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                                                                      Abstract





     Since the first detection of Gravitational Waves ~8 years ago, the field has literally exploded in

     multiple directions that include multi-wavelength astronomy and astrophysics, approximation

    methods in general relativity, numerical relativity, applications of machine learning  to waveform

     model building, forefront cosmological issues such as the Hubble tension, and nuclear

     physics issues related to the equation of state of neutron stars and nuclear processes at 

     extreme temperature. Therefore Gravitational Wave Science has emerged as one of the most 

     exciting fields to work on, that now attracts young researchers in large numbers.



     At the same time the very explosion of the field makes it difficult for these researchers to 

     grasp, even in broad terms, the conceptual and mathematical foundation of the theory of

     Gravitational Waves since these foundations are rarely discussed in the specific areas these

      researchers  work in everyday. The purpose of my lectures is to fill this gap.



     As I will discuss, the notion of `radiation’ requires  global and rather subtle constructions. 

     For several decades there was considerable confusion even about the physical reality of

     gravitational waves in full general relativity! This confusion was dispelled, thanks to a beautiful 

     interplay between  physics and geometry. I believe that every theoretical researcher in the field

    should be aware, at least in general terms, of the way that difficulties associated with

    coordinate invariance are overcome and fully gauge invariant mathematical quantities representing

    physical observables are extracted. This awareness would provide a broad perspective that 

    can guide their own research. Furthermore, as I discuss in the last two lectures, foundational

    issues can also have concrete applications in addressing  `practical issues’.



    Content: The first lecture discusses some subtleties associated with the notion of radiation already for

    Maxwell fields in Minkowski space. The second lecture shows that the techniques used to define an 

    unambiguous notion of electromagnetic radiation can be directly generalized to gravitational waves in exact

    general relativity. The third lecture introduces the BMS group as the asymptotic symmetry group and in the

   fourth lecture I show how these symmetries lead to an infinite set of observables and balance laws they

   satisfy. In the last two lectures I discuss applications of these balance laws to improve the waveform

   models, first explaining the need for improvement, and then providing concrete illustrations of these

  improvements.












                          







                                                     PLAN OF THE MINI-COURSE



My lectures will focus on 

 

(i) Part I: Conceptual and Mathematical issues associated with gravitational waves (GWs) in full, non-
linear general relativity. They  will thus complement other lectures on approximation methods and 
numerical relativity by providing the concepts and mathematical notions they use;  



and,



(ii) Part II: How these results in exact general relativity can be used as diagnostic tools to test the 
accuracy of model waveforms.  Normally one uses numerical simulations to evaluate the accuracy 
but there are regions of parameter space where numerical  simulations are sparse. The diagnostic 
tests come from identities that must be satisfied in exact GR. Their strength lies in the fact that they 
enable one to test accuracy of waveform models even when one does not have the exact waveform 
to compare them with!  They focus on the accuracy of the waveform vis a vis (infinitely many) 
physical observables, thereby bringing out the physical nature of the inaccuracy and suggesting 

 directions for improvements in all regions of the parameter space.   Furthermore, they can be used 
to test accuracy  of NR waveforms themselves.     





Main References where further details for the material covered can be found:



Lecture 1:  Sections 1 and 2 of  AA & Bonga, Gen. Rel. Gravit. Grab. 49, 122 (43pp) (2017); 

                                                                             https://arxiv.org/pdf/1707.09914.  

                      Sections I and II of Newman and Penrose, Proc. R. Soc (London) 305, 175-204 (1968)

 



Lecture 2: Sections I and II of  AA, in the GR Centennial volume, edited by Beiri & Yau;  https://arxiv.org/pdf/1409.1800                     

                     Section II (parts 8-11) of R. Penrose, Proc. R. Soc (London) 284, 159-203 (1965)

                      AA, J. Math. Phys. 22, 2885-2895 (1981)

 

 Lecture 3:  http://igpg.gravity.psu.edu/research/asymquant-book.pdf   Pages 44-54

                      AA, De Lorenzo & Khera, Phys. Rev. D101, 044005 (1-17) (2020)      https://arxiv.org/pdf/1910.02907.pdf



Lecture 4:  http://igpg.gravity.psu.edu/research/asymquant-book.pdf   Pages 55-77

                       Phase space of radiative modes:   AA & A. Magnon,  Comm. Math. Phys. 86,  55-68 (1982). 

                      BMS. Hamiltonians/fluxes:  AA & Streubel, Proc. R. Soc (London) A376, 585-607 (1981)



Lectures 5&6: AA, De Lorenzo & Khera, GRG 52, 107 (1-27) (2020); https://arxiv.org/pdf/1906.00913.pdf

                       Khera, Krishnan, AA & Del Lorenzo, Phys. Rev. D 103, 044012 (2021);  https://arxiv.org/pdf/2009.06351.pdf

                  Mitman et al, Phys. Rev. D 103, 024031 (2021); https://arxiv.org/pdf/2011.01309.pdf 

                  Khera, AA & Krishnan, https://arxiv.org/pdf/2107.09536.pdf












students Doing the exercises is important



































































































Further details for material covered  lecture #1:

Sections 1 and 2 of  AA & Bonga, Gen. Rel. Gravit. 49, 122 (43pp) (2017);  https://arxiv.org/pdf/1707.09914.

Sections 1 and 2 of Newman and Penrose, Proc. R. Soc (London) 305, 175-204 (1968)




Lecture 1 Electromagnetic waves

Radiation content in a solution to Einstein's egos
is tricky to identify
Led to a lot of confusionabout reality of Gns in full
or in the earlydays We will see that Einsteinhimself
contributed to this confusion Clarified in the 1960sand
1970s by Bondi Sachs NewmanPenroseand others

Some aspects of the confusion are present already
for Maxwell fields in Minkowski space so in this lecture
we will begin with this simpler case provides intuition
techniques for Gws we will then study

M R4 Mab Minkowski spacetime Maxwell field Fab

TeaEa o at a fab sittin spatially infant
worldtube

main issue cannot extract the radiativecontent of
Fal at a finite distance from soirées No localcriterion

Poynting vector non zero É xÉ to seems like a

s
notionnaimanant

Ex coulomb field of a point charge In the restframe

But if you boost e g in the z direction in the new rest frame
É É O

What is radiation I part of the field But one
cannot extract it if you are given the solution only locally

Needto go in the fat field region mathematically r o

Radiativepart is a global concept












































































































A precise way to do this to bring as to a fine distance by
an appropriate conformal transformation pentose completion

Ep
ds2 dtatdrtrfdo.gg o

iii iiiAt i as uh Fiesta defined But

Iii

aus

is a welldefined metric in a nbd of 2 0

2 0 not part of Mink space Cros there
Haveattached a boundary to Minkowski space completion

Boundary called It soriplus endpoints of nullgeodesics
a do in Minkowski space Natural Home for radiationfields

