• Lecture 1: gravitational wave astronomy, the two-body problem, and self-force theory

 Lecture 2: the local problem: how to deal with small bodies Perturbation theory in GR Small bodies and punctures Point particles and mode-sum regularization

3 Lecture 3: the global problem: orbital dynamics in Kerr

4 Lecture 4: the global problem: black hole perturbation theory

• Lecture 1: gravitational wave astronomy, the two-body problem, and self-force theory

2 Lecture 2: the local problem: how to deal with small bodies Perturbation theory in GR

Small bodies and punctures Point particles and mode-sum regularization

3 Lecture 3: the global problem: orbital dynamics in Kerr

4 Lecture 4: the global problem: black hole perturbation theory

If the exact metric is $\hat{g}_{\alpha\beta}=g_{\alpha\beta}+h_{\alpha\beta},$ then

$$\begin{split} C^{\alpha}_{\beta\gamma} &:= \hat{\Gamma}^{\alpha}_{\beta\gamma} - \Gamma^{\alpha}_{\beta\gamma} = \frac{1}{2} \hat{g}^{\alpha\mu} (2\nabla_{(\beta}h_{\gamma)\mu} - \nabla_{\mu}h_{\beta\gamma}) \\ \Rightarrow \hat{R}^{\alpha}{}_{\beta\gamma\delta} v^{\beta} &= (\hat{\nabla}_{\gamma}\hat{\nabla}_{\delta} - \hat{\nabla}_{\delta}\hat{\nabla}_{\gamma}) v^{\alpha} = \left(R^{\alpha}{}_{\beta\gamma\delta} + 2\nabla_{[\gamma}C^{\alpha}_{\delta]\beta} + 2C^{\alpha}_{\mu[\gamma}C^{\mu}_{\delta]\beta} \right) v^{\beta} \\ \Rightarrow \hat{R}_{\beta\delta} &= R_{\beta\delta} + 2\nabla_{[\alpha}C^{\alpha}_{\delta]\beta} + 2C^{\alpha}_{\mu[\alpha}C^{\mu}_{\delta]\beta} \end{split}$$

If the exact metric is $\hat{g}_{\alpha\beta}=g_{\alpha\beta}+h_{\alpha\beta},$ then

$$\begin{split} C^{\alpha}_{\beta\gamma} &:= \hat{\Gamma}^{\alpha}_{\beta\gamma} - \Gamma^{\alpha}_{\beta\gamma} = \frac{1}{2} \hat{g}^{\alpha\mu} (2\nabla_{(\beta}h_{\gamma)\mu} - \nabla_{\mu}h_{\beta\gamma}) \\ \Rightarrow \hat{R}^{\alpha}{}_{\beta\gamma\delta} v^{\beta} &= (\hat{\nabla}_{\gamma}\hat{\nabla}_{\delta} - \hat{\nabla}_{\delta}\hat{\nabla}_{\gamma}) v^{\alpha} = \left(R^{\alpha}{}_{\beta\gamma\delta} + 2\nabla_{[\gamma}C^{\alpha}_{\delta]\beta} + 2C^{\alpha}_{\mu[\gamma}C^{\mu}_{\delta]\beta} \right) v^{\beta} \\ \Rightarrow \hat{R}_{\beta\delta} &= R_{\beta\delta} + 2\nabla_{[\alpha}C^{\alpha}_{\delta]\beta} + 2C^{\alpha}_{\mu[\alpha}C^{\mu}_{\delta]\beta} \end{split}$$

If the exact metric is $\hat{g}_{\alpha\beta}=g_{\alpha\beta}+h_{\alpha\beta},$ then

$$\begin{split} C^{\alpha}_{\beta\gamma} &:= \hat{\Gamma}^{\alpha}_{\beta\gamma} - \Gamma^{\alpha}_{\beta\gamma} = \frac{1}{2} \hat{g}^{\alpha\mu} (2\nabla_{(\beta}h_{\gamma)\mu} - \nabla_{\mu}h_{\beta\gamma}) \\ \Rightarrow \hat{R}^{\alpha}{}_{\beta\gamma\delta} v^{\beta} &= (\hat{\nabla}_{\gamma}\hat{\nabla}_{\delta} - \hat{\nabla}_{\delta}\hat{\nabla}_{\gamma}) v^{\alpha} = \left(R^{\alpha}{}_{\beta\gamma\delta} + 2\nabla_{[\gamma}C^{\alpha}_{\delta]\beta} + 2C^{\alpha}_{\mu[\gamma}C^{\mu}_{\delta]\beta} \right) v^{\beta} \\ \Rightarrow \hat{R}_{\beta\delta} &= R_{\beta\delta} + 2\nabla_{[\alpha}C^{\alpha}_{\delta]\beta} + 2C^{\alpha}_{\mu[\alpha}C^{\mu}_{\delta]\beta} \end{split}$$

