Gravitational Waves Interplay Between Mathematical Foundations \& Observations

Abhay Ashtekar
Institute for Gravitation \& the Cosmos and Physics Department
The Pennsylvania State University

Abstract

Since the first detection of Gravitational Waves ~8 years ago, the field has literally exploded in multiple directions that include multi-wavelength astronomy and astrophysics, approximation methods in general relativity, numerical relativity, applications of machine learning to waveform model building, forefront cosmological issues such as the Hubble tension, and nuclear physics issues related to the equation of state of neutron stars and nuclear processes at extreme temperature. Therefore Gravitational Wave Science has emerged as one of the most exciting fields to work on, that now attracts young researchers in large numbers.

At the same time the very explosion of the field makes it difficult for these researchers to grasp, even in broad terms, the conceptual and mathematical foundation of the theory of Gravitational Waves since these foundations are rarely discussed in the specific areas these researchers work in everyday. The purpose of my lectures is to fill this gap.

As I will discuss, the notion of 'radiation' requires global and rather subtle constructions. For several decades there was considerable confusion even about the physical reality of gravitational waves in full general relativity! This confusion was dispelled, thanks to a beautiful interplay between physics and geometry. I believe that every theoretical researcher in the field should be aware, at least in general terms, of the way that difficulties associated with coordinate invariance are overcome and fully gauge invariant mathematical quantities representing physical observables are extracted. This awareness would provide a broad perspective that can guide their own research. Furthermore, as I discuss in the last two lectures, foundational issues can also have concrete applications in addressing `practical issues'.

Content: The first lecture discusses some subtleties associated with the notion of radiation already for Maxwell fields in Minkowski space. The second lecture shows that the techniques used to define an unambiguous notion of electromagnetic radiation can be directly generalized to gravitational waves in exact general relativity. The third lecture introduces the BMS group as the asymptotic symmetry group and in the fourth lecture I show how these symmetries lead to an infinite set of observables and balance laws they satisfy. In the last two lectures I discuss applications of these balance laws to improve the waveform models, first explaining the need for improvement, and then providing concrete illustrations of these improvements.

PLAN OF THE MINI-COURSE

My lectures will focus on
(i) Part I: Conceptual and Mathematical issues associated with gravitational waves (GWs) in full, nonlinear general relativity. They will thus complement other lectures on approximation methods and numerical relativity by providing the concepts and mathematical notions they use;
and,
(ii) Part II: How these results in exact general relativity can be used as diagnostic tools to test the accuracy of model waveforms. Normally one uses numerical simulations to evaluate the accuracy but there are regions of parameter space where numerical simulations are sparse. The diagnostic tests come from identities that must be satisfied in exact GR. Their strength lies in the fact that they enable one to test accuracy of waveform models even when one does not have the exact waveform to compare them with! They focus on the accuracy of the waveform vis a vis (infinitely many) physical observables, thereby bringing out the physical nature of the inaccuracy and suggesting directions for improvements in all regions of the parameter space. Furthermore, they can be used to test accuracy of NR waveforms themselves.

Main References where further details for the material covered can be found:

Lecture 1: Sections 1 and 2 of AA \& Bonga, Gen. Rel. Gravit. Grab. 49, 122 (43pp) (2017); https://arxiv.org/pdf/1707.09914.
Sections I and II of Newman and Penrose, Proc. R. Soc (London) 305, 175-204 (1968)

Lecture 2: Sections I and II of AA, in the GR Centennial volume, edited by Beiri \& Yau; https://arxiv.org/pdf/1409.1800 Section II (parts 8-11) of R. Penrose, Proc. R. Soc (London) 284, 159-203 (1965)
AA, J. Math. Phys. 22, 2885-2895 (1981)

Lecture 3: http://igpg.gravity.psu.edu/research/asymquant-book.pdf Pages 44-54
AA, De Lorenzo \& Khera, Phys. Rev. D101, 044005 (1-17) (2020) https://arxiv.org/pdf/1910.02907.pdf
Lecture 4: http://igpg.gravity.psu.edu/research/asymquant-book.pdf Pages 55-77
Phase space of radiative modes: AA \& A. Magnon, Comm. Math. Phys. 86, 55-68 (1982).
BMS. Hamiltonians/fluxes: AA \& Streubel, Proc. R. Soc (London) A376, 585-607 (1981)
Lectures 5\&6: AA, De Lorenzo \& Khera, GRG 52, 107 (1-27) (2020); https://arxiv.org/pdf/1906.00913.pdf
Khera, Krishnan, AA \& Del Lorenzo, Phys. Rev. D 103, 044012 (2021); https://arxiv.org/pdf/2009.06351.pdf Mitman et al, Phys. Rev. D 103, 024031 (2021); https://arxiv.org/pdf/2011.01309.pdf Khera, AA \& Krishnan, https://arxiv.org/pdf/2107.09536.pdf
students : Doing the exercises is important!

Lecture \#1: Electromagnetic Waves

- "Radiation content" in a solution to Einstein's ears is tricky to identify
Led to a lot of confusion about reality of GWs in foll $G R$ in the early days. We will see that Einstein himself contributed to this Confusion! Clarified in the 1960 sand $19>0$ s by Bondi-Sacks, Newman-Pentose and others.
- Some aspects of the confusion are present already for Maxwell fields in Minkowski space. so, in this lecture we will begin with this simpler case. provides intuition a techniques for GWS we will then study.
- ($\left.M=\mathbb{R}^{4}, \quad \eta_{a b}\right)$: Minkowski spacetime. Maxwell field Fab

$$
T_{c a} F_{b c 3}=0 \quad+\quad \overline{V_{a}} F^{a b}=-4 \pi J_{b} \quad \begin{aligned}
& \text { Nonizito only in a } \\
& \text { spatially compact } \\
& \text { World tube }
\end{aligned}
$$

Main issue = cannot extract the "radiative content" of $F_{a b}$ at a finite distance from sources. No bal criterion.

- Poynting vector nonzero: $\vec{E} \times \vec{B} \neq 0$ seems like a natural criterion. But it is not! condition is not Lorentz invariant.

Ex: coulomb field of a point charge: In the rest frame

$$
E_{1}^{a}=\frac{e}{r^{2}} \hat{r^{a}}, \quad B^{a}=0 \Rightarrow \vec{E} \times \vec{B}=0 \text {. }
$$

But if you boost, engin the z-direction, in the new rest frame

$$
\vec{E}^{2} \times \vec{B}^{\prime} \neq 0
$$

- What is radiation? " $\frac{1}{r}$ part" of the field. But one cannot extract it if you are given the solution only locally.

Need to go in the "for field" region; Mathematically $r \rightarrow \infty$.
"Radiative part" is a global concept.

- A precise way to do this to bring os to a fine distance by an appropriate conformal transformation: Pentose completion.

Mink space: $u=t-r \quad v=t+r$

$$
\begin{aligned}
d s^{2} & =-d t^{2}+d r^{2}+r^{2} \frac{\left(d \theta^{2}+\sin ^{2} 0 d \varphi^{2}\right)}{d \omega^{2}} \\
& =-d u^{2}-2 d u d r+r^{2} d \omega^{2}
\end{aligned}
$$

At $r \rightarrow \infty, u=u_{0}$, Metric is ill-defined. But

$$
d \hat{S}^{2}=\Omega^{2} d s^{2}=\Omega^{2} d u^{2}+d u d \Omega+d w^{2} ; \quad \Omega=\frac{1}{r}
$$

is a well-drfined metric in a mod of $\Omega=0$. $\Omega=0$ not part of Mink space ($r=\infty$ there).
Have attached a boundary to Minkowski space \Rightarrow completion Boundary called g+ (scri-plus): end-points of null geodesics $u=u_{c}$ in Minkowskispace: Natural Home for radiation fields.

At $g^{+}: \Omega \hat{=} 0 \Rightarrow d \hat{s}^{2} \hat{=} d u d \Omega+d \omega^{2}$
unit 2 -sphere metric C
Tot Vectors to $g^{+}: \frac{\partial}{\partial u}, \frac{\partial}{\partial v}, \frac{\partial}{\partial 0} \Rightarrow \frac{\partial}{\partial u}$: Null vector
a although g^{+}is 3-dimensional, Intrinsic metric ${d \hat{S}^{2}}_{\longleftrightarrow}=d w^{2}$ signature $0,+t$: degenerate
null surface, with $\frac{\partial}{\partial u}$ as its null normal.