At It I 0 ds dud tt eemetric
Tst Vectors to It fu fo fo fu null vector
a although It is 3 dimensional Intrinsic metric 52 dat

signature o.tt degenerate
It is null surface with fu as its nullnormal

We can use advanced hull co ordinate U ttt inplace
of u t t then we get past null infinity J This is where we

specify No incoming radiation condition retardedfields

Null tetrad convenient basis to expand fields Newmanpentose

IIF Fatt t la Talttr ma Ez Tao isino Yay

Then na la Ma tha are all null Hal I mathat I
All other contractions vanish

For the rescaled metric Eyal Jab the null tetrad is

Ma Ii Ea Rea eZea ma I ma Fa Tina
The hatted vectorfields havesmooth limit to It
unhalted fields Indices raised a lowered using yah a yapand for
hattedfields using fab a Map

Conformal invariance of Maxwell earns
Fab Fab satisfies cat 0 a FF 45J Jb Etb

T casespatiallycompactSupport












































































































It is a regularsubmanifold in the completedspacetime

Fab Fab smooth tensor field It Hence for components

Ez Fab hat Fabia II Ej of I Fabian

I FabChaettmath
as Seba ing Ej toffs etc

I Fabmalt t o ta

Fcompotents of the
Maxwell field T.ci fgofasone It

Ey Check that Peeling property holds If Agha is a potential
in the gauge Aaaato show that LnAang Igfor Fab Fab

Hama or Ej are the 2 radiativemodes of EM waves

We return to the question we began with
Radiation content of Maxwell field n't part isolated It Ej
The fa part is the coulombic part isolated It I

Energymomentum Angular momentum carried by Em waves
All expressible as integrals over t

Geometrical considerations I flux across E toplanes
or r to cylinders
associatedwith a killing

I vectorfield ka

I E I b Esty
i

a
t to spacelikeplanes into timelike FamFinds Trace

I Ex calculatefor Kd
Translations a show

ftp
1Ynoay IF f coso II Pdudes

É Ii L












































































































Ex show that the total electric charge is given by
Q E f re Io d's foranyno

E g

This reconfirms the interpretation of 82 a E at It as
capturing the radiation and coulombic information ofany
given solution If Ig o No energy momentum or angular
momentum carried away No Em waves

At g u v so na ta so peeling properties
reversed I Fabmalt Is Off

I Fat nai'tmainb II off softness

E Fabian III off
so radiative information at J is encoded in ofcurly No
incoming radiation Retardedsolution a q o J

Asymptotic flatness null infinity in GR

Isolation of gravitational radiation in a solution of
Einstein's equation several conceptual andmathematical subtleties

i Again need to go far away from sources But no natural
r coordinate Distances defined bygab itself the dynamical field

may appear wave like ondulatingin another because the time like
killing vector youfound in a patch is boostlike a not a translation

Led to a lot of confusion about realityofgravitationalwaves
Einstein had derived the quadrupoleformula in the linearized
approximation showing how sources create Gws 1191619187
But then till 1960s there was considerableconfusion on whether
GWs exist in full nonlinear GR

Clarifiedfolly by Bondisacks NewmanPentose and others
This is what I willdiscuss in the next two lectures This is
the foundation for all current work on Gws



I.A Einstein-Rosen GWs: Fascinating History

• Einstein 1916: Quadrupole formula showing that general relativity (GR) admits
gravitational waves (GWs) in the weak field approximation around Minkowski
space. Parallel with Maxwell’s theory in striking contrast with Newtonian gravity.

• But then based on his work with Nathan Rosen, in 1936, he sent a paper to
Phys. Rev. entitled Do GWs exist? The same day, he wrote to Max Born:
“Together with a young collaborator I arrived at the interesting result that
gravitational waves do not exist though they had been assumed to be a certainty
in the first approximation. This shows that non-linear gravitational wave field
equations tell us more or, rather, limit us more than we had believed up to now.”

Einstein Rosen Robertson

Einstein submitted three papers to
Phys. Rev. in 1936. Only this paper
was sent to a referee. Received a 8
page report (from H.P. Robertson)
showing that there was an error, not
in the solution itself, but in their
conclusion. Einstein and Rosen had
curious reactions.
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I.A Einstein-Rosen GWs: Final publication

• The paper finally appeared in the proceedings of the Franklin Institute, but in
the proofs Einstein reversed the conclusion and changed the title! Nathan
continued to believe the original conclusion!!

Journal of the Franklin Institute

Volume 223, Issue 1, January 1937, Pages 43-54

On gravitational waves
A. Einstein, N. Rosen

https://doi.org/10.1016/S0016-0032(37)90583-0

Abstract

The rigorous solution for cylindrical gravitational waves is given. For the convenience of the

reader the theory of gravitational waves and their production, already known in principle, is given

in the first part of this paper. After encountering relationships which cast doubt on the existence

of rigorous solutions for undulatory gravitational fields, we investigate rigorously the case of

cylindrical gravitational waves. It turns out that rigorous solutions exist and that the problem

reduces to the usual cylindrical waves in euclidean space.
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Lecture2 Asymptotic flatness Null Infinity pentose Gooch AA
Defn A space time htJab is said to be AF NI if we can
attach a boundary I 52 112 to M St on M Aug
i metric gab I gab of t signature as gab is on N and
A smooth on M 2 0 I and tar to g

ai a 2Tab 1 2 2 859 Gab is smooth I

satisfedbyphysically interestingmaxwell a scalarfields minkspace

Definition Astonishingly simple No reference to Bondi's
expansions Penrose's hull geodesics coordinate free yet
captures all we need to discuss aWs in full non linear GR
Intuitively a Yr and It coordinatized by u 6,4

In these lectures I will assume Fayvanishes in a nbd of
J for simplicity But everything we discuss will gothrough if
a Tabhas a limit can have em radiation Ns Ns coalescence

ftp.EI.ttiIisiiejuslevolution
Example Schwarzschild sold
a stat for concreteness but a BH
geometry is identical heart
Again Consider It for definiteness

U t t I 2M InEm 1

dss 11 21 du zdudt Edw
R Yr
ds 22453h
221121 du't zdudrtdueont

I zdude dat Katenfspace

is it
to

Ex Do all the intermediatecalculations Also startwiththekerr schild
form of the metric andshowthat I of Mink space is the same
as I of schwarzschild can do this also for Kerr












































































































consequences of field equations Rabo heart
gab EGab Rab Rab125 Ta A A Thyme38227kTmr Jabin

Indicesraisedusinggab
Ex check this If you needhelp see Wald'sbook AppendixD

Ii Ind ga smoothat I strongconsequences setnegation
Then since gab gab gab ofgab whence
O R SIR 62 Hmmm 12hmmm 127 hmmm O

E in is Bc is s c

NOW Rx o Yah a gab I a Ian I In Gab
conformal freedom I R wa where w smooth to ont

can always choose w st I n't to Ian's o

Ex check this

Thus field equs neat I ie Lim ETab exists imply
lil J is a null 3 surface a lii can always choosea conformal
factor a set Ian o Divergence free conf frame