Perturbative Einstein equations continued

• expand in powers of nonlinearity: $\hat{g}^{\alpha\beta} = g^{\alpha\beta} - h^{\alpha\beta} + \frac{1}{2}h^{\alpha}{}_{\gamma}h^{\gamma\beta} + \dots$

$$\Rightarrow \hat{R}_{\alpha\beta} = R_{\alpha\beta} + R_{\alpha\beta}^{(1)}[h] + R_{\alpha\beta}^{(2)}[h,h] + \dots$$

linearized Ricci tensor:

$$\begin{aligned} R^{(1)}_{\alpha\beta}[h] &= -\frac{1}{2} \nabla^{\mu} \nabla_{\mu} h_{\alpha\beta} - \frac{1}{2} \nabla_{\alpha} \nabla_{\beta} (g^{\mu\nu} h_{\mu\nu}) + \nabla^{\mu} \nabla_{(\alpha} h_{\beta)\mu} \\ &= -\frac{1}{2} \left(\nabla^{\mu} \nabla_{\mu} h_{\alpha\beta} + 2R_{\alpha}{}^{\mu}{}_{\beta}{}^{\nu} h_{\mu\nu} \right) + \nabla_{(\alpha} \nabla^{\mu} \bar{h}_{\beta)\mu} \end{aligned}$$

(trace-reversed perturbation: $\bar{h}_{\alpha\beta} = h_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}g^{\mu\nu}h_{\mu\nu}$)

• quadratic piece of Ricci tensor:

$$R^{(2)}_{\alpha\beta}[h,h] \sim \nabla h \nabla h + h \nabla \nabla h$$

Perturbative Einstein equations continued

• now consider one-parameter family of spacetimes with metric $\hat{g}_{\alpha\beta}(\epsilon) = g_{\alpha\beta} + h_{\alpha\beta}(\epsilon)$ and stress-energy $\hat{T}_{\alpha\beta}(\epsilon)$

• substitute
$$h_{\alpha\beta} = \epsilon h^{(1)}_{\alpha\beta} + \epsilon^2 h^{(2)}_{\alpha\beta} + O(\epsilon^3)$$

$$\Rightarrow \hat{R}_{\alpha\beta} = R_{\alpha\beta} + \epsilon R_{\alpha\beta}^{(1)}[h^{(1)}] + \epsilon^2 \left(R_{\alpha\beta}^{(1)}[h^{(2)}] + R_{\alpha\beta}^{(2)}[h^{(1)}, h^{(1)}] \right) + O(\epsilon^3)$$

• substitute
$$\hat{T}_{\alpha\beta}(\epsilon) = T_{\alpha\beta} + \epsilon T^{(1)}_{\alpha\beta} + \epsilon^2 T^{(2)}_{\alpha\beta} + O(\epsilon^3)$$

$$\Rightarrow \qquad G_{\alpha\beta} = 8\pi T_{\alpha\beta}, \\ G_{\alpha\beta}^{(1)}[h^{(1)}] = 8\pi T_{\alpha\beta}^{(1)}, \\ G_{\alpha\beta}^{(1)}[h^{(2)}] = 8\pi T_{\alpha\beta}^{(2)} - G_{\alpha\beta}^{(2)}[h^{(1)}, h^{(1)}],$$

•

Make a small coordinate transformation:

$$x^{\mu} \rightarrow x'^{\mu} = x^{\mu} - \epsilon \xi^{\mu} + O(\epsilon^2)$$

Expand the metric in the two coordinate systems:

$$\hat{g}_{\mu\nu}(x,\epsilon) = g_{\mu\nu}(x) + \epsilon h^{(1)}_{\mu\nu}(x) + O(\epsilon^2) \hat{g}'_{\mu\nu}(x',\epsilon) = g_{\mu\nu}(x') + \epsilon h'^{(1)}_{\mu\nu}(x') + O(\epsilon^2)$$

How are they related? Tensor transformation law:

$$\hat{g}_{\mu\nu}'(x',\epsilon) = \frac{\partial x^{\alpha}}{\partial x'^{\mu}} \frac{\partial x^{\beta}}{\partial x'^{\nu}} \hat{g}_{\alpha\beta}(x(x'),\epsilon)$$