- We can use advanced null coordinate $v=t+t$ inplace of $u=t-r$; then we get past null infinity 4 . This is whore we specify "No incoming radiation" condition (Retarded fields).
- Null tetrad: convenient basis to expand fields (Newman-Penrose)

$$
\hat{\nabla_{a}}=\nabla_{a}(t-r) \quad l_{a}=\frac{1}{2} \nabla_{a}(t+r) \quad m_{a}=\frac{r}{\sqrt{2}}\left(\nabla_{a} \theta+i \sin \theta \nabla_{a} \varphi\right)
$$

Then: $n_{a}, l_{a}, m_{a}, \bar{m}_{a}$ are all null, $\left\{\begin{array}{l}n_{a} l^{a}=-1 \quad m^{a} \bar{m}_{a}=1 \\ \text { All other contractions vanish. }\end{array}\right.$
For the rescaled metric $\Omega^{2} \eta_{a b}=\hat{\eta}^{a b}$, the null tetrad is

$$
\hat{n}^{a}=i \hat{n}^{a}, \quad \quad \hat{l}^{a}=r^{2} l^{a} \equiv \Omega^{-2} l^{a}, \quad \hat{m}^{a}=\Omega^{-1} m^{a}, \quad \hat{m}^{a}=\Omega^{-1} \hat{m}^{a}
$$

The hatted vector fields have smooth limit to g^{+}. unbated fields: Indices raised a lowered using $\eta^{a b}$ a $\eta_{a b}$ and for hatted fields using $\hat{\eta}^{a b}$ a $\hat{\eta}_{a b}$.

- conformal invariance of Maxwell ears:

$$
\begin{aligned}
& \text { On formal invariance of Maxwell eats: } \\
& \hat{F}_{a b}=F_{a b} \text { satisfies } \hat{\nabla}_{[a} \hat{F}_{b c]}=0 \& \hat{J}_{a} \hat{\sigma}_{b} \hat{F}_{b c}=-4 \pi \quad\left(\hat{J}_{b}=\Omega^{-2} J_{b}\right)
\end{aligned}
$$

f^{+}is a regular sub-manifold in the completed spacetime
$\Rightarrow \hat{F}_{a b}=F_{a b}$ smooth tensor field @ g^{+}. Hence for components:

$$
\begin{aligned}
& \Phi_{2}:=F_{a b} n a \bar{m}^{b}=\hat{F}_{a b} \hat{n}^{a} \frac{\hat{m}^{b}}{r}=\frac{\Phi_{2}^{0}}{r}+O\left(\frac{1}{r^{2}}\right) ; \quad \Phi_{2}^{0} \hat{=} \hat{F}_{a b} \hat{r}^{a} \bar{m}^{b} \\
& \Phi_{1}=\frac{1}{2} F_{a b}\left(r^{a} l^{b}+\operatorname{man}_{\operatorname{m}^{b}}\right) \quad=\frac{\Phi_{1}^{0}}{\bar{r}_{2}}+o\left(\frac{1}{r^{3}}\right) ; \\
& \Phi_{0}=F_{a b} m^{a} l^{b} \\
& =\frac{\Phi_{0}^{0}}{r^{3}}+O\left(\frac{1}{r^{4}}\right)
\end{aligned}
$$

NP components of the
$N a x w e l l$ field
specific falloff as one $\rightarrow 9^{+}$.
"Peeling"

Ex: Check that Feeling property holds. If $A_{a}=\hat{A}_{a}$ is a potential for $F_{a b}=\hat{F}_{a b}$ in the gauge $\hat{A}_{a} \hat{n}^{a} \hat{=} 0$, show that ($\mathscr{I}_{n} A_{a} \overline{m i n}^{a} \hat{\cong} \Phi_{2}^{0}$ Alma or Φ_{2}° are the 2 radiative modes of EM Waves.

- We return to the question we began with:

Radiation content of maxwell field $\sim \frac{1}{r}$ part': isolated a $g^{+}: \Phi_{2}^{\circ}$

- The $\frac{1}{r^{2}}$ part is the coulombic part: isolated a $\mathrm{f}^{+}: \Phi_{1}^{0}$
- Energy, momentum, Angular momentum carried by EM waves: All expressible as integrals over g^{+}

Geometrical

$t=t_{0}$: space.like planes $\rightarrow g^{+}$as $t \rightarrow \infty$
$i_{i^{+}}, i^{\circ}: u \rightarrow \pm \infty$ ends of 9^{+};

$r=r_{0}$: Timelike cylinders $\rightarrow f^{+}$ $i^{i}, i^{-}: v \rightarrow \pm \infty$ ends of g^{-}

Flux across $t=t_{0}$ planes (or $r=r_{0}$ cylinders) associated with a killing vector field k^{a} :

$$
\begin{aligned}
F_{k} & =\int_{t=t_{0}} T_{a b} k^{a} \underbrace{d s^{b}}_{\left(t^{a} d x\right)} \\
T_{a b} & =F_{a m} F_{b n} g^{m n}-\text { Trace } \\
& =\hat{F}_{a m} \hat{F}_{b n} \Omega^{2} \hat{g}^{m n} \text {-Trace }
\end{aligned}
$$

Ex: Calculate for k^{a} 三 translations \& show:

Ex: show that the total electric charge is given by

$$
Q=-\frac{1}{2 \pi} \oint_{\substack{u=u_{0} \\ A t \\ g^{+}}} \operatorname{Re} \Phi_{1}^{0} d^{2} S \quad \text { for any } u_{0} \text {. }
$$

This reconfirms the interpretation of Φ_{2}^{0} a Φ_{1}^{0} at g^{+}as capturing the 'radiation' and 'cou'ombic' information of amy given solution. If $\Phi_{2}^{0}=0$: No energy, momentum or angular momentum carried away \rightarrow NO EN waves.

$$
\begin{aligned}
\text { At g-: } u \rightarrow v \\
\text { reversed; }
\end{aligned} \quad \Phi_{\Phi_{0}^{\prime}}=F_{a b} n^{a} n^{b}=l^{a} \text { so, peeling properties } \Phi_{0}^{0}+O\left(\frac{1}{r^{2}}\right) .
$$

So radiative information at f^{-}is encoded in $\Phi^{0}(u, v, \varphi)$. No incoming radiation \Leftrightarrow Retarded solution $\Leftrightarrow \Phi_{j}^{\circ}=0$ a t^{-}.

Asymptotic flatness a mull infinity in $G R$
Isolation of 'gravitational radiation' in a solution of Einstein's equation: several conceptual and mathematical subtleties.
(i) Again need to go far away from sources. But no natural r-coordinate. Distances defined by $g_{a b}$, itself the dynamical field!
(ii) What may look like "time-independent" in one coordinate system may appear "Wave-like, ondulating"in another because the time.lite killing vector you found in a botch is "boost-like" a rot a "translation" Example: Levi-civita c-metric. (AA \& T.Dray, CNP 79, 581-599 (1981))
\rightarrow Led to a lot of confusion about reality of gravitational waves. Einstein had derived the quadrupole formula in the linearized approximation, showing how sources create GWS (1916-1918). But then till 1960's, there was considerable confusion on whether GUs exist in full, ron. linear GR.
\rightarrow clarified fully by Bondi, sachs; Newman Pentose and others. This is what I will discuss in the next two lectures. This is the foundation for all current work on GDs.

I.A Einstein-Rosen GWs: Fascinating History

- Einstein 1916: Quadrupole formula showing that general relativity (GR) admits gravitational waves (GWs) in the weak field approximation around Minkowski space. Parallel with Maxwell's theory in striking contrast with Newtonian gravity.
- But then based on his work with Nathan Rosen, in 1936, he sent a paper to Phys. Rev. entitled Do GWs exist? The same day, he wrote to Max Born:
"Together with a young collaborator I arrived at the interesting result that gravitational waves do not exist though they had been assumed to be a certainty in the first approximation. This shows that non-linear gravitational wave field equations tell us more or, rather, limit us more than we had believed up to now."

Einstein

Rosen

Robertson

Einstein submitted three papers to Phys. Rev. in 1936. Only this paper was sent to a referee. Received a 8 page report (from H.P. Robertson) showing that there was an error, not in the solution itself, but in their conclusion. Einstein and Rosen had curious reactions.

I.A Einstein-Rosen GWs: Final publication

- The paper finally appeared in the proceedings of the Franklin Institute, but in the proofs Einstein reversed the conclusion and changed the title! Nathan continued to believe the original conclusion!!