Restricted conformal freedom I R we sit w is
smooth a non zero I and Tana 0 a Ian'd to Law o

tWE WHO 4 a Law 0 since nakfa Exercise

In the divergence free conformal frame

mazy mazy Ffj is a cyinder i II S a gqugisa.be do I14.0.4

In the literature one often further restricts the conformal
freedom by demanding that the metric gab gab on It
co.tt is a unit 2spheremetric ie hasscalatcarvature 2

9h W gab R W Z R Z D InW 2

ds 2 do't sin ody
Sol t's exist 3 parameterfreedom w tatami l

Ii Sinocosy sin sing cos0 Ypeitggdial

Advantages a disadvantages of Bondiconf frames












































































































Relation to older literature no conformalcomplet
Bondi sacks a Newman unti Asymptotic Expansions

asymptotic fall off imposed on thephysicalmetric insuitablecoordinates

can introduce co ordinates u O ya in a
hbd of I Bonditype expansion

Fix a 2 sphere crosssectionCojjjjjjjjjjjjg.fi hico ordinate it with day Definesdanby

family of cross sections athist sight eat Inhaling

geodesics generated by la Ieatalb o Then introduce yay
in a nbd of y using Leu o Le0 0 Lep o set D

Then the physical metric gab has the form

Fatdead fidu I dude tf Tab IAB dxA fadu dxB fB du

Here A B 0.4 and Ja unit aspire off
this

fi f t f och fa z t total ha fly oct f In tort

Temark f fa HAB FA 7 functions
using co ordinatefreedom can eliminate 1 by further restriction

F Affine parameter of l soNewman Unti choice
yayay gabd u dat Fixes 2 1

Bondi sacks choice t t Luminositydistance t Luminositydista
determinant of the 2 spheremetric D H2site

r I r have the same asymptotic behavior
Thus the co ordinate expansions one finds in the literature
can be arrived at starting from conformalcompletion in a

systematic geometric fashion The extra inputcorresponds to
fixing the restricted conformalfreedom a or in a

neighborhood of 9 I












































































































Radiation field and Peelingproperties in exact GR
Fix AF space time Moab and conf completion mgab where

It is divergencefree ie Haha Tatar o

Rabcd Cabed SaccSab ObaSaba Sab Rab Rgb
Fieldeats OSab Sab 2ft Tanis I n'negab

multiplying by a and taking curl we obtain Exercise
A TeaSloe Cabed nd 0

Cabod nd o

Bianchi Idenity SIR topology of J Cared to exercise
Kabed a Cabad has a smooth limit to 9

Asymptotic curvature contrast with Maxwellfield

Transverse Hbdnd Iostttia.ba kabed n'n IÉÉ Ides
ifettatier

1 Katz components
A B 1,2 Angularcomponents

ETattefifieldth Fb Fabra Is 2components E Is
Int o Tz Angularcomponents

Maxwell field EB I form on It defined intrinsically But convenient
in practice to write its components in a null tetrad as to

u yo tha tha tgt to it math gab o

nu o ma thbgab I and tie drag Lnma o to all off
iIeagesegen

Ree

For gray field in exact GR same procedureused for convenience

But convenient in NR for example used heavily in Gw literature0 called radiation field 2 Radiativemodes

Ha ha ya ya
eatilde vectorfields pi e lphysical hull tetrad has ma as in Maxwelldiscussion

Then
ya Easedhatband If octal radiative part

Kab iambHsia

y pongman gaff EyotFB 0ft












































































































using field equations one can find potentials for Iab IAB
These potentials heavily used in NR andwaveformmodels

1st potential Bondi News Nab NAB symmetric TF Ta Nabnko
IAB La

NEB
E LinzSAB fab Rab IRJab

Note Nab 2 Sab Pas L Papo 4 Pay day in aBondiconfframed

MTA IB 4,0 II NAB 2 NMINTZ ATMAMA

2nd potential shear Gas 6,5 symmetric TI Transverse

N fo 50 Hae iamb GEB IA FB
man

iFO Gag thanB
I testified it a

because of iambyf I É o Fit

physical spacetimeÉ gture Eerie

coulombic Part
Maxwell

Ibeb

Full nonlinear Gp
Rego Fabhalet

charge
momenton

Physical space

e kabad name ebedyzy.gg
Ibd ebed

Physical space
Re Iz E Caked napettedÉ É L REI total

Kerr Re 9static charge Re z Ea 4,0 Kabed latte nd Etogfitom

physical space
Cabad tape'ind
Yg Otts

Kett I 321EinoGJ









































































































     





      Lecture 2  References:

     Sections I and II of  AA, in the GR Centennial volume, edited by Beiri & Yau;  https://arxiv.org/pdf/1409.1800                     

     Section II (parts 8-11) of R. Penrose, Proc. R. Soc (London) 284, 159-203 (1965)

       http://igpg.gravity.psu.edu/research/asymquant-book.pdf   Pages 44-53




some commonly asked questions

Question about Ii magnetic parts wine na

IE i Fabha Bb Faiha tea d naFed
By th i n indFed III

IE IDE Fasnaint IE
IE eh Fab179lb 2ReEY Bb e 2 Im I

Because na is null E a Bi share z of 3 components If
This is in striking contrast with the usual electricandmagnetic
fields Eb Fab ta and Bb Falta with ta a unit timelike
vector t to a spacelike surface These Ea and Ba are independent

In the gravitational case situation is completelyparallel
I can be extracted as both and Badintend
Kama nan in ma Fab BE Fto 43 Imy only

Question about massive versus masslessparticles

Lyft
It is the properarena fordiscussing radiation
ie masslessfields

massive fields suchas neutrinos or scalarfields
are not registered on It Theycomefrompast

gg
ietelds time like infinity i and go to future

timelike infinity it These are often depicted
as points But one can blowthemup to 3 d
spacelike surfaces hyperboloids In Minkowski

space each point of the hiperboloidrepresents
the pastandfutureendpoints of time likegeodesics

limit to I when It blows up becomes infinitethere
Question about Kaba and

I Cabad has a welldefined limit becausecabad is smooth and
vanishes at I consider a smoothfunction f on the completed

manifold m If f Io the Taylor expansion of f around I is

f r f tf fat where fine If two so thin R f f theft


































































































































Lecture 3 Asymptotic symmetries
The Bondi Metzner Sachs Betts group

Scalar fields in mink space symmetry group Poincare
because it preserves the universal kinematical structure
shared by all sots to field equation leg yabato 4 0

Energy momentum angularmomentum refer to killingvectors
infinitesimalgenerators of Poincare transformations

GR space time varies from one solution of Einstein'sEg
to another generalsolution gab has no symmetries ie
Killing vectors But for Asymptotically flat space times It
provides a universal background arena to extract physics