Expand $x^{\mu}(x'^{\nu})$ and $\hat{g}_{\alpha\beta}$:

$$\hat{g}'_{\mu\nu}(x') = g_{\mu\nu}(x') + \epsilon [h^{(1)}_{\mu\nu}(x') + \mathcal{L}_{\xi}g_{\mu\nu}(x')] + O(\epsilon^2)$$

$$h_{\mu\nu}^{\prime(1)} = h_{\mu\nu}^{(1)} + \mathcal{L}_{\xi}g_{\mu\nu}$$

Make a small coordinate transformation:

$$x^{\mu} \to x'^{\mu} = x^{\mu} - \epsilon \xi^{\mu} + O(\epsilon^2)$$

Expand the metric in the two coordinate systems:

$$\hat{g}_{\mu\nu}(x,\epsilon) = g_{\mu\nu}(x) + \epsilon h^{(1)}_{\mu\nu}(x) + O(\epsilon^2)$$
$$\hat{g}'_{\mu\nu}(x',\epsilon) = g_{\mu\nu}(x') + \epsilon h'^{(1)}_{\mu\nu}(x') + O(\epsilon^2)$$

How are they related? Tensor transformation law:

$$\hat{g}_{\mu\nu}'(x',\epsilon) = \frac{\partial x^{\alpha}}{\partial x'^{\mu}} \frac{\partial x^{\beta}}{\partial x'^{\nu}} \hat{g}_{\alpha\beta}(x(x'),\epsilon)$$

Expand $x^{\mu}(x'^{\nu})$ and $\hat{g}_{\alpha\beta}$:

$$\hat{g}'_{\mu\nu}(x') = g_{\mu\nu}(x') + \epsilon [h^{(1)}_{\mu\nu}(x') + \mathcal{L}_{\xi}g_{\mu\nu}(x')] + O(\epsilon^2)$$

$$h_{\mu\nu}^{\prime(1)} = h_{\mu\nu}^{(1)} + \mathcal{L}_{\xi}g_{\mu\nu}$$

Make a small coordinate transformation:

$$x^{\mu} \to x'^{\mu} = x^{\mu} - \epsilon \xi^{\mu} + O(\epsilon^2)$$

Expand the metric in the two coordinate systems:

$$\hat{g}_{\mu\nu}(x,\epsilon) = g_{\mu\nu}(x) + \epsilon h^{(1)}_{\mu\nu}(x) + O(\epsilon^2)$$
$$\hat{g}'_{\mu\nu}(x',\epsilon) = g_{\mu\nu}(x') + \epsilon h'^{(1)}_{\mu\nu}(x') + O(\epsilon^2)$$

How are they related? Tensor transformation law:

$$\hat{g}'_{\mu\nu}(x',\epsilon) = \frac{\partial x^{\alpha}}{\partial x'^{\mu}} \frac{\partial x^{\beta}}{\partial x'^{\nu}} \hat{g}_{\alpha\beta}(x(x'),\epsilon)$$

Expand $x^{\mu}(x'^{\nu})$ and $\hat{g}_{\alpha\beta}$:

$$\hat{g}'_{\mu\nu}(x') = g_{\mu\nu}(x') + \epsilon [h^{(1)}_{\mu\nu}(x') + \mathcal{L}_{\xi}g_{\mu\nu}(x')] + O(\epsilon^2)$$

$$h_{\mu\nu}^{\prime(1)} = h_{\mu\nu}^{(1)} + \mathcal{L}_{\xi}g_{\mu\nu}$$

Make a small coordinate transformation:

$$x^{\mu} \to x'^{\mu} = x^{\mu} - \epsilon \xi^{\mu} + O(\epsilon^2)$$

Expand the metric in the two coordinate systems:

$$\hat{g}_{\mu\nu}(x,\epsilon) = g_{\mu\nu}(x) + \epsilon h^{(1)}_{\mu\nu}(x) + O(\epsilon^2)$$
$$\hat{g}'_{\mu\nu}(x',\epsilon) = g_{\mu\nu}(x') + \epsilon h'^{(1)}_{\mu\nu}(x') + O(\epsilon^2)$$

How are they related? Tensor transformation law:

$$\hat{g}'_{\mu\nu}(x',\epsilon) = \frac{\partial x^{\alpha}}{\partial x'^{\mu}} \frac{\partial x^{\beta}}{\partial x'^{\nu}} \hat{g}_{\alpha\beta}(x(x'),\epsilon)$$