Journal of the Franklin Institute
Volume 223, Issue 1, January 1937, Pages 43-54
On gravitational waves
A. Einstein, N. Rosen
https://doi.org/10.1016/S0016-0032(37)90583-0

Abstract

The rigorous solution for cylindrical gravitational waves is given. For the convenience of the reader the theory of gravitational waves and their production, already known in principle, is given in the first part of this paper. After encountering relationships which cast doubt on the existence of rigorous solutions for undulatory gravitational fields, we investigate rigorously the case of cylindrical gravitational waves. It turns out that rigorous solutions exist and that the problem reduces to the usual cylindrical waves in euclidean space.

Lecture 2: Asymptotic flatness a Null Infinity (Pentose, Geroch, AA)
Deft: A space-time $\left(\widetilde{\mathrm{N}}, \widetilde{I}_{a b}\right)$ is said to be AF Q NI if we can attach a boundary $f=\Phi^{2} \times \mathbb{R}$ to M, st on $M=\widetilde{M} \cup f$:
(i) Metric $\vartheta_{a b}=\Omega^{2} \tilde{g}_{a b}$ (of -+++ signature, as $\tilde{g}_{a b}$ is $O A \tilde{M}$) and Ω smooth on $M ; \Omega=0$ a , and $\nabla_{a} \Omega \neq 0 @ 9$.
(ii) $\Omega^{-2} \widetilde{T}_{a b}\left(\equiv\left(\Omega^{-2} / 8 \pi G_{N}\right) \widetilde{\sigma}_{a b}\right)$ is smooth (a).
satisfied by physically interesting Maxwell a scalar fields, N1,nk space

Definition: Astonishingly simple. No reference to Bondi's expansions, Pentose's mull geodesics; coordinate free, yet captures all we need to discuss GWS in full, nor. linear GR. (Intuitively $\Omega \sim 1 / r$ and $g^{+} \operatorname{coordinatizad} b y(u, 0, \varphi)$).

In these lectures, I will assume Tab vanishes in a nod ot I for simplicity. But everything we discuss will gothrougt if Ω^{-2} Tab has a limit. can have EMT radiation (NS-NS coalescence) $^{\text {I }}$ (NA

(compact binary (NS.NS) evolution depicted in the figure.)

Example: Schwarzschild south (a star for concreteness, bet a BL^{2} geometry is identical near 4].
Again, consider g^{+}for definiteness

$$
\text { on } \mathrm{l}^{+} \text {. }
$$

$$
\begin{aligned}
& u=t-r_{x}, \quad r_{f}=r+2 M \ln \left(\frac{r}{2 m}-1\right) \\
& d \widetilde{S}_{s c h}^{2}=-\left(1-\frac{2 M}{r}\right) d u^{2}-2 d u d r+r^{2} d \omega^{2} \\
& \Omega:=1 / r \\
& d s_{s c h}^{2}=\Omega^{2} d \widetilde{S}_{s c h}^{2} \\
& =-\Omega^{2}\left(1-\frac{2 M}{r}\right) d u^{2}+2 d u d \Omega+d w^{2} \\
& \leftrightarrow=2 d u d \Omega+d \omega^{2} \quad \text { (Same as } \\
& =2 \text { In Mink space) }
\end{aligned}
$$

Note: go to f along $u=u_{0}, r \rightarrow \infty$ (For t^{-}, use $v=t+r_{*}$)
Ex: Do all the intermediate calculations. Also, start with the kerr-schild form of the metric and show that f of Mink space is the same as q of schwarzschild can do this also for kerr.
consequences of field equations $\widetilde{R}_{a b}=0$ near l.

- $\vartheta_{a b}=\Omega^{2} \tilde{\vartheta}_{a b} \Rightarrow \widetilde{R}_{a b}=R_{a b}+2 \Omega^{-1} \nabla_{a} \nabla_{b} \Omega+\left(\Omega^{-1} \nabla^{m} \nabla_{m} \Omega-3 \Omega^{-2} \nabla^{m} \Omega \nabla_{m} \Omega\right) \vartheta_{a b}{ }^{(1)}$

Indices raised using gab
Ex: check this. If you need help, see Wald's book, APPendix D on 9^{+}

- Ω and $g_{a b}$ smooth at $f \Rightarrow$ strong consequences. set $n^{a}=g^{a b} \nabla_{0} \Omega$ Then; since $s_{a b}=\Omega^{2} \widetilde{G}_{a b}, \quad \mathcal{G}^{a b}=\Omega^{2} g^{a b}$ whence,

$$
0=\widetilde{R}=\Omega^{2} R+6 \Omega \nabla^{m} n_{m}-12 n^{m} n_{m} \text { (2) to } \Rightarrow \Rightarrow n^{m} n_{m}=0 \text { is anil 3-surt }
$$

$\Omega \hat{=} 0$ and $g^{a b} \nabla_{a} \Omega=n^{a} \Rightarrow n^{a}$ is normal to $g \Rightarrow \mathcal{F}$ is a null 3-surface (If $\wedge>0, \widetilde{R}>0 \Rightarrow h^{m} n_{m}<0 \Rightarrow g^{+}$is spacelike;

- Now $\Omega \times(1)=0 \Rightarrow \nabla_{a} n_{b} \propto \rho_{a b}$ a $\Leftrightarrow \Leftrightarrow \nabla_{a} n_{b} \hat{=} \cdot \frac{1}{4}\left(\nabla_{c} n^{c}\right) \Theta_{a b}$. conformal freedom: $\Omega \rightarrow \Omega^{\prime}=\omega \Omega$ where ω smooth, $\neq 0$ on 4 \Rightarrow can always choose ω st $\nabla_{c}^{\prime} \eta^{\prime c} \hat{=} 0 \Rightarrow \nabla_{a}^{\prime} n_{b}^{\prime}=0$.

$$
E x: \text { check this! }
$$

- Thus, field eqns near I (ir. Lin $\Omega^{-2} \widetilde{T_{a b}}$ exists) imply (i) If is null 3 -surface a (ii) can always choose a conformal factor Ω sit. $\nabla_{a} n_{b} \hat{=} 0$;
(Divergence-free conf. frame).
- Restricted conformal freedom: $\Omega \rightarrow \Omega^{1}=\omega \Omega$ sit. ω is smooth a non-zero @ 9 , and ($\nabla_{a} n^{a} \xlongequal[=0]{0}$ a $\left.\nabla_{a}^{\prime} n^{\prime a} \cong 0\right) \Leftrightarrow Z_{n} \omega \hat{=}$

- In the divergence-free conformal frame: f^{+}is a cyinder;

$$
n^{a} \nabla_{a} u=1
$$

$$
(u, 0, \varphi)
$$

$$
n a \nabla_{a} \theta=0 \quad n^{a} \nabla_{0} \varphi=0
$$

choose a fiducial

$$
\begin{aligned}
& \text { fiducial } \\
& \text { cross-section }
\end{aligned}
$$

- In the literature, one often further restricts the conformal freedom by demanding that the metric $q_{a b} \xlongequal{ }$ on gt^{t} $(0,++$) is a unit 2 sphere metric, ie has scalar curvature $=2$

$$
\begin{aligned}
a_{a b}^{\prime}=\omega^{2} a_{a b} & \Rightarrow R^{\prime}=\omega^{-2}\left(R-2 D^{2} \ln \omega\right)=2 \\
d s^{\prime 2} & =d \theta^{2}+\sin ^{2} \theta d \phi^{2}
\end{aligned}
$$

solis exist : 3-parametor freedom $\omega=\frac{1}{\alpha_{0}+\alpha_{i} \underline{I}^{i}} ;\left(-\alpha_{0}^{2}+\alpha_{i} \alpha^{i}=-1\right)$ $\underline{r}^{i} \equiv(\sin \theta \cos \varphi, \sin \sin \varphi, \cos \theta)$ unit radial

- Advantages a disadvantages of Bondi conf frames.