Given a conformal completion Mgab ofgab ÉsxR
nai ga Mor hull normal gab fab satisfies

gab So effectively a metric onI fIÉÉ
u

Gabino

D R We then I a gab n a wind

so I equipped with pairs gab n
ga

2

gab nb wagab w n Inw o

I SIR gabn w gab Int st In w ois
e

satisfying gabnko In gab o fittest stab atd
II EEE

Asymptotic symmetrygroup subgroup33 of diffeogroup
Diff I that preservesthis structure

Lie algebra Ib Yes 3 on J st

LgGab Gabi say L fab 20Gab then Lena ontwith Lnp 0

To explore the structure of lb consider first the
symmetry YF Ba f na

ÉÉk Then L gab Lf Gab final myDayf In o 0 0

Lena 0 Lnffa to a Inf o


































































































































Then Inf 0 f flux0,6
These symmetries are called supertranslations 39find E

Ex check f h fan Lantana qq.gl
79 fzEf

o

Furthermore given any symmetry YF 39 since Lena ha
E f n Lytha Lf d na E

Thus S is a lie ideal of the fullsymmetry iÉÉÉ
9 to a xf 59 onthebasespace

yyyyyy.gg

any 3

Mj
Lggab 24Gab 23Fab 28 Fab

59 a conformal kue of gab on

Fact Lie algebra of Ckvf of
Lorentz Liealgebra L

j tetta
Eiffel.am

Recall that Poincare lie algebra p a Group P are similar

Tfanslations IF'gge
D T X L

In lb 4 dim T is replaced by an infinitedimensional

Big surprise at first the group is Iiia msn.ge
dimensionalgeneralizationthereof Thiscomesaboutbecause

iiiiiiSo Jab approaches a flat metric Ta in a precisesense
But if eg I t from I b CtlX Y z
ie Y'd is obtained from Ya by an angledependenttranslation

Poincare groups of Tab and Mab are different Intuitively B
is

obtained bygluingallthese p D consistenty codim



























































































































 

For further discussion on enlargement of the Poincare group to the BMS, due to supertranslations, see the    

 Appendix of AA, De Lorenzo & Khera, Gen. Rel. Gravit. Grav. 52, 107 (1-27) (2020); https://arxiv.org/pdf/1906.00913.pdf


B Asymptoticsymmetry group of Gr tailored to
asymptoticflatness null infinity at Radiation Gws EMWs

This enlargement came to be appreciated in the particle physics
a perturbative treatments of classical a quantumgravityonly
over the past decade conceptually a keyeffect of full non linear
GR

Interestingly the co dim Lie algebra of supertranslations does
admit a 4 dim sqqgebgg.ggagontgaffslations unique

4 dim
normal subgroup B simplestdescription
Go to a Bondi conformal Frame in which gab is a unit 2 sphere
metric Then 39 210,41179 E T if and only if

210.4 dothanYim1941 zingycombination of first

the subspace does not depend on the choice of gab in Bats

Notion of energymomentum casupermomentom is well
defined But angularmomentum is more subtle because
B has an coparameter ratherthanjust 4 as in p family
of Lorentz subgroups supertranslation ambiguity

summary
Asymptotic flatness I needed for Gws in full GR
The asymptotic symmetrygroup B The BMS group
preserves the universal structure atf that is common to all
AF space time can also be obtained as

B IEIE.IE I asIt ii
B A X L A as dim normalsubgroupofsupertranslations

generated by Yes 39 fay ha
under D wr ha w na f of

conformallyweighted wt 1

I admits a canonical 4 dinsubgroup I of translationsgenerated by39 20.4 na a dot EamYmca in a Bondi
conformal frame gab unit round 4 s net metric





















































                                                                       

           































        

          Phase space:   AA & A. Magon,  Comm. Math. Phys. 86,  55-68 (1982). 

          BMS Hamiltonians:  AA & M. Streubel, Proc. R. Soc. (London) A376, 585-607 (1981).



 
















BMS 4 momentum a supermomentum Fluxes a charges

Maxwell theory in Minkowski space
Energy momentum source free sons

I fTab kadsb fam if dad's

I
Isotta.fiettqygg maim temaxwented

Forgravity in full GR we have asymptotic symmetries att
ga fro p ha supertranslations a sajggg.fr

translations

But we do not have a gauge invariant notion of stress
energy tensor Tal for the gravitational field

Maxwell theory We can obtain the same expressions
of E using Hamiltonianmethods Fa is the Hamiltonian
on the Maxwell phasespace generator of the infinitesimal
canonical transformation Fab Lktab on the spaceof

solutions to Maxwell eats ExTshowtisisacanonicaltransformation
Tab not used

Interestingly we can repeat this procedure for full GR

At spatial infinity this leads to the Arrowift Deser Misner Adm
expressions of energymomentum Total 4 momentum of spacetime
including sources a radiation

We can do the same at null infinity for radiativemodes

Beautifulmathematicalstructure associatedwithgeometry att
leads to the phase space Pad of radiative degrees of freedom

very similar to that in Maxwell a YM theories
































































































































equation at 9 conformal completiongives

go
gabna at I zerothorder structure to all

AF spacetimes

TaSbc 0 Ta derivative operator
connection In Aa in Maxwell

induces Da at B din I i Dakb Takes
of Kbonsunambiguous becauteyan o ft

non universal information in space time ie Da canvary

interplay between physics andgeometry shared byYangMillsgauge theories

nagual New information in D that varies from
one solution to another

Fix any cross section of I set a do on it
Then Inu l we acquire a t parameter
family of cross sections u constYform normal to the cross sections la Dall
Gana 1 lama oIsS
determined its action

Because DaGbc 0 the action of D on

a horizontal ha haha o Lahad is

can vary from on solution toanother
New information in D shear of TF ga 9ydTalc

TF Italy TFDalb
Recall 60 mambas 2 components of Transverse TF 69

IÉs Ig Eta's mams
Thus information in D that is not universal kinematical i.e
that can vary from one physicalspacetime to another is
contained precisely in the waveform
Radiative phase space Trad s D or I Bath

o


























































































T subtleties possible confusion a Resolution

Question
I not tangent so how can Da

yg.gg
The null vector field la is transverse to

that is an intrinsicderivative
operator on I act on it

Answer You are absolutely right
Da does not know how to act on the vectorfield la But
it knows how to act on co vectorfield la because la is
defined intrinsically on I lie lies in the cotangentspaceat

any point of 4 This is at first confusing because this
feature la versus la occurs because I is null

Recall The 3 manifold I is coordinatized by d 0,4
so a triad on I is na ma tha where nage du
and Mada E do finod4
The dual collectors are Dad and ma do isinody
da dad so lana 1 la tha laka 0

so la is in fact a collector defined intrinsically on I
Note na Har so it's pullback to I vanishes my 0

Thus a triad intrinsic to I ha ma ima
a co triad intrinsic toy la ma ma

Therefore the derivative operator Da knows howto act
on la If la is any smooth extension to a a dimensional

heighboud of I then Daly Lady

Another clarification why is Da welldefined
Given any ka or I extend it to a neighbood off in M

If Ka and Kia are two extensions i e Katya and
also ka ka at 4 then ka ka f Vat fha for some