Expand $x^{\mu}(x'^{\nu})$ and $\hat{g}_{\alpha\beta}$:

$$\hat{g}'_{\mu\nu}(x') = g_{\mu\nu}(x') + \epsilon [h^{(1)}_{\mu\nu}(x') + \mathcal{L}_{\xi}g_{\mu\nu}(x')] + O(\epsilon^2)$$

$$h_{\mu\nu}^{\prime(1)} = h_{\mu\nu}^{(1)} + \mathcal{L}_{\xi}g_{\mu\nu}$$

Make a small coordinate transformation:

$$x^{\mu} \to x'^{\mu} = x^{\mu} - \epsilon \xi^{\mu} + O(\epsilon^2)$$

Expand the metric in the two coordinate systems:

$$\hat{g}_{\mu\nu}(x,\epsilon) = g_{\mu\nu}(x) + \epsilon h^{(1)}_{\mu\nu}(x) + O(\epsilon^2)$$
$$\hat{g}'_{\mu\nu}(x',\epsilon) = g_{\mu\nu}(x') + \epsilon h'^{(1)}_{\mu\nu}(x') + O(\epsilon^2)$$

How are they related? Tensor transformation law:

$$\hat{g}_{\mu\nu}'(x',\epsilon) = \frac{\partial x^{\alpha}}{\partial x'^{\mu}} \frac{\partial x^{\beta}}{\partial x'^{\nu}} \hat{g}_{\alpha\beta}(x(x'),\epsilon)$$

Expand $x^{\mu}(x'^{\nu})$ and $\hat{g}_{\alpha\beta}$:

$$\hat{g}'_{\mu\nu}(x') = g_{\mu\nu}(x') + \epsilon [h^{(1)}_{\mu\nu}(x') + \mathcal{L}_{\xi}g_{\mu\nu}(x')] + O(\epsilon^2)$$

$$h_{\mu\nu}^{\prime(1)} = h_{\mu\nu}^{(1)} + \mathcal{L}_{\xi}g_{\mu\nu}$$

Gauge freedom: geometrical description

• expansion in powers of ϵ is expansion along flow lines through the family:

$$(\phi_{\epsilon}^{X*}\hat{g})_{\mu\nu}(p) = \hat{g}_{\mu\nu}(p) + \epsilon \mathcal{L}_X \hat{g}_{\mu\nu}(p) + \frac{1}{2} \epsilon^2 \mathcal{L}_X^2 \hat{g}_{\mu\nu}(p) + O(\epsilon^3)$$

Gauge freedom: geometrical description

• expansion in powers of ϵ is expansion along flow lines through the family:

$$(\phi_{\epsilon}^{X*}\hat{g})_{\mu\nu}(p) = \hat{g}_{\mu\nu}(p) + \epsilon \mathcal{L}_X \hat{g}_{\mu\nu}(p) + \frac{1}{2} \epsilon^2 \mathcal{L}_X^2 \hat{g}_{\mu\nu}(p) + O(\epsilon^3)$$

• define
$$\bar{h}_{\alpha\beta} := h_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}g^{\mu\nu}h_{\mu\nu}$$

• gauge condition $\nabla_\beta \bar{h}^{\alpha\beta}=0$

$$\Rightarrow R^{(1)}_{\alpha\beta}[h] = -\frac{1}{2} \left(\nabla^{\mu} \nabla_{\mu} h_{\alpha\beta} + 2R_{\alpha}{}^{\mu}{}_{\beta}{}^{\nu} h_{\mu\nu} \right)$$
$$G^{(1)}_{\alpha\beta}[h] = -\frac{1}{2} \left(\nabla^{\mu} \nabla_{\mu} \bar{h}_{\alpha\beta} + 2R_{\alpha}{}^{\mu}{}_{\beta}{}^{\nu} \bar{h}_{\mu\nu} \right)$$

• commonly used in self-force theory

• Lecture 1: gravitational wave astronomy, the two-body problem, and self-force theory

 Lecture 2: the local problem: how to deal with small bodies Perturbation theory in GR
 Small bodies and punctures Point particles and mode-sum regularization

3 Lecture 3: the global problem: orbital dynamics in Kerr

4 Lecture 4: the global problem: black hole perturbation theory

What is the problem we want to solve?

A small, compact object of mass and size $m \sim l \sim \epsilon$ moves through (and influences) spacetime

• Option 1: tackle the problem directly, treat the body as finite sized, deal with its internal composition

Need to deal with internal dynamics and strong fields near object

What is the problem we want to solve?

A small, compact object of mass and size $m \sim l \sim \epsilon$ moves through (and influences) spacetime

 Option 2: restrict the problem to distances s ≫ m from the object, treat m as source of perturbation of external background g_{μν}:

$$\hat{g}_{\mu\nu} = g_{\mu\nu} + \epsilon h^{(1)}_{\mu\nu} + \epsilon^2 h^{(2)}_{\mu\nu} + \dots$$

• This is a free boundary value problem

Metric here must agree with metric outside a small compact object; and "here" moves in response to field A small, compact object of mass and size $m \sim l \sim \epsilon$ moves through (and influences) spacetime

- Option 3: treat the body as a point particle
 - takes behavior of fields outside object and extends it down to a fictitious worldline
 - so $h_{\mu\nu}^{(1)} \sim 1/s$ (s =distance from object)
 - $G^{(1)}_{\mu\nu}[h^{(2)}] \sim G^{(2)}_{\mu\nu}[h^{(1)}] \sim (\nabla h^{(1)})^2 \sim 1/s^4$ —no solution unless we restrict it to points off worldline, which is equivalent to FBVP

Distributionally ill defined source appears here!