Relation to older literature: No conformal completion Bondi-sachs \& Newman-unti Asymptotic Expansions (Asymptotic falloff imposed on the physical metric in suitable coordinates)

family of cross-sections to $u=$ const of f. Let l^{a} be the other null to these ctoss-sections, normalized st $h^{a} \ell^{b} g_{a b}=-1$. consider ingoing geodesics generated by $-l^{a} ;\left(l^{a} \nabla_{a} l^{b}=0\right)$. Then, introduce $\varphi, 0, \varphi$ in a nod of g using $z_{l} u=0 . \quad z_{l} \theta=0 . \quad \mathcal{L}_{l} \varphi=0 . \quad$ set $\Omega=1 / r$ Then, the physical metric $\tilde{F}_{a b}$ has the form:

$$
\begin{array}{r}
\tilde{\mathscr{T}}_{a b} d \tilde{x}^{a} d \tilde{x}^{b}=-\tilde{f}_{1} d u^{2}-\hat{f}_{2} d u d r+r^{2}\left(\widetilde{a}_{A B}+\tilde{h}_{A B}\right)\left(d x^{A}-f^{A} d u\right)\left(d x^{B}-f^{B} d u\right) \\
E x \text { : show this! }
\end{array}
$$

Ex: stow this!
Here: $A, B \equiv 0, \varphi$ and $\widetilde{q}_{A B} \equiv U$ nit 2-sphere metric.

$$
\begin{array}{r}
\text { Here: } A, B \equiv 0, \varphi \text { and } q_{A B} \equiv \text { rit } 2-S P \text { acre } \\
f_{1}=f^{(0)}+\frac{f^{(1)}}{r}+o\left(\frac{1}{r^{2}}\right) ; \quad f_{2}=-2+\frac{f_{2}^{(1)}}{r}+c\left(\frac{1}{r^{2}}\right) ; h_{A B}=\frac{f_{A B}^{(1)}}{r}+0\left(\frac{1}{r^{2}}\right) ; \quad f^{A}=\frac{f^{A(1)}}{r}+O\left(\frac{p}{r^{2}}\right)
\end{array}
$$

Remark: $f, f_{2}, h_{A B}^{(1)}, f^{A}: 7$ functions. using co-ordinate freedom, can eliminate I by further restriction

Newman-Unti choice: $r \rightarrow F$: Affine parameter of l, so $1=\tilde{l}^{a} \partial_{a} \bar{r}=\tilde{g}^{a b} \partial_{b} u \partial_{a} \bar{r}$: Fixes $\tilde{f}_{2}=1$.

Bondi-Sachs choice: $r \rightarrow r^{\prime} \because$ Luminosity distance" determinant of the 2 -sphere metric $D=r^{\prime 2} \sin ^{2} \theta ":$ Luminosity distance r, F, r^{\prime} have the same asymptotic behavior. Thus the coordinate expansions one finds in the literature can be arrived at starting from conformal completion in a Systematic, geometric fashion. The extra input corresponds to fixing the restricted conformal freedom $\Omega \rightarrow \omega \Omega$ in a nerghborhoud of g

Radiation field and Peeling properties in exact GR．
－Fix AF space－time（ $\widetilde{H}, \tilde{\vartheta}_{a b}$ ）and conf．completion（M ，Sob）where 4^{+t} is divergence－frec，ic $\nabla_{a} n^{a} \equiv \nabla_{a} \nabla^{a} \Omega \stackrel{ }{=} 0$
－$\quad R_{a b c d}=C_{a b c d}+S_{a c c} S_{d b b}-S_{b c c} S_{c J a} ; \quad\left(S_{a b}:=R_{a b}-\frac{1}{6} R S_{a b}\right)$
Field eq－$\sim=0=\widetilde{S}_{a b}=S_{a b}+2 \Omega^{-1} \nabla_{a} n_{b}-\Omega^{-2} r n_{c} \eta_{a b}$
Multiplying by Ω and taking＂curl＂we obtain $\}$ Exercise
$\Omega \nabla_{\text {La }} S_{b]}+C_{a b c d} h^{d}=0$
$\Rightarrow \quad C_{a b c d} n^{d} \cong 0$
Bianchi Idenity $+\Phi^{2} \times \mathbb{R}$ topology of $\left.f \Rightarrow C_{a b c d} \hat{=} 0\right\}$ Exercise \Rightarrow Kabcd $:=\Omega^{-1}$ Cabcd has a smooth limit to μ ．
Asymptotic Weyl curvature：contrast with Maxwell field．
At g^{+}：
－$K_{b d}: \hat{=}$ Kabcd $n^{a} n^{c}$ ，Symmetric，Traceless，Terse：Kid $n^{d} \hat{=} 0$ ．
$\Rightarrow \quad$ Kac： 2 components $\equiv \mathbb{E} A B$
：Radiative modes in exact GR
A，B：1，2＂Angular components＂
comparsion with
Maxwell field：$F_{b}:=F_{a b} r^{a}, \quad F_{b}: 2$ components $\mathbb{E}_{B} \leftrightarrow \Phi_{2}^{0}$
管：＂Angular components＂
Maxwell field： \mathbb{E}_{B} ： 1 form on 9^{+}，defined intrisically．But convenient in practice to write its components in a null tetrad as Φ_{2}° ．

For grav．field in exact GR：same procedure used（for convenience） $\underline{\Psi}_{4}^{0}=K_{b d} \bar{m}^{b} \bar{m}^{d}:$ depends on choice of（ \bar{m}^{b}（＂spinwt＂－2） But convenient in NR，for example．Used heavily in GW literature Ψ_{4}° called radiation field： 2 Radiative modes．
physical null tetrad：

$$
\begin{aligned}
& \text { hysical null tetrad: } \\
& \begin{aligned}
\text { Tilde vector fields }
\end{aligned} \\
& \tilde{n}^{a}=n^{a} ; \quad \cdot \tilde{l}^{a}=\frac{1}{r^{2}} l^{a^{2}} ; \quad \tilde{m}^{a}=\frac{1}{r} m^{a} \text { " }
\end{aligned}
$$

$r:=\Omega^{-1}$
（as in maxwell discussion）
Then

$$
\begin{array}{rlrl}
\text { Then } \\
\Psi_{A}:=\widetilde{C}_{a b c d} \tilde{h}_{(p h s i c a l)} \tilde{m}^{b} \tilde{n}^{c} \tilde{m}^{d} & =\frac{\Psi_{A}^{0}}{r}+O\left(\frac{1}{r_{2}}\right) \quad \text { Radiative part } \\
& =\frac{k_{a b}^{b} \bar{m}^{a} \bar{m}^{b}}{\left.r_{\text {(conformally res called }}\right)}+O\left(\frac{1}{r^{2}}\right) \equiv \frac{E_{A B} \bar{r}^{A} \bar{m}^{B}+O\left(\frac{1}{r^{2}}\right)}{r}
\end{array}
$$

- Using field equations, one can find 'potentials' for ${ }_{k} a b \equiv \mathbb{E} A B$ These potentials heavily used in NR and waveform models
\rightarrow st potential: Bondi NeWS $N_{a b} \equiv N_{A B}$ (symmetric, $T F, T \leftrightarrow N_{a b} n^{b}=0$) $\mathbb{E}_{A B}=\frac{1}{2} \mathcal{L}_{n} \cdot N_{A B} \equiv \mathcal{L}_{n}\left(\frac{1}{2} S_{A B}\right) \quad\left(S_{a b}=R_{a b}-\frac{1}{6} R S_{a b}\right)$
(Note: $N_{a b}=-2\left(S_{a b}-P_{a b}\right) \quad\left(\mathscr{L}_{n} \rho_{a b}=0\right.$ \& $\rho_{a b}=\tau_{a b}$ in a Bondi conf. frame)
$\bar{m}^{A} \bar{m}^{B}: \quad \Psi_{4}^{0}=\dot{N}$
\rightarrow and potential: shear $\sigma_{a b}^{0} \equiv \sigma_{A B}^{0}$; (symmetric, TF, transverse)

$$
N_{A B}=2 \mathcal{Z}_{n} \sigma_{A B}^{0} ;
$$

$$
N=-\dot{\sigma}^{\circ}
$$

$\sigma_{A B}^{B}$: shear of l^{a} (conf spacetime)

$$
\begin{aligned}
\bar{\sigma}^{0} & \hat{=}-\left(\nabla_{a} b_{b}\right) \bar{m}^{a} \bar{m}^{b} \hat{\equiv}-\sigma_{A B}^{0} \bar{m}^{A} \bar{m}^{B} \\
\bar{\sigma}^{0} & =-\sigma_{A B}^{0} \bar{m}^{A} \bar{m}^{B} \\
& =\frac{1}{2} \underbrace{\left(h_{+}^{0}-i h_{x}\right)(\text { Hellicity }-2)}_{\text {wave form }} \\
& =\frac{1}{2} \operatorname{Lim}_{\substack{\text { Lion } \\
\text { Physical space time }}}\left(\tilde{h}_{+}-i \tilde{h}_{x}\right)
\end{aligned}
$$

coulombic Part

Maxwell:

$$
\left.\begin{array}{rl}
\operatorname{Re} \Phi_{1}^{0} & =\left(F_{a b} n^{a}\right) l^{b} \\
& =\mathbb{E}_{b} l^{b}
\end{array}\right\} \text { charge }
$$

physical space:

$$
\begin{aligned}
\operatorname{Re} \tilde{\Phi}_{1} & =\widetilde{\tilde{F}_{a b}} \tilde{H}^{a} \tilde{l}^{b} \\
& =\frac{\Phi_{1}^{0}}{r^{2}}+0\left(\frac{1}{\sqrt{3}}\right)
\end{aligned}
$$

static charge: $\operatorname{Re} \tilde{\Phi}_{1}=-\frac{1}{2} \frac{q}{r^{2}}$

Full nonlinear $G R$:

$$
\text { - } \operatorname{Re} \Psi_{2}^{0}=\left({\text { Kabcd } \left.n^{a} n^{c}\right) e^{b} l^{d}}=\mathbb{E}_{b d} l^{b} e^{d} \quad \begin{array}{l}
\text { BM } \\
\text { energy- } \\
\text { momentum }
\end{array}\right.
$$