YF la and function f since a o and Ea o so

Talk K Ear Vb a taxi t Hat hab tf Iamb
pulling back to J

talking o since RIO Ia Ia o Iad

Hence Laki Yak Daks unambiguous
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Lecture 4
Thus
At I we have the symmetry croup B Bmsgroup that
preserves the universal kinemaca structure commontoall
AF spacetimes

Fundamentaldynamical field Jt D captures radiativecontent

of space time Th tout its caricature D determines precisely
deal Fab and hence N yo Is Im 420

Recall Nab 22,69 N j Nab 2INmathtamari
Idf Fab t LnNab than Iab N jo
00 or ti titix heavily used for waveforms
Invarint content of go is D

In stationary space times D trivial ie completelydeterred
by gab We can choose u const cross sections of A suchthat

61 TF GacG Da d 0

Nab o Iab o e 40 0
In radiative space times D nontrivial Nabto 4 0
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commonly used formulas in the GW literature
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 AA & A. Magnon-Ashtekar,  Phys. Rev. Lett. 43, 181-184 (1978)













  















 





















Summary of the material presented  for Lecture 4:

    Section. III of  AA, in the GR Centennial volume, edited by Beiri & Yau;  https://arxiv.org/pdf/1409.1800   
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                          PART II:  Balance laws as diagnostic tools for waveforms 




   In the last two lectures we turn to a concrete application.  Recall the plan of the mini- course



                                    

 

(i) Part I: Conceptual and Mathematical issues associated with gravitational waves (GWs) in full, non-
linear general relativity. They  will thus complement other lectures on approximation methods and 
numerical relativity by providing the concepts and mathematical notions they use;  and,





(ii) Part II: How these results in exact general relativity can be used as diagnostic tools to test the 
accuracy of model waveforms.  Normally one uses numerical simulations to evaluate the accuracy 
but there are regions of parameter space where numerical  simulations are sparse. The diagnostic 
tests come from identities that must be satisfied in exact GR. Therefore, one can use them to test 
accuracy of candidate waveforms and suggest directions for improvements in all regions of the 
parameter space.   Furthermore, the balance laws  can be used to test accuracy  of NR waveforms 
themselves.     
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Lecture S Waveforms
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                                                                        WAVEFORMS



This is a brief summary of procedures used to create waveforms using PN methods and numerical simulations 
of Einstein’s equations, emphasizing the conceptual aspects and key assumptions and approximations. This is 
only a bird’s eye view addressed to mathematical physicists and therefore glosses over many astute steps and 
novel techniques that have been used to make nontrivial advances. (This material is based on  joint work with De 
Lorenzo and Khera). The account is not up to date. Nonetheless, this material will enable students to appreciate 
why non-trivial checks on waveforms are needed and how this purpose is served by the balance laws we 
discussed in these lectures. 





The main focus of the community has been on the part of  Compact Binary Coalescence (CBC) that is directly 
relevant to the sensitivity band of the current gravitational wave detectors. This translates to  ~100 quasi-
circular orbits where dynamics is expected to be well-modeled by the slow-motion approximation of PN 
expansions, and the last ~10-15 orbits for which dynamics must incorporate strong field effects of full general 
relativity. These last orbits are calculated using NR. In principle, one could use NR for the entire process. 
However, the required computational time and effort would be too large, given that we need to cover an 8 (or 
greater) dimensional parameter space associated with the binary. That is why a `stitching procedure’ is used, 
where the early waveform comes from the PN analysis and the late waveform from numerical simulations. The 
result is often referred to as the hybrid wave form. In addition, a number of strategies –the effective one body 
(EOB) method [1], phenomenological interpolation [2], NR-surrogate models [3] – have been used to enhance 
the reach of analytical waveforms, and/or to interpolate between parameters used in numerical simulations to 
create a large bank of waveforms. Thus, while currently there are a few thousand CBC numerical simulations, 
the data banks contain 100 times as many waveforms. The full bank is used by the LIGO-Virgo collaboration 
for detection, parameter estimation, and testing GR. (For further details, see e.g., the review articles [4–6] and 
references therein.)





Various steps in this process involve approximations, guesses based on intuition, and choices that are 
necessary to resolve ambiguities. 



Let us begin with the PN expansion. This is essentially a Taylor series in small velocity –truncated to various 

v/c  orders– which however is not convergent; it is at best an asymptotic series. For example, for luminosity of 
gravitational waves in the extreme mass limit, the PN expansion starts to deviate significantly from the exact 
result for v/c > 0.2, and the contributions up to (v/c)   and  (v/c)   terms do so in opposite directions [7]. 
Consequently, even when one can carry out calculations to a high order, it is not easy to systematically control 
the truncation errors. 



A second issue undergoes the name of Taylor approximants. The post-Newtonian waveforms are obtained 
starting from the PN expansions of the energy of the system E(v/c) and the flux of radiated energy F(v/c). 
However, because the procedure involves rational –rather than polynomial– functionals of E(v/c) and F(v/c), 
there is some freedom in expanding out these quantities to obtain the waveform to a given PN order. Because 
of this freedom, several different PN waveforms arise at a given order; this is the so-called ‘ambiguity in the 
choice of Taylor approximants.’ For unequal masses, this is generally the largest source of errors in the PN 
waveforms (see, e.g., [7, 8]). 



Finally, in the PN literature, there is a fixed background Minkowski space at all orders and the PN solution is 
assumed to be stationary in the past, before some time  t < - τ   [4, 9].  This assumption would seem 
unreasonably strong to mathematical relativists since for sources for which the initial value problem is well 
posed in full general relativity, if a solution is stationary in the past in this strong sense, then it is stationary 
everywhere. However, in the PN strategy the system is non-stationary in the future due to radiation reaction 
effects and the assumption of past-stationary primarily serves to make various tail terms finite. The viewpoint 
is that “past-stationarity” is appropriate for real astrophysical sources of gravitational waves which have been 
formed at a finite instant in the past” [4]. The physical idea behind this strategy is that the two bodies become 
gravitationally bound at a finite time t =	 -τ in the distant past, while being still very far away from one another, 
and it is argued that the metric perturbation of the  background Minkowski space-time can be taken to be 
stationary before the capture occurs.   
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In lectures 5 and 6, we will use a much weaker condition, where past stationarity holds in a limiting sense as one goes to past infinity 
along      and that too only for a certain field. The assumption is mild and expected to hold on physical grounds for CBC  (although, not 
in scattering situations). In particular, it is perfectly compatible with non-stationary solutions in full GR.



