ*
ik
dA

Better: (¢, J¥) = (qa, J%) such that

dg
o T, B
dJ“
o

qa is “averaged” ¥o: Yo = (Wa)x = lima_yo0 55 fi\A wad\

2%(qg, J?) known analytically in terms of Jacobi elliptic functions

Warsaw, July 2023
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Boyer-Lindquist action angles: oo« . pound sna waraen

® g, oscillate wrt Boyer-Lindquist ¢. Bad for field equations.

® Better: (qa,J) — (a4, J?) such that
dQOA B
&FA _ 0
il alJ”?)
dJ4
a =0
* 04 =(r 95 00), J4 = (D€, 2max)
Ta
o (), = =
A=,
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Perturbed equations of motion in terms of action angles

D2z
[ J—
dr?
® If we keep fixed the relationship (2%, us) — (¢4, J4), then

= EF(O{) + 62F(Oé) + 0(63)

d

A= a7+ (U7, pm) + O()
@_ GA JB 2GA JB 9] 3
a ¢ 17, 0B) + €G5)(J7, ¢B) + O(c”)
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Perturbed equations in terms of deformed action angles

[van de Meent and Warburton, Pound and Wardell]

® oscillations all over the place

® Better: (0a,J%) — ($a,J?) such that
dpa 7B
A _ 0
o a(J")
dJ4

® Let { = et. Equations admit asymptotic solution

Balle) = - |80 + (D + 0(e)]
JA(t,e) = J(o) () + eJ(l)(t) + O(é?)

OPA and 1PA terms dictated by dissipative and conservative pieces of

F&) as per Hinderer and Flanagan
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Orbital resonances

e orbital frequencies can be commensurate: e.g., rational €, /),
® shape of orbit strongly depends on relative ¢,.-¢, initial phase

0./Q, = 3/2
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Passage through resonance e s rumsean

® passage takes time At ~ 1/4/e
= frequencies change by AQ4 ~ /e
= causes cumulative shift Ap4 ~ 1/4/€ by end of inspiral

® new form of solution:

palh0) = - [P0 + Vet (B + ) () + O(?)
JAE, €) = Jioy (1) + Ve jo (D) + eJ {4 () + O(€?)

Q./Q, = 3/2
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Outline

O Lecture 4: the global problem: black hole perturbation theory
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