What is the problem we want to solve?

A small, compact object of mass and size $m \sim l \sim \epsilon$ moves through (and influences) spacetime

- Option 4: transform the FBVP into an *effective* problem using a *puncture*, a local approximation to the field outside the object
- this will be the method emphasized here

[Mino, Sasaki, Tanaka 1996; Quinn & Wald 1996; Detweiler & Whiting 2002-03; Gralla & Wald 2008-2012; Pound 2009-2017; Harte 2012]

Matched asymptotic expansions

М

- *outer expansion*: in external universe, treat field of *M* as background
- *inner expansion*: in inner region, treat field of *m* as background
- in buffer region $m \ll s \ll M$, feed information between expansions

Inner expansion: zoom in on body

- use scaled coords $\tilde{s}\sim s/\epsilon$ to keep size of body fixed, send other distances to infinity as $\epsilon\to 0$
- unperturbed body defines background spacetime $g_{\mu\nu}^{\text{body}}$ in inner expansion
- buffer region at asymptotic infinity $s \gg m$ \Rightarrow can define multipole moments without integrals over body

Effective worldline

• Effective worldline γ in external spacetime defined by body's "centredness" in body's spacetime

Matching condition

• outer:
$$\hat{g}_{\mu\nu}(s,\epsilon) = g_{\mu\nu}(s) + \epsilon h^{(1)}_{\mu\nu}(s) + \epsilon^2 h^{(2)}_{\mu\nu}(s) + O(\epsilon^3)$$

• inner:
$$\hat{g}_{\mu\nu}(s/\epsilon,\epsilon) = g^{\text{body}}_{\mu\nu}(s/\epsilon) + \epsilon H^{(1)}_{\mu\nu}(s/\epsilon) + \epsilon^2 H^{(2)}_{\mu\nu}(s/\epsilon) + O(\epsilon^3)$$

- matching condition:
 - expand outer expansion for small s:

$$\hat{g}_{\mu\nu} = \sum_{n\geq 0} \sum_{p} \epsilon^n s^p \hat{g}^{(n,p)}_{\mu\nu}$$

• expand inner expansion for small ϵ :

$$\hat{g}_{\mu\nu} = \sum_{n\geq 0} \sum_{p} \epsilon^{n} (\epsilon/s)^{p} \check{g}_{\mu\nu}^{(n,p)}$$

• they must agree:

$$\hat{g}_{\mu\nu}^{(n,p)} = \check{g}_{\mu\nu}^{(n+p,-p)}$$

• matching conditions constrains dependence on s:

e.g., inner expansion must not have negative powers of $\boldsymbol{\epsilon}$

$$\Rightarrow \text{ most singular power of } s \text{ in } \epsilon^n h_{\mu\nu}^{(n)}(s) \text{ is } \frac{\epsilon^n}{s^n} = \frac{\epsilon^n}{\epsilon^n \tilde{s}^n} = \frac{1}{\tilde{s}^n}$$

$$\Rightarrow h_{\mu\nu}^{(n)} = \frac{1}{s^n} h_{\mu\nu}^{(n,-n)} + s^{-n+1} h_{\mu\nu}^{(n,-n+1)} + s^{-n+2} h_{\mu\nu}^{(n,-n+2)} + \dots$$

• $h_{\mu\nu}^{(n,-n)}/\tilde{s}^n$ must equal a term in asymptotic expansion $g_{\mu\nu}^{\text{body}}(\tilde{s})$ $\Rightarrow h_{\mu\nu}^{(n,-n)}$ is determined by multipole moments of isolated body Solving the field equations:

- substitute expansion of $h^{(n)}_{\mu
 u}$ into field equations, solve order by order in s
- expand each $h^{(n,p)}_{\mu\nu}$ in spherical harmonics
- given a worldline $\gamma,$ the solution at all orders is fully characterized by
 - 1) body's multipole moments (and corrections thereto): $\sim \frac{Y^{\ell m}}{s^{\ell+1}}$
 - 2 smooth solutions to vacuum wave equation: $\sim s^\ell Y^{\ell m}$
- everything else made of (linear or nonlinear) combinations of the above