In NR we encounter different types of errors. First, there are the truncation errors that are common to all 
numerical simulations. Second, the wave form is extracted at a large but finite radius, whereas the radiation 
field becomes truly gauge invariant and unambiguous only at infinity. Therefore, the results inherit error-bars 
associated with the choice of extraction radius [10]. Third, the waveform is obtained by integrating twice with 
respect to time the radiation field encoded in the component Ψ  of the Weyl tensor. This requires introduction 
of coordinate systems and null tetrads which become unambiguous only at infinite distance from sources. 
Finally, although one does have tools to calculate full Ψ  (modulo the ambiguities inherent in working at a finite 
radius), there are numerical errors due to high frequency oscillations which are suppressed if one calculates 
only the first few (spin-weighted) spherical harmonics because of the ‘averaging’ involved. Therefore, only the 
most dominant modes are generally reported in the NR results, rather than the full wave form. 



The `stitching procedure’ is inherently ambiguous because it involves several choices (see, e.g., [11]). First, one 
has to decide at what stage in the CMB evolution one stitches the PN and the NR waveforms. Second one 
must decide which PN order and which T-approximant to use. Third, the PN and the NR waveforms are 
generally computed using different co-ordinate systems and therefore one has to introduce additional inputs 
for a meaningful matching. These choices are driven by intuition and guided by past experience rather than  
clear-cut, unambiguous mathematical physics procedures. 



Next, because the PN expansion and NR simulation are based on quite different conceptual frameworks, there 
are several seemingly ad-hoc elements involved. In PN calculations, the sources are taken to be point particles 
in Minkowski space. In NR, there is no background Minkowski space and black holes are represented by 
dynamical horizons (and neutron stars with suitable fluids). In the case of black holes, the individual masses 
and spins are determined by the horizon geometry. Therefore, for the stitching procedure, one starts with a 
controlled set of NR initial data (given by the Bowen-York [12] or the Brandt-Bru¨gmann [13] strategy) 
satisfying constraints of exact GR and evolves. Now, these data contain some ‘spurious radiation’ which 
escapes the grid quickly. After this occurs, one re-evaluates the source parameters in the numerical solution 
and matches them with the source parameters of the PN solution. One then chooses an interval in the time or 
the frequency domain and evolves both the PN and NR solutions and compares their waveforms. There are 
several ways to ‘measure’ the difference between the two waveforms and one minimizes it by tweaking the 
time of matching, the interval over which the matching is done, and the choice of source parameters in the two 
schemes.



 Conceptually, it is important to note that the matching is done only for the waveform –i.e., for the two 
asymptotic forms of the metric that capture the radiative modes in the two schemes. In the interior, there is no 
obvious correspondence between the PN and NR solutions. In particular, there is no simple relation between 
the ‘particle trajectories’ representing the black holes, determined by the PN equations, and the dynamical 
horizons determined by numerical simulations.




These considerations make it clear that even for the  ~1% of waveforms in the data banks that are obtained 
just from PN and NR, there is no systematic way to measure how well they agree with the predictions of exact 
GR. Inputs that go into the construction of the remaining   ~99% of the waveforms are even less driven by 
fundamental considerations. To mathematical relativists, this can seem shocking. But it is important to note 
that similar phenomenological considerations and mixture of science and art are heavily used also in other 
areas of physics, such as QCD.



 It is a tribute to the physical intuition and technical ingenuity behind these hybrid waveforms, that the 
matched-filtering procedure could lead to detections of coalescing binaries.  
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                                                     Using the Balance Laws as a Diagnostic Tool





Waveforms from EOB, Phenom and Surrogate models have proved to be invaluable for the 
impressive detections of the CBCs  through gravitational waves. But we are entering an era of 
abundant event rates (soon, as many as 1000 BBH mergers a year with masses <100 M !) 
and with LISA and 3g detectors we will achieve a much greater sensitivity over a significantly 
larger frequency band. For more accurate parameter estimations and tests of GR, one needs 
quantitative measures of the accuracy of waveforms, relative to exact GR.




Key problem: We don’t know the exact GR waveforms! So in the literature, accuracy tests •
involve comparisons with NR. But there are big regions in the parameter space where the 
NR simulations are sparse, so direct comparison is not possible. Also NR results 
themselves have some errors (e.g., extraction of the wave form at a finite distance; truncation errors; absence 

of higher harmonics of waveforms). 




Balance laws provide an alternate route that complements NR: Can be used anywhere in •
the parameter space; and can be used to test NR itself. 




Key feature: Provide an Infinite number of  constraints on waveforms, without having to •
know what the exact GR waveform is ! Whatever the exact waveform is, it must satisfy 
these supermomentum (and angular momentum) balance laws. Therefore, given any candidate 
(EOB, Phenom, surrogate, …) waveform, its violation of these constraints provides and objective 
measure of how far it is from exact GR, without the need of comparison with the (unknown) 
exact waveform.
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For this last topic, the discussion is sketchy because I did not discuss the angular momentum balance law  in 
this course. The purpose of this discussion is only to illustrate ways in which the balance laws can be useful as 
a diagnostic tool for both waveform models and NR, and can then lead to improvements. In essence each 
balance law focuses on an aspect of the waveform and serves to bring out limitations that would otherwise be 
missed.





For the course as a whole, it is interesting to note that the 6 lectures covered a very broad spectrum 
of ideas that have been developed over 5 decades!  The constructions and techniques developed in 
the 1970s and  1980s still provide foundation for all the forefront theoretical work in GWs. They 
involve unforeseen and beautiful interplay between geometry and physics. We saw in the last two 
lectures that, in addition, the older ideas also have a down to earth, practical application as a 
diagnostic tool to probe the strengths and weaknesses of waveform models vis a via exact GR and to 
improve them. They can even serve to bring out limitations of NR simulations vis a vis exact 
GR.improve them. They can even serve to bring out limitations of NR simulations vis a vis exact GR. 



This is possible because each balance law enables us to examine the accuracy of the waveform 
through the lens of a specific observable of exact GR & we have an infinite number of them! This 
accentuates strengths & limitations of waveforms that are not otherwise  apparent.





                                           



                                     





 


















































Angular momentum balance law Applications
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Testing waveform models using angular momentum
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The anticipated enhancements in detector sensitivity and the corresponding increase in the number
of gravitational wave detections will make it possible to estimate parameters of compact binaries
with greater accuracy assuming general relativity(GR), and also to carry out sharper tests of GR
itself. Crucial to these procedures are accurate gravitational waveform models. The systematic
errors of the models must stay below statistical errors to prevent biases in parameter estimation
and to carry out meaningful tests of GR. Comparisons of the models against numerical relativity
(NR) waveforms provide an excellent measure of systematic errors. A complementary approach is to
use balance laws provided by Einstein’s equations to measure faithfulness of a candidate waveform
against exact GR. Each balance law focuses on a physical observable and measures the accuracy of
the candidate waveform vis a vis that observable. Therefore, this analysis can provide new physical
insights into sources of errors. In this paper we focus on the angular momentum balance law,
using post-Newtonian theory to calculate the initial angular momentum, surrogate fits to obtain
the remnant spin and waveforms from models to calculate the flux. The consistency check provided
by the angular momentum balance law brings out the marked improvement in the passage from
IMRPhenomPv2 to IMRPhenomXPHM and from SEOBNRv3 to SEOBNRv4PHM and shows that the most
recent versions agree quite well with exact GR. For precessing systems, on the other hand, we find
that there is room for further improvement, especially for the Phenom models.