Physical space:

$$
\begin{aligned}
& \text { physical } \text { space: } \\
& \operatorname{Re} \Psi_{2}=\widetilde{C a b c d}^{a} \tilde{n}^{c} \tilde{l}^{b} \tilde{l}^{d} \\
& \simeq \frac{\operatorname{Re} \Psi_{2}^{c}}{r^{3}}+O\left(\frac{1}{v^{4}}\right) \\
& \text { Kerr }: \operatorname{Re} \Psi_{2}=\frac{-G M}{r^{3}}
\end{aligned}
$$

- $\left.\Psi_{1}^{0}=\mathrm{kabcd} l^{a} n^{b} l^{c} m^{d}\right\} \begin{aligned} & \text { Angular } \\ & \text { nommertum } \\ & \text { and }\end{aligned}$ physical space:

$$
\begin{aligned}
\Psi_{1} \text { tical space } & \equiv \widetilde{C} \widetilde{C}_{a b c d} \tilde{l}^{a} \tilde{n}^{b} \tilde{l}^{c} \tilde{m} d \\
& \simeq \frac{\Psi_{1}^{0}}{r^{4}}+o\left(\frac{1}{r^{5}}\right) \\
& \text { Kerr: } \Psi_{1}=\frac{3 i}{2 r^{4}} \sin D G J
\end{aligned}
$$

some commonly asked gurstions.

- Question about "electric and magnetic parts" wert pa

$$
\begin{aligned}
& \mathbb{E}_{b}:=F_{a b} n^{a} \\
& \mathbb{E}_{b} \bar{m}^{b} \equiv F_{a b} n^{a} \bar{m}^{b}=\Phi_{2}^{0} \\
& \mathbb{E}_{b} l^{b} \equiv F_{a b} n^{a} l^{b}=2 \operatorname{Re} \Phi_{1}^{0}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{B}_{b}:=F_{a b} n^{a}=\frac{1}{2} \epsilon_{a b} d n^{a} F_{c d} \\
& B_{b} \bar{m}^{b}=i n^{c} \bar{m}^{d} F_{c d}=i \Phi_{2}^{0}
\end{aligned}
$$

$$
\mathbb{B}_{b} \rho^{b}=2 \cdot \operatorname{Im} \Phi_{1}^{0}
$$

Because : n^{a} is null, \mathbb{E}_{b} a \mathbb{B}_{b} share 2 of 3 components: Φ_{2}^{0} This is in striking contrast with the usual electric and magnetic fields $E_{b}=F_{a b} t^{a}$ and $B_{b}={ }^{*} F_{a b} t^{a}$, with ta a unit timelike vector, 1 to a spacelike surface. These' Ea_{a} and Ba are independent.
In the gravitational case, situation is completely parallel. Ψ_{4}° can be extracted as both, $\mathbb{E}_{n d} \bar{m}^{b} \vec{m}^{d}$ and $\mathbb{B}_{\text {bal }} \bar{m}^{b} \bar{m}^{d}$

- Question about massive versus massless particles

$:$

It is the proper arena for discussing radiation, ie. massless fields
Massive fields (such as neutrinos or scabiffiets) are not registered on $\mathrm{gt}^{ \pm}$. They come from past timeline infinity, i^{-}and go to future time like infinity L^{+}. These are often depicted as points. But one can "Blow them up" to 3 -d sporelike surfaces (hyperboloids). In Minkowski space, each point of the hyperboloid represents the past and future endpoints of time like geodesics.

- Question about Kabcd $=\Omega^{-1}$ Cabcd: How cam it have a well-defined limit to g when Ω^{-1} blows up (becomes infinite) there?
Ω^{-1} Cabcd has a well-defined limit because Cabed is smooth and vanishes at 9 . consider a smooth function f on the completed manifold M. If $f \cong 0$, the Taylor expansion of f around h is

Lecture 2 References:

Sections I and II of AA, in the GR Centennial volume, edited by Beiri \& Yau; https://arxiv.org/pdf/1409.1800
Section II (parts 8-11) of R. Pentose, Proc. R. Soc (London) 284, 159-203 (1965)
http://igpg.gravity.psu.edu/research/asymquant-book.pdf Pages 44-53

Lecture \#3: Asymptotic symmetries.
The Bondi-Mtzzer-sachs (BMS) group

- Scalar fields in Mink. space: symmetry group: Poincare because it preserves the universal kinematical structure shared by all solis to field equation, (eg $\eta^{a b} \nabla_{a} \nabla_{s} \phi-\mu_{\phi} \phi=0$) Energy, momentum, angubr momentum refer to killing vectors; infinitesimal generators of Poincare' transformations.
- GR: space-time varies from one solution of Einstein's Eq. to another. general solution $\widetilde{J}_{a b}$ has no symmetries, ie. Killing vectors. But for Asymptotically flat space-tmes, q^{2} provides a universal background/ arena to extract physics.
- Giver a conformal compton ($M, g_{a b}$) of $\tilde{g}_{a b}, f^{*}=s^{2} \times \mathbb{R}$, $n a:=g_{0.4}^{a b} \nabla_{b} \Omega$ null normal; $a_{a b}=9 a b$ satisfies

$$
\mathscr{L}_{n} a_{a b}=0 \quad a \quad q_{a b} n^{b}=0
$$

Cab: $(0++)$ so effectively a metric on $\2.
$\Omega \rightarrow \Omega^{\prime}=\omega \Omega$, then $q_{a b}^{\prime}=\omega^{2} q_{a b}, \quad n^{1 a}=\omega^{-1} n^{a}$.
So $g^{ \pm}$equipped with pairs ($q_{a b}, r^{b}$)

$$
\left(q_{a b}, n^{b}\right) \approx\left(\omega^{2} q_{a b}, \omega^{-1} n^{b}\right) ; \quad y_{n} \omega^{n} \xlongequal[=]{n}
$$

- Universal structure stared by all AF solutions to E. Eqns

$$
I=\$^{2} \times \mathbb{R}, \quad\left(q_{a b}, \eta^{b}\right) \approx\left(\omega^{2} q_{a b}, \omega^{-1} \nabla^{b}\right) \quad \text { st } \quad \mathcal{L}_{n} \omega \hat{=} 0
$$

satisfying $q_{a b} n^{b}=0, \mathcal{L}_{n} q_{a b}=0$. C contrast with dynamical Degenerate metric $0,++$ (a 2 -sphere metric) fields like Sab, Kabcd,... that vary +rime one spacc-time to another)

- (Asymptotic) symmetry group: subgroup B of differ group Diff (g) that preserves this structure.
- Lie algebra: b:VFs ξ^{a} on y st
$\mathscr{L}_{s} a_{a b} \propto q_{a b}$; say $\mathscr{L}_{s} q_{a b} \hat{=} 2 \phi q_{a b}$, then $\mathcal{L}_{y} n^{a}=-\phi n^{b}$ with $\mathscr{z}_{n} \phi=0$.
- To explore the structure of B : consider first the symmetry VF $\xi^{a}=f n^{a}$
Ex eck: Then $\mathcal{L}_{\xi} \tau_{a b}=\mathcal{L}_{f n} q_{a b}=f \mathcal{L}_{n} \mathcal{Q}_{a b}^{\prime}+2\left(q_{m(b b} D_{a)} f\right) n^{m}=0 \Rightarrow \phi=0$

$$
\Rightarrow \quad \mathscr{L}_{5} n^{a}=0 \Leftrightarrow-\mathscr{L}_{n}(f n a)=0 \Leftrightarrow \mathscr{L}_{n} f=0 .
$$