Self field and regular field

- multipole moments define $h_{\mu
 u}^{\mathrm{S}(n)}$; interpret as bound field of body
- smooth homogeneous solutions define $h^{{\rm R}(n)}_{\mu\nu};$ free radiation, determined by global boundary conditions

First order

•
$$h_{\mu\nu}^{(1)} = h_{\mu\nu}^{\mathrm{S}(1)} + h_{\mu\nu}^{\mathrm{R}(1)}$$

•
$$h_{\mu\nu}^{\rm S(1)} \sim \frac{m}{s} + O(s^0)$$
 defined by mass monopole m

• $h^{{\rm R}(1)}_{\mu\nu}$ is undetermined homogenous solution regular at s=0

Second order [Pound 2009, 2012, Gralla 2012]

•
$$h_{\mu\nu}^{(2)} = h_{\mu\nu}^{S(2)} + h_{\mu\nu}^{R(2)}$$

• $h_{\mu\nu}^{S(2)} \sim \frac{m^2 + S^i}{s^2} + \frac{\delta m + mh^{R(1)}}{s} + O(s^0)$ defined by
1 monopole correction δm
2 spin dipole S^i
3 terms $\propto mh_{\mu\nu}^{R(1)}$

Self-field and effective field

- $h^{\rm S}_{\mu
 u}$ directly determined by object's multipole moments
- $g_{\mu\nu} + h^{\rm R}_{\mu\nu}$ is a *smooth vacuum metric* determined by global boundary conditions

Solving EFE in buffer region yields equations of motion for object's effective center of mass

1st order, arbitrary compact object [MISaTaQuWa 1996]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left(2h^{\mathrm{R1}}_{\delta\beta;\gamma} - h^{\mathrm{R1}}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} + O(m^2)$$

(motion of spinning test body in $g_{\mu\nu} + h_{\mu\nu}^{\text{R1}}$)

2nd-order, nonspinning, spherical compact object [Pound 2012]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left(g_{\nu}{}^{\rho} - h_{\nu}^{\mathrm{R}\,\rho} \right) \left(2h_{\rho\sigma;\lambda}^{\mathrm{R}} - h_{\sigma\lambda;\rho}^{\mathrm{R}} \right) u^{\sigma} u^{\lambda} + O(m^3)$$

(geodesic motion in $\tilde{g}_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu}^{\rm R}$)

 these results are derived directly from EFE outside the object; there's no regularization of infinities, and no assumptions about h^R_{uv}

Solving EFE in buffer region yields equations of motion for object's effective center of mass

1st order, arbitrary compact object [MiSaTaQuWa 1996]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left(2h^{\mathrm{R1}}_{\delta\beta;\gamma} - h^{\mathrm{R1}}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} + O(m^2)$$

(motion of spinning test body in $g_{\mu\nu} + h_{\mu\nu}^{\rm R1}$)

2nd-order, nonspinning, spherical compact object [Pound 2012]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left(g_{\nu}{}^{\rho} - h_{\nu}^{\mathrm{R}\,\rho} \right) \left(2h_{\rho\sigma;\lambda}^{\mathrm{R}} - h_{\sigma\lambda;\rho}^{\mathrm{R}} \right) u^{\sigma} u^{\lambda} + O(m^3)$$

(geodesic motion in $\tilde{g}_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu}^{\rm R}$)

 these results are derived directly from EFE outside the object; there's no regularization of infinities, and no assumptions about h^R_{uv}

Solving EFE in buffer region yields equations of motion for object's effective center of mass

1st order, arbitrary compact object [MISaTaQuWa 1996]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left(2h^{\mathrm{R1}}_{\delta\beta;\gamma} - h^{\mathrm{R1}}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} + O(m^2)$$

(motion of spinning test body in $g_{\mu\nu} + h_{\mu\nu}^{\text{R1}}$)

2nd-order, nonspinning, spherical compact object [Pound 2012]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left(g_{\nu}{}^{\rho} - h_{\nu}^{\mathrm{R}\rho} \right) \left(2h_{\rho\sigma;\lambda}^{\mathrm{R}} - h_{\sigma\lambda;\rho}^{\mathrm{R}} \right) u^{\sigma} u^{\lambda} + O(m^3)$$

(geodesic motion in $\tilde{g}_{\mu\nu} = g_{\mu\nu} + h^{\rm R}_{\mu\nu}$)

• these results are derived *directly from EFE outside the object*; there's no regularization of infinities, and no assumptions about $h_{\mu\nu}^{\rm R}$

Solving EFE in buffer region yields equations of motion for object's effective center of mass

1st order, arbitrary compact object [MISaTaQuWa 1996]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left(2h^{\mathrm{R1}}_{\delta\beta;\gamma} - h^{\mathrm{R1}}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} + O(m^2)$$