I. INTRODUCTION

The next generation of gravitational wave detectors
with much higher sensitivity are on the horizon [1–5].
We can expect detection of compact binaries with or-
ders of magnitude higher signal to noise ratio than cur-
rent measurements. Consequently it will allow unprece-
dented precision in the tests of general relativity in the
highly nonlinear regime. Moreover it will allow high pre-
cision parameter estimation of the compact binary. How-
ever to carry out these procedures, it is essential to have
accurate waveform models whose systematic errors are
smaller than the measurement errors.

Gravitational wave observations allow several families
of tests of general relativity(GR) [6–8]. Many such tests
can be done without waveform models, such as param-
eterized tests of post-Newtonian (PN) theory [9–13] or
tests with the quasinormal ringdown frequencies [14–16].
However these tests rely on the analytic solutions from
the perturbative regimes. For testing the highly nonlin-
ear merger regime, waveform models are indispensable.
For example one can perform the residual test, where the
di↵erence between the data and the best fit waveform ob-
tained from a model is tested for consistency with being
purely noise[7, 8]. Some tests can combine many events
to have increasing stringency. However it has been shown
that accuracy requirements of models also increase for
such tests, and that current models may not be su�-
ciently accurate to perform such tests using detections

⇤ neevkhera@psu.edu

made so far [17].

Waveform models are created using a diverse range
of innovative ideas. However to obtain any model it is
necessary to make approximations, and the ensuing sys-
tematic errors are unavoidable. A useful way to measure
the error is by computing the mismatch of the models
against numerical relativity (NR) waveforms using a de-
tectors noise spectrum. If the mismatch M between NR
and the model satisfies M  1/⇢2, where ⇢ is the de-
tector signal to noise ratio of an event, then the model
will not have significant biases in parameter estimation
[18, 19]. Although it has been argued that this su�cient
condition can be relaxed in practice [20], nevertheless the
mismatch requirement must still scale as 1/⇢2. In these
analyses one takes NR to be a proxy for the exact GR
waveform. Therefore, the accuracy for NR must increase
for future detectors as well [21].

On the other hand there are additional tools to mea-
sure errors of waveform models from GR: Balance laws.
The balance laws don’t depend on NR and can thus be
used at any point in parameter space, especially where
NR simulations are sparse. Moreover the balance laws
may provide new insights into sources of errors. Exact
GR in asymptotically flat spacetime has a large asymp-
totic symmetry group: the Bondi-Metzner-Sachs (BMS)
group [22, 23]. This group gives rise to infinitely many
balance laws [24, 25]. In addition to the more familiar en-
ergy, momentum, and the Poincaré angular momentum
balance laws, there is an infinite family of supermomen-
tum balance laws. Application of the supermomentum
balance law to test waveform systematics was discussed
in [26, 27]. The application of the 3-momentum balance
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III. RESULTS

We now apply the methods discussed to waveform
models as well as to NR simulations. To test the wave-
form models across parameter space we select random
points in parameter space and check violations of the
balance law. We divide our study of the models in two
parts: precessing and non-precessing systems. For both
these families we restrict the parameter space to a fi-
nite compact region. Since we are dealing with binary
black holes that are initially in quasicircular orbits, the
parameter space is described by the mass ratio q and the
dimensionless spins ~�1, ~�2. We restrict these parameters
to be within range of applicability of NRSur7dq4. Addi-
tionally, since NRSur7dq4 only models waveforms for fi-
nite time, we would like the NRSur7dq4 waveforms to be
long enough so that we can use PN methods at its start.
While NRSur7dq4 goes up to mass ratio 4, the wave-
forms start at higher frequencies with increasing mass
ratio. Therefore to be able to safely use PN expressions,
initially we restrict the mass ratio to q  2. This al-
lows us to safely use waveforms starting at 5.8 ⇥ 10�3

in dimensionless units. Additionally we also restrict spin
magnitudes to be less than 0.8 to be within the training
data range of NRSur7dq4, as well as the remnant data fit
NRSur7dq4Remnant that we use.

For the NR simulations we use the publicly available
SXS catalog [68] of NR simulations. But we restrict con-
sideration to numerical simulations that lie in the param-
eter range considered above.

A. Non-Precessing systems

In this section we test satisfaction of the balance law
for randomly selected 20,000 non-precessing points in the
parameter space. The spins are in the z-direction with
�z

1 and �z
2 uniformly and independently distributed in the

interval [�0.8, 0.8]. We obtain the distribution of mass
ratio q indirectly from the distribution of masses m1 and
m2 to replicate commonly chosen priors. We take masses
m1 and m2 to be independent and uniform, subject to
constraints 1/2 < m1/m2 < 2 and 20 < m1 + m2 < 160.
Then for each of these points, we will test how well the
balance law is satisfied.

We first calculate the spin of the remnant black hole
~�bal using the balance law, from Eq. (4). For non-
precessing systems, by symmetry we have that ~�bal =
abalẑ. We can compare this to the remnant spin ~�fit =
afitẑ obtained from the fit NRSur7dq4Remnant. Mismatch
between �bal and �fit provides us the desired measure of
accuracy of the waveform model under consideration. In
Fig. 1 we plot the distribution of abal � afit across the
random points in parameter space. To help identify the
errors coming from waveform modelling, we also show an
estimate of the errors from the fit. We obtain this by
taking the 90% interval of the error estimates provided
by NRSur7dq4Remnant for the samples of points consid-
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FIG. 1. Non-precessing systems: The distribution of the dif-
ference (abal � afit) between the magnitudes of the remnant
spin calculated by using the angular momentum balance law
and using the fit NRSur7dq4Remnant. The distribution is cal-
culated for di↵erent waveform models using the same sample
points. The shaded region shows the error estimate of the fit.

ered. Similarly we estimate the PN truncation error by
using the 90% interval of the distibution of the di↵erence
between the 3.5PN and 3PN terms. Although the PN
trunction error is not shown in the plot, it is 65% of the
fit error, but it does not include the errors from ignoring
spin-spin interaction terms.

Fig. 1 shows that, overall, the agreement between abal

and afit is of order 10�2. Moreover we see clear evidence
for the improvement of SEOBNRv4PHM over SEOBNRv3 and
of IMRPhenomXPHM over IMRPhenomPv2. The surrogate
model has the best performance, with all the balance
law violation consistent with solely coming from the fit
and PN truncation errors. By comparison, although the
mismatch is only at a 10�2 level for EOB and Phenom,
the modelling errors are significantly larger than those
coming from the fit and PN truncation errors; thus there
is room for further improvement.

Note also that for SEOBNRv4PHM the plot has an in-
teresting double hump. We find that these humps are
correlated with the e↵ective spin parameter �e↵ defined
as

�e↵ =
m1�z

1 + m2�z
2

m1 + m2
. (6)

The correlation –shown in Fig. 2– brings out the sharp
di↵erence between distributions for �e↵ < �0.1 and
�e↵ > �0.1. This illustrates the power of the balance
law to identify regions of parameter space where errors
are higher, thereby providing guidance for further im-
provements of the waveform model.