- Thus, if a symmetry VF ξ^{a} is 'vertical' ie e $\xi^{a}=f^{a}$ Then $\tilde{Z}_{n} f=0 \quad(f \equiv f(y, 0, \varphi))$
These symmetries ar called supertranslations; $\xi^{a}=f n^{a} \in \mathbb{S}$ constitute an co-dim, Abelian Lie-algrbra, since
Ex: check: $\left[f_{1} n, f_{2} n\right]^{a} \equiv \mathcal{Z}_{f_{1} n} f_{2} n^{a}=\underbrace{\left(\mathcal{L}_{f n} f_{2}\right)}_{\pi=} n^{a}-f_{2} \underbrace{\left(\mathcal{Z}_{n} f_{1}\right)}_{{ }_{0}}=0$.
- Furthamore, given any symmetry VF ξ^{a}, since $\mathscr{L}_{\xi} n^{a}=-\phi n^{a}$;

$$
[\xi, f n]^{a}=\mathcal{Z}_{\xi} f n^{a}=\left(\mathscr{L}_{\xi} f-\phi\right) n^{a} \in S^{\prime} \quad \text { Ex: check } \quad \mathcal{L}_{n}\left(\mathcal{L}_{\xi} f-\phi\right)=0
$$

so, $\frac{B / S=\mathbb{L}}{\text { Lie abebra }}$ or $\underbrace{\substack{\text { Normal subgroup. } \\ \text { Quotient }}}_{\text {Lie froupisemi-direct deduct }}$

- Recall that poincare' Lie algebra $\beta \&$ Group p are similar:

In B; 4-dim π is replaced by an infinite dimensional $\$$.

- Big surprise at first : The group is rot P but ar infinite dimensional generalization thereof! This comes about because:

AF physical metric: $\widetilde{J}_{a b}=\tilde{\eta}_{a b}+\underbrace{O\left(\frac{1}{r}\right)}_{\text {Re ir }}$
components of Tab
in a cartesian chart of $\tilde{\eta}_{a b}$
so, mab approaches a flat metric $\hat{\eta}_{a b}$ in a precise sense. But if eos; $\tilde{t}^{\prime}=t+f(0, \varphi) ; \quad \tilde{\eta}_{a b}^{\prime} \longleftrightarrow\left(t^{\prime}, x, y, z\right)$
ie $\tilde{\eta}_{a b}^{\prime}$ is obtained from $\tilde{\eta}_{a b}^{\prime}$ by an angle dependent translation
Ex: then $\widetilde{\mathcal{T}}_{a b}=\tilde{\eta}_{a b}^{\prime}+O\left(\frac{1}{v}\right)$: physical $\widetilde{J}_{a b}$ also approaches $\tilde{\eta}_{a b}^{\prime}$.

- Poincare groups of $\tilde{\eta}_{a b}$ and $\tilde{\eta}_{a b}^{\prime}$ are different. Intuitively, \mathcal{B} is obtained by gluing all these P, P^{\prime}, \cdots eorsistenty $\rightarrow \infty \mathrm{dim}$.
- B : Asymptotic symmetry group of GR tailored to asymptotic flatness a null infinity $a \rightarrow$ Radiation (GUs, EMW)

This enlargement came to be appreciated in the particle physics \& perturbative treatments of classical a quantum gravity only over the post decade. conceptually, a key effect of full momlinean GR.

- Interestingly, the co. dim Lie algebra $\$$ of supertranslations dons admit a 4-dim subalgrbra π of translations: unique 4 -dim. normal subgroup τ of translations of β. Simplest description: Go to a Bondi Conformal Frame in which $l_{\text {ab }}$ is a unit 2 -sphere metric. Then: $\xi^{a}=\alpha(0, \varphi) n a \in \pi$ if and only if

$$
\alpha(\theta, \varphi)=\alpha_{0}+\sum_{m} \alpha_{m} Y_{1 m}(0, \varphi) \quad \xi \begin{aligned}
& \text { Linear combination of first } \\
& \left.4 Y_{p m}\right\} .
\end{aligned}
$$

The subspace does not depend on the choice of dab in $B C F_{s}$

- Notion of energy.momentum (a supormomentom) is wall. defined. But angular momentum is more subtle because B has an oo-parameter (rather than just 4 as in P) family of Lokntz subgroups \rightarrow supertianslation ambiguity.

Summary

- Asymptotic flatness a I needed for GDs in foll GR
- The asymptotic symmetry group B "The BIs group preserves the universal structure at 4 , that is common to all Af space-time. can also be obtained as:

$$
B=\frac{\text { Diff group on Nl that preserves AF boundary cords }}{\text { subgroup of Differs that are asymptotically identity }}
$$

- $B=X \not \mathcal{L} ; \lambda: \infty$ dim normal subgroup of supertranslations generated by YEs $\xi^{a}=f(0, \varphi) r^{a}$
under $\Omega \rightarrow \omega \Omega, \quad n^{a} \rightarrow \omega^{-1} \hbar^{a} \Rightarrow f \rightarrow \omega f$ confarmally weighted, wt +1
\forall admits a canonical $4-d m$ subgroup τ of translations generated by $\xi^{a}=\alpha(\theta, \varphi)$ na; $\alpha=\alpha_{0}+\sum \alpha_{m} \gamma_{1 m}(\theta, \varphi)$ in a Bondi. conformal frame \longleftrightarrow gab: unit, round, q-sonete metric

For further discussion on enlargement of the Poincare group to the BMS, due to supertranslations, see the Appendix of AA, De Lorenzo \& Khera, Gen. Rel. Gravit. Grav. 52, 107 (1-27) (2020); https://arxiv.org/pdf/1906.00913.pdf

BIs 4-momentum a supermomentum: Fluxes \& "charges"

- Maxwell theory in Minkowski space:

Energy-momentum: source-free solis.

$$
\begin{aligned}
& \mathcal{F}_{k}=\int_{t=t_{c}} T_{a b} k^{a} d s^{b} \xrightarrow{t \rightarrow \infty} \rightarrow \int_{\psi} \alpha(\theta, \varphi)\left|\Phi_{2}^{e}\right|^{2} d u d^{2} s
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex: show }
\end{aligned}
$$

Ratianture
part of Maxwell field

- For gravity in full GR, we have asymptotic symmetries at f $\xi^{a}=f(0, \varphi) n^{a}$ supertransiations $\Rightarrow \quad \xi^{a}=\frac{\alpha(0, \varphi) n a}{\left(s+4 Y_{\ell M}(0, \varphi)\right.}$ for translations
But we do not have a gauge invariant notion of stressenergy tensor $T_{a b}$ for the gravitational field!
- Maxwell theory: We can obtain the same expressions of \widetilde{K} using Hamiltonian methods: F_{k} is the Hamiltonian On the Maxwell phase space, generator of the infinitesimal canonical transformation $F_{a b} \rightarrow \mathcal{L}_{k} F_{a b}$ on the space of solutions to Maxwell eqns. 'Tab not used!

Ex: Shaw this is a canonical transformation.

Interestingly we can repeat this procedure for full GR!

- Af spatial infinity, this leads to the Arrowitt-Desor-Misiner (ADM) expressions of energy-momentum: Total 4-momentum of spaneitime including sources a radiation
- We can do the same at null infinity for radiative modes

Beautiful mather matical structure associated with geometry of I leads to the phase spare $\Gamma_{\text {Rad }}$ of radiative degrees of frecdotin, very similar to that in maxwell a you theories.

For any asymptotically flat sole Jab of Einstein's equation, at 9 , conformal completion gives. ($q_{a b}, r a$) at 4 . "zeroth order" structure to all AF space times.
$\nabla_{a} O_{b c}=0 ; \quad \nabla_{a}$: derivative operator connection ($\sim A_{a}$ in Maxwell)
induces D_{a} at 3 -dim $f: D_{a} k_{b}=\nabla_{a} k_{b} \quad k_{b}:$ extension unambiguous because $\nabla_{a} \eta_{b} \hat{=} 0$ of kb_{b} on to 4 an M.

$$
\nabla_{a} g_{b c} \hat{=} 0 \quad \& \quad \nabla_{a} n^{b}=0 \Rightarrow D_{a} \underbrace{}_{O_{b c}+,+}=0 \quad a \quad D_{a} n^{b}=0
$$

Because $T_{a b}$ idegenerote, D_{a} is not unique. It carries "non. universal" information in spacetime, ic. Da can vary from one physical space time to another.