(motion of spinning test body in $g_{\mu\nu} + h_{\mu\nu}^{\text{R1}}$)

2nd-order, nonspinning, spherical compact object [Pound 2012]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left(g_{\nu}{}^{\rho} - h_{\nu}^{\mathrm{R}\rho} \right) \left(2h_{\rho\sigma;\lambda}^{\mathrm{R}} - h_{\sigma\lambda;\rho}^{\mathrm{R}} \right) u^{\sigma} u^{\lambda} + O(m^3)$$

(geodesic motion in $\tilde{g}_{\mu\nu} = g_{\mu\nu} + h^{
m R}_{\mu\nu}$)

• these results are derived *directly from EFE outside the object*; there's no regularization of infinities, and no assumptions about $h_{\mu\nu}^{\rm R}$

• replace object with a *puncture*, a local singularity in the field, moving on $z^\mu,$ equipped with the object's multipole moments

• replace object with a *puncture*, a local singularity in the field, moving on $z^\mu,$ equipped with the object's multipole moments

• replace object with a *puncture*, a local singularity in the field, moving on $z^\mu,$ equipped with the object's multipole moments

• replace object with a *puncture*, a local singularity in the field, moving on z^{μ} , equipped with the object's multipole moments

Replacing an object with a puncture

- truncate local expansion of $h^{{
 m S}(n)}_{\mu
 u}$, call it the puncture $h^{{\cal P}(n)}_{\mu
 u}$
- solve field equations for *residual field*

$$h_{\mu\nu}^{\mathcal{R}(n)} := h_{\mu\nu}^{(n)} - h_{\mu\nu}^{\mathcal{P}(n)}$$

• move the puncture with eqn of motion (using $\partial h_{\mu\nu}^{\mathcal{R}(n)}|_{\gamma} = \partial h_{\mu\nu}^{\mathrm{R}(n)}|_{\gamma}$) use $h_{\mu\nu}^{\mathcal{R}}$ in equation of motion to evolve z^{μ} out here, solve $G^{(1)}_{\mu\nu}[h^{(1)}] = 0$ $G_{\mu\nu}^{(1)}[h^{(2)}] = -G_{\mu\nu}^{(2)}[h^{(1)}]$ in here. solve $G^{(1)}_{\mu\nu}[h^{\mathcal{R}(1)}] = -G^{(1)}_{\mu\nu}[h^{\mathcal{P}(1)}]$ $G_{\mu\nu}^{(1)}[h^{\mathcal{R}(2)}] = -G_{\mu\nu}^{(2)}[h^{(1)}] - G^{(1)}[h^{\mathcal{P}(2)}]$

• Lecture 1: gravitational wave astronomy, the two-body problem, and self-force theory

 Lecture 2: the local problem: how to deal with small bodies Perturbation theory in GR Small bodies and punctures Point particles and mode-sum regularization

3 Lecture 3: the global problem: orbital dynamics in Kerr

4 Lecture 4: the global problem: black hole perturbation theory

Point particle approximation

The following problems are equivalent:

• A FBVP:

$$\begin{split} G^{(1)}_{\mu\nu}[h^{(1)}] &= 0 \quad \text{for } x^{\mu} \neq z^{\mu} \\ h^{(1)}_{\mu\nu} &= h^{\text{S}(1)}_{\mu\nu} + h^{\text{R}(1)}_{\mu\nu} \quad \text{for } x^{\mu} \text{ near } z^{\mu} \end{split}$$

• A puncture scheme:

$$G^{(1)}_{\mu\nu}[h^{\mathcal{R}(1)}] = -G^{(1)}_{\mu\nu}[h^{\mathcal{P}(1)}] := S^{\text{eff}}_{\mu\nu} \quad \text{for all } x^{\mu}$$

• A point particle equation:

$$G_{\mu\nu}^{(1)}[h^{(1)}] = 8\pi \int u_{\mu}u_{\nu} \frac{\delta^4(x^{\alpha} - z^{\alpha})}{\sqrt{-g}} d\tau := 8\pi T_{\mu\nu}^{(1)}$$

(coupled to EOM for z^{μ} in each case).