B. Precessing systems

As in Sec. III A, we randomly select 20,000 points in
parameter space, but now using precessing systems, and
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FIG. 2. The distribution of balance law violation for
SEOBNRv4PHM from Fig. 1. Here we have split the points in
parameter space in two, with �e↵ < �0.1 and �e↵ > �0.1.
This split separates the double hump in SEOBNRv4PHM, and
shows us that the balance law violation is larger for negative
�e↵ .

evaluate the violation of the angular momentum balance
law for them. The spins are sampled independently with
an isotropic distribution. The spin magnitude is taken
to be uniformly distributed in [0, 0.8]. The mass ratio is
sampled from the same distribution as in Sec. III A.

The remnant spin is now arbitrarily oriented. There-
fore to compare ~�bal with ~�fit, we are led to compare
their magnitudes abal and afit, and also to calculate the
angle �✓ between them. However there is a di↵erence in
the calculation of error estimates because, as discussed
in Sec. II C, for precessing systems the fitting procedure
complicated by evolution of spin with time. This is ac-
counted for by using a spin evolution model, which intro-
duces further errors in afit and �✓. The reported error
estimates from the fit NRSur7dq4Remnant do not include
these errors. Therefore we will estimate these errors by
a direct comparison with NR simulations. The NR simu-
lations are taken from the SXS public catalog [68] of NR
simulations. We choose quasicircular binary black hole
simulations that are long enough to include our choice of
starting frequency and have parameters that lie within
the range under consideration in this paper. We also drop
the first 337 older simulations. We are then left with
672 precessing NR simulations. For these simulations
we compute the remnant spin using the fit and compare
to the actual NR value. The result is shown in Fig. 3,
where we see that the error quoted in NRSur7dq4Remnant
is much smaller than the actual error. We thus use the
90% interval from these 672 simulations as the error esti-
mate instead. However because the fit is trained against
these simulation, the errors might in fact be larger for re-
gions of parameter space with a scarcity of simulations.
Nonetheless for the rest of this paper we use these error
estimates, keeping in mind that they are not meant to be
sharp.
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FIG. 3. Comparison of the remnant spin from 672 pre-
cessing NR simulations that lie in the parameter range
and starting frequency considered in the paper, to the fit
NRSur7dq4Remnant. The shaded region shows the error es-
timate provided by the fit model. However as noted in [31],
this estimate doesn’t include errors from the spin evolution.
The upper plot shows the di↵erence in the magnitude of spins,
and the lower plot shows the angle between them. We see that
for the parameters we consider and for the starting frequency
we use, the real errors are much larger than the estimates. We
use error estimates obtained from these 672 NR simulations
for the rest of the paper.

Using the error estimates discussed above, let us exam-
ine the violations of the angular momentum balance law.
In Fig. 4 we see the waveform models continue to perform
well, albeit with larger errors than in the non-precessing
case. For comparisons of the magnitude of the remnant
spin, NRSur7dq4 again has the best performance, and its
balance law violations are completely consistent with the
error estimates. The PN truncation error is only 9% of
the fit error here. The accuracy of the latest EOB and
Phenom models, SEOBNRv4PHM and IMRPhenomXPHM, are
very similar to each other. Furthermore, we can clearly
see the improvement of these EOB and Phenom models
over their older versions. On the other hand, we see dif-
ferent results for the error in the angle in the lower plot
of Fig. 4. Here the fit errors are larger. The surrogate
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FIG. 4. Precessing systems: The distribution of angular
momentum balance law violation across the parameter range
considered in the paper, using various waveform models. The
upper plot shows the di↵erence between the magnitudes of
the remnant spin abal, computed from the balance law, and
afit, computed using the fit NRSur7dq4Remnant. The lower
plot shows the angle �✓ between the remnant spin computed
using the two di↵erent methods. We also show in the shaded
region the error estimate obtained from direct comparison
with NR in Fig. 3, as opposed the quoted error estimate in
the fit.

and EOB models have violations within the fit errors.
The PN truncation error is negligible, only 0.7% of the
fit error. However the Phenom models show violations in
the angle that are much larger than the errors. Thus, our
analysis again provides pointers for further improvement.

C. Lessons from and for NR

We now apply the angular momentum balance law di-
rectly to NR simulations and discuss its implications.
The procedure is almost identical to the one we used for
waveform models, but uses the NR waveform instead of
the model waveform. More precisely, each NR simulation
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FIG. 5. The violation of angular momentum balance law for
the 131 non-precessing numerical simulations described in the
text. The solid blue curve shows the di↵erence abal � aNR

between the magnitudes of the remnant spin computed using
the balance law, and of the horizon spin. The dashed grey line
represents the numerical convergence error, i.e., the di↵erence
between the spin magnitudes, abal and aLowRes

bal , computed
using the highest and a lower resolution NR simulation.

provides us with the waveform to calculate the flux ~F ,
and is labelled by the masses, spins, orbital frequency and
separation of the two progenitors at the starting time.
Using these parameters and the 3.5 PN truncation dis-
cussed in section II B, we calculate the initial angular
momentum ~J(ti) that is needed in the expression (4) of
~�bal. For the remnant spin ~�NR , however, there is a key
di↵erence. We do not need the fit since we can directly
use the remnant spin computed in the NR simulation at
the horizon. The di↵erence ~�bal � ~�NR measures the vio-
lation of the balance law. There is, however, a subtlety:
Since the binary system in NR may not be in the same
reference frame in numerical simulations as in the frame
we use for the PN expression, we must perform a rotation
to match the frames. For details see the Appendix.

We use the subset of simulations from the SXS public
catalog [68] described in Sec. III B. However we further
restrict ourselves to simulations where a lower resolution
run is included, allowing us to analyze numerical errors.
There are 131 such non-precessing NR simulations and
550 such precessing simulations. For all these simulations
we calculate the remnant spin ~�bal from Eq. (4) with the
highest resolution run available. Then we take the second
highest resolution waveform to compute ~�LowRes

bal . Finally,
by comparing ~�bal to ~�LowRes

bal we obtain an estimate of
the numerical convergence errors, and by comparing ~�bal

to the horizon spin ~�NR we obtain a quantitative measure
of the violation of the balance law.

In Fig. 5 the solid (blue) curve shows the violation
of the angular momentum balance law for the non-
precessing simulations. While the limited number of sim-
ulations makes a direct comparison with Fig. 1 di�cult,
it is clear that overall the errors are manifestly smaller.
However there is one outlier simulation SXS:BBH:1134


































































































































correcting orbitalfrequency
precessing systems in sus catalogCNR

O 

The orbital frequency was erroneous in the meta-data file. 
Correcting it brought (Delta A) down from 0.2 to 1.5X10^{-3}!