Turns out that it carries precisely the radiative information! Nontrivial intuplay between physics and geometry; shared by Yang. Mills gauge theories.
$\left(n^{a} \nabla_{a} u=1\right)$ New information in D that varies from one solution to another:

Fix any cross-section of 9 , set $u=u_{0}$ on it Then $z_{n} u=1 \Rightarrow$ we acquire a 1-paramcter. family of cross sections $u=$ const. normal to the cross-sections: $l_{a}=-T_{a} u$ $\left(l_{a} n^{a}=-1, \quad l_{a} m^{a}=0\right)$

Because $D_{a} T_{b c}=0$, the action of D on 'horizontal' ha (hana=0, z' $h_{a}=0$) is determined, but its action "on la isnot! \rightarrow can vary from on solution to another.
New information in $D \longleftrightarrow$ shear: $\sigma_{a b}^{0}=T F q_{a}{ }^{c} q_{b}{ }^{d} \nabla_{a}{ }^{\prime} c$.

$$
=T F \underset{\sim}{\nabla_{a} l_{b}} \equiv T F D_{a} l_{b}
$$

Recall:

$$
\begin{aligned}
\sigma^{0} & =m_{a} m^{b} \sigma_{a b}^{0}: 2 \text {-components of Transverse TF } \sigma_{a b}^{0} \\
& =\frac{1}{2} \underbrace{\left(h_{+}^{0}+i h_{\star}^{c}\right)}_{\text {Wave form }} \equiv \lim _{\rightarrow 4^{+}} \frac{r}{2} h_{a b}^{t t} m^{a} m^{b}
\end{aligned}
$$

Thus, information in D that is not universal/kinematical, ie. that can vary from one physical spacetime to another is contained precisely in the waveform!
Radiative phase-space: $\Gamma_{\text {Rad }} \geqslant\{D\}$ or $\mathcal{H} \quad\binom{D_{a} n^{b}=0}{D_{a} T_{b c}=0}$

Subtleties: Possible confusion a Resolution

The null vector field l^{a} is transverse to f, not tangent. So how can D_{a} that is an intrinsic derivative operator on f act on it?

Answer: You are absolutely right Da does not know how to act on the vector field l^{a}. But it knows how to act on convector field l_{a} because l_{a} is defined intrinsically on If (ire lies in the cotangent spare of any point of 4). This is af first confusing because this feature (l^{a} versus l_{a}) occurs because f is incl.
Recall: The 3 -manifold g is coordinatized by u, θ, φ. so, a triad on y is n^{a}, m^{a}, \bar{n}^{a} where $n^{a} \partial_{a} \equiv \partial_{u}$ and $m^{a} \partial_{a}=\frac{1}{\sqrt{2}}\left(\partial_{0}+\frac{i}{\sin \theta} \partial_{\phi}^{\prime}\right)$.
The dual covectors are: $\partial_{a} u$ and $m_{a}=\frac{1}{\sqrt{2}}\left(\partial_{\theta}+i \sin \theta \partial_{\phi}\right)$

$$
l_{a}=-\partial_{a} u \text {, so } \quad \operatorname{lam}^{a}=1, \quad l_{a} m a=l_{a} \bar{n}^{a^{2}}=0 \text {. }
$$

so l_{a} is infact a covector elefined intrinsically on h. Note: $n_{a}=\nabla_{a} \Omega$ so it's pullback to I vanishes $\quad \pi a=0$
Thus, a triad intrinsic to μ : $n^{a}, m^{a}, \bar{m}^{a}$
a cotriad intrinsic tog: $l_{a}, m_{a}, \overline{m a}$
Therefore the derivative operator D_{a} knows bow to act or $l_{a}:$ If l_{a} is any smooth extension to a 4-dimensional neighboud of 9 , then $D_{a} l_{b}=\nabla_{a} l_{b}$.

- Another clarification: why is D_{a} well-definced? Given any k_{a} of f, extend it to a neighboud of f in M If k_{a} and k_{a}^{\prime} are two extensions, fie $k_{a} \widehat{=} k_{a}$ and also $k_{a} \hat{=}$ kia at 9 , then $\left(k_{a}^{\prime}-k_{a}\right)=\Omega v_{a}+f_{a}$ for some VF V_{a} and function f since $\Omega \hat{=} 0$ and $n_{a}=0$. so

$$
\nabla_{a}\left(k_{b}^{\prime}-k_{b}\right)=\left(\nabla_{a} \Omega\right) v_{b}+\Omega \nabla_{a} v_{b}+\left(\nabla_{a} f\right) \Pi_{b}+f \nabla_{a} \Pi_{b}
$$

pulling back to g :

$$
\begin{aligned}
& \text { Dulling back to } q \text { : } \\
& \nabla_{a}\left(k_{b}^{\prime}-k_{b}\right) \stackrel{m}{=} 0 \quad \text { since } \Omega \hat{=} 0, \nabla_{a} \Omega=n_{a} \hat{=}=0, \Gamma_{a} n_{b}=0 \\
& \longleftarrow \quad D k_{k} \text { : unambiguous. }
\end{aligned}
$$

Hence, $\nabla_{a} K_{b}^{\prime} \hat{=} \nabla_{a} K_{b} \hat{=} D_{a} K_{b}$:unambiguous.

Thus:
Lecture \#4
(1) At I we have the symmetry crown B (BMS group) that preserves the universal/kinemanca structure common tall) AF space.times.
(2) Fundamental dynamical field a gt^{t} : D; captures radiotiveconlent of spacetime. Through its curvature D determines precisely $K a b \equiv \mathbb{E} a b$ and hence, $N, \Psi_{4}^{0}, \Psi_{3}^{c}, \operatorname{Im} \Psi_{2}{ }^{\circ}$!

Recall: $\quad N_{a b}=2 Z_{n} \sigma_{a b}^{0} \Rightarrow N=-\dot{\bar{\sigma}}_{0} \quad N_{a b}=2\left(N m_{a}+m_{b}+\bar{N} \bar{m}_{a} \bar{m}_{b}\right)$

$$
\alpha_{a b}^{K} \equiv E_{a b}=\frac{1}{2} Z_{n} N_{a b} \Rightarrow \Psi_{4}^{0}=\dot{m}^{a} \bar{m}^{b} E_{a b}=\dot{N}=-\ddot{\sigma^{0}}
$$

σ^{0} or ($h_{+}^{0}+i h_{x}^{0}$) heavily usect for waveforms. Invarint content of σ° is D !

In stationary space.times. D 'trivial', ie-completcly determed by $9 a b \Leftrightarrow$ we con choose $u=$ const cross-sections of $g \pm$ such that

$$
\begin{aligned}
& \sigma_{a b}^{0}=T F \quad a_{a}^{c} q_{b}^{c} D_{c} d=0 \\
\Rightarrow & N_{a b}=0 \quad \Rightarrow \quad \mathbb{E} b=0 \Leftrightarrow \Psi_{4}^{0}=0
\end{aligned}
$$

In radiative space-times D 'Nontrivial)'; $N_{a b} \neq 0, \psi_{a}^{0} \neq 0$ These are the space -times we are interested for GUs.