These are also equivalent:

$$G^{(1)}_{\mu\nu}[h^{\mathcal{R}(1)}] = -G^{(1)}_{\mu\nu}[h^{\mathcal{P}(1)}] := S^{\text{eff}}_{\mu\nu}$$

$$G^{(1)}_{\mu\nu}[h^{\mathcal{R}(1)}] = 8\pi T^{(1)}_{\mu\nu} - G^{(1)}_{\mu\nu}[h^{\mathcal{P}(1)}] := S^{\text{eff}}_{\mu\nu}$$

$$G^{(1)}_{\mu\nu}[h^{\mathcal{R}(1)}] = 8\pi T^{(1)}_{\mu\nu} - G^{(1)}_{\mu\nu}[h^{\mathcal{P}(1)}] := S^{\text{eff}}_{\mu\nu}$$

- If we solve the point-particle equation for $h^{(1)}_{\mu\nu}$, we need to recover $h^{\rm R(1)}_{\mu\nu}$ from it
- We could use

$$h_{\mu\nu}^{\mathrm{R}(1)}(z) = \lim_{x \to z} [h_{\mu\nu}^{(1)}(x) - h_{\mu\nu}^{\mathcal{P}(1)}(x)]$$
$$\partial_{\rho} h_{\mu\nu}^{\mathrm{R}(1)}(z) = \lim_{x \to z} [\partial_{\rho} h_{\mu\nu}^{(1)}(x) - \partial_{\rho} h_{\mu\nu}^{\mathcal{P}(1)}(x)]$$

etc. But hard to implement

- Instead, expand fields in spherical harmonics and subtract at level of indivdual ℓ modes

Mode-sum regularization [Barack & Ori and others]

• individual ℓ modes are finite at particle

—divergence comes from sum over ℓ

$$\begin{split} {}^{\mathrm{R}(1)}_{\mu\nu}(z) &= \lim_{x \to z} \left[h^{(1)}_{\mu\nu}(x) - h^{\mathrm{S}(1)}_{\mu\nu}(x) \right] \\ &= \lim_{x \to z} \sum_{\ell m} \left[h^{\ell m}_{\mu\nu}(t,r) Y_{\ell m}(\theta,\phi) - h^{\mathrm{S},\ell m}_{\mu\nu}(t,r) Y_{\ell m}(\theta,\phi) \right] \\ &= \lim_{r \to r_p} \sum_{\ell m} \left[h^{\ell m}_{\mu\nu}(t,r) Y_{\ell m}(\theta_p,\phi_p) - h^{\mathrm{S},\ell m}_{\mu\nu}(t,r) Y_{\ell m}(\theta_p,\phi_p) \right] \\ &= \lim_{r \to r_p} \sum_{\ell} \left[h^{\ell}_{\mu\nu}(t,r) - h^{\mathrm{S},\ell}_{\mu\nu}(t,r) \right] \\ &= \sum_{\ell} \left[h^{\ell}_{\mu\nu}(t,r_p) - h^{\mathrm{S},\ell}_{\mu\nu}(t,r_p) \right] \end{split}$$

h

Regularization parameters

• In Lorenz gauge, $h^{{\rm S},\ell}_{\mu\nu}(t,r_p)=B_{\mu\nu}+C_{\mu\nu}/L+O(1/L^2)$ at large $L=\ell+1/2$

• So

$$\begin{aligned} h_{\mu\nu}^{\mathrm{R}(1)}(z) &= \sum_{\ell} \left[h_{\mu\nu}^{\ell}(t,r_p) - h_{\mu\nu}^{\mathrm{S},\ell}(t,r_p) \right] \\ &= \sum_{\ell} \left[h_{\mu\nu}^{\ell}(t,r_p) - B_{\mu\nu} - C_{\mu\nu}/L \right] \\ &- \sum_{\ell} \left[h_{\mu\nu}^{\mathrm{S},\ell}(t,r_p) - B_{\mu\nu} - C_{\mu\nu}/L \right] \\ &:= \sum_{\ell} \left[h_{\mu\nu}^{\ell}(t,r_p) - B_{\mu\nu} - C_{\mu\nu}/L \right] - D_{\mu\nu} \end{aligned}$$

• Method works for any $\mathcal{Q}[h^{\mathrm{R}(1)}]$, where \mathcal{Q} is linear differential operator

- Singularities introduced in a controlled way, to replace a FBVP with a simpler, equivalent problem
- Regularization prescriptions recover specific finite quantities defined *prior* to the replacement
- Picture emerges of a test mass in an effective metric

Lecture 1: gravitational wave astronomy, the two-body problem, and self-force theory

2 Lecture 2: the local problem: how to deal with small bodies Perturbation theory in GR Small bodies and punctures Point particles and mode-sum regularization

3 Lecture 3: the global problem: orbital dynamics in Kerr

4 Lecture 4: the global problem: black hole perturbation theory

Lecture 1: gravitational wave astronomy, the two-body problem, and self-force theory

 Lecture 2: the local problem: how to deal with small bodies Perturbation theory in GR Small bodies and punctures Point particles and mode-sum regularization

3 Lecture 3: the global problem: orbital dynamics in Kerr

4 Lecture 4: the global problem: black hole perturbation theory