Using the BMAS symmetries $\xi^{a} \in \mathbb{B}$ and the radiative phase space we can compute fluxes \mathcal{F} carried by GUs. across 9: Hamiltonian generating the $\mathrm{s}_{\text {infinitesimal canonical }}$ trans formation: $D_{a} \rightarrow D_{a}+\varepsilon \dot{\alpha}_{5} D_{a}$

$$
\text { ie. } \quad D_{a} k_{b} \rightarrow D_{a} k_{b}+\epsilon\left[\infty_{s}\left(D_{a} k_{b}\right)-D_{a} z_{s} k_{b}\right] \quad \forall k_{b} \text { on } 4 \text {. }
$$

(Recall Maxwell theory or Yang wills or scalar feeder in Mink. space.)

$$
\begin{aligned}
& F_{\delta^{a}=f t^{a}}=\frac{1}{2} \pi G \int_{g} d u d^{2} S \cdot N^{a b}\left(f(u, b) N a b+2 D_{a} D_{b} f\right)
\end{aligned}
$$

For translations, $\xi^{a}=\alpha n^{a}$,
using a Bondi conformal frame for simplicity.

$$
\alpha=\alpha_{0}+\alpha_{m} \gamma_{m}(\theta, \varphi) ;
$$

Exercise: $\quad D_{a} D_{b} \alpha=\left(\alpha_{m} Y_{1 m}\right) q_{a b}$. since $N^{a b} q_{d b}=0$,

$$
\begin{aligned}
& f_{t^{a}=\alpha n^{a}}=\frac{1}{32 \pi a} \int_{g} d u d^{2} S \alpha(0, p) N^{a b} N_{a b} \\
& \text { Energy flux: } \alpha=1 \Rightarrow F_{t a n a}=\int d u d^{2} S \underbrace{N a b N_{a b}}_{>0}
\end{aligned}
$$

Gravitational waves carry positive energy "They are real; You can heat water with them!": Bondi
commonly used formulas in the GW literature:
Expressions given above do not depend on coordinates or tetrads (ot psuedo tensors). At It, we can unambiguously calculate fluxes of energy, momentum,...' covariant expressions But one often introduces coordinates 4.0 .4 to make the expressions "explicit" (eg for numerics). One defines an angular derivative "I" ("eth") that acts on spin-weighted scalars.
components in the null tetrad of a TF fou, $0, \varphi$) is said to carry spin weight s if under $u \quad m^{a} \rightarrow e^{i \alpha} m^{a}, \quad f \rightarrow e^{i s \alpha} f$
spin weights:

$$
\begin{aligned}
& \text { Spin Weights: } \\
& \sigma:=-\sigma_{a b} \bar{n} \bar{n}_{n} b:-2 \quad N:=\frac{1}{2} N_{a b} m^{2} \operatorname{lin} b: 2, \quad \psi_{4}^{0}:=k_{a b m} m^{a} m^{b}:-2
\end{aligned}
$$

If A has spin wt s, then $\partial A:=\frac{1}{\sqrt{2}}(\sin \theta)^{s}\left(\frac{\partial}{\partial \theta}+\frac{i}{\sin \theta} \frac{\partial}{\partial \phi}\right)(\sin \theta)^{-s} A$

$$
\begin{aligned}
& \mathcal{F}_{f n^{\prime} a}=\frac{1}{4 \pi G} \int_{q} d u d^{2} S \quad f(\theta, \varphi)\left[\begin{array}{lll}
\text { Adds }+1 \\
{\left[\left|\dot{\sigma}^{0}\right|^{2}-\operatorname{Re}\left(\partial^{2} \dot{\sigma} \dot{\sigma}\right)\right](u, 0, \varphi)}
\end{array}\right. \\
& \mathcal{F}_{\alpha n}=\frac{1}{4 \pi G} \int_{g} d u d^{2} S \quad \alpha(0, \varphi)|\dot{\sigma}|^{2}\left(u_{-}, \varphi\right)
\end{aligned} \quad \begin{array}{ll}
\text { wave form }
\end{array}
$$

Key property of fluxes: Balance laws
The supermomentum flux is an integral oval I^{+}of an exact 3 form $\left.F_{a b c}^{(3)} \equiv 3 \nabla_{[a} Q_{b c}^{(5)}\right]$

Hence, given any 2 cross-sections $u=u_{1}$ \& $u=u_{2}$

$$
\begin{aligned}
& \int_{u_{1}}^{u_{0}} \underbrace{F_{a b c}^{(\xi)}}_{3 \text {-farm }}=\left(\oint_{u=u_{1}}^{F^{\prime}}-\oint_{u=u_{2}}\right) \underbrace{Q_{b c}^{(\xi)}}_{2 \text { f.form }}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{4 \pi G} \oint_{C} d^{2} S \quad f(0, \varphi) \operatorname{Re}\left[\psi_{2}^{0}+\bar{\sigma}^{0} \dot{\sigma}^{0}\right] \\
& \operatorname{Re} \Psi_{2}^{\circ}=k_{a b} \rho^{9} \rho^{b} \\
& \bar{\sigma}^{0}=\frac{1}{2}\left(h_{+}-i h_{x}^{0}\right) \\
& \equiv \text { supermomentum at retarded time } u=u_{0} \text {. } \\
& Q_{f n^{a}}\left[C_{1}\right]-Q_{f f}\left[C_{2}\right]=\underset{\text { fra }}{\sim}[\Delta 4] \text { infinitely many balance laws!! }
\end{aligned}
$$

specializing to translations $\xi^{a}=\alpha(0.4) n^{a}$, we obtain the balance law for Bondi-sachs 4 -momentum.

$$
\underbrace{P_{(\alpha)}[c]}_{\begin{array}{l}
\text { d-momentum } \\
\text { at retarded time } u=u_{0}
\end{array}}=-\frac{1}{4 \pi G} \oint_{C \equiv\left(u=u_{0}\right)} d^{2} S \quad \alpha(0, \varphi) \quad \operatorname{Re}\left[\Psi_{2}^{\theta}+\bar{\sigma}^{0} \dot{\sigma}^{0}\right](0, \varphi)
$$

positive energy theorems proved in early i980s (HorowitzDerry, Reula-Tod; Schoen-Yau) show that $P_{(\alpha)}$ is a Time like Vector:' Energy $\equiv E[c]=-t^{\alpha} P_{\alpha}[c] \geqslant 0$ and Vanishes only if space-time is minkowski. Theorems assume matter satisfies local energy condition.

Flux: $\quad f_{(\alpha)}[\Delta t]=\frac{1}{4 \pi G} \int_{\Delta \varphi} d u d^{2} s \alpha(0, \varphi)\left|\dot{\sigma}^{0}\right|^{2}(u, 0, \varphi)$.
\special case oof suparmumentom
Balance law.

$$
P_{(\alpha)}\left[c_{1}\right]-P_{(\alpha)}\left[c_{2}\right]=\underset{(\alpha)}{\approx}[\Delta f]
$$

Nontrivial agreement:
AA \& A. Magnon-Ashtekar, Phys. Rev. Lett. 43, 181-184 (1978)

$$
\lim _{u_{0} \rightarrow-\infty} P_{\alpha}^{(\text {Bondi) }}=P_{\alpha}^{(A D M)}
$$

(as 4 -vectors)

Thus:

- ADMA G. momentum at i° : Total energy momentum of the Physical space-time, including matter a GUs
- Bondi 4. mom entum at $u=u_{0}$: Energy-momentum left over after allowing for radiation to carry aw energy.momentom from $u=-\infty$ to $u=u_{0}$.
- GWs (a EMH Waxes) carry away positive energy but remaing energy at $u=u_{0}$ is still positive. one of deepest interplay between geometry a physics!

PART II: Balance laws as diagnostic tools for waveforms

In the last two lectures we turn to a concrete application. Recall the plan of the mini- course
(i) Part I: Conceptual and Mathematical issues associated with gravitational waves (GWs) in full, nonlinear general relativity. They will thus complement other lectures on approximation methods and numerical relativity by providing the concepts and mathematical notions they use; and,
(ii) Part II: How these results in exact general relativity can be used as diagnostic tools to test the accuracy of model waveforms. Normally one uses numerical simulations to evaluate the accuracy but there are regions of parameter space where numerical simulations are sparse. The diagnostic tests come from identities that must be satisfied in exact GR. Therefore, one can use them to test accuracy of candidate waveforms and suggest directions for improvements in all regions of the parameter space. Furthermore, the balance laws can be used to test accuracy of NR waveforms themselves.

Lecture \#s: Waveforms

spectacular discoveries of $C B C_{s}$ by GW obscovatories was possible because of matched filtering method:
(1) Theoretical Waveforms for $C B C_{s}$ (parameterized by initial masses, spins: intrinsic parameters) calculated assumito $G R=\frac{1}{2}\left(h_{+}^{0}-i h_{x}^{0}\right) \equiv \bar{\sigma}^{0}$
(2) observed wave form at the detector
Matched -filtering enables one to dig att signal from noise for the discovery and then to determine the intrisic parameters, the extrinsic parameters (distance a sky location of the binary), and informed observables : final mass, spin,... for astrophysics.
\Rightarrow Need theoretical predictions for $h_{4}^{0}-i h_{x}^{0} \equiv \sigma^{0}$ or Ψ_{4}^{0} a y^{+}. to sufficient accuracy.

But in GR we cannot solve the 2 -body problem analytically: 2 combat objects - 2 BH (BBH), or 2 Neutron stars (NSNS) or a BH and a neutron stars (BH-NS)-spiral in from far and merge.

So we have to use a combination of analytical approximations, and numerical methods. Three stages of evolution:

Inspiral
Long phase 110 which the two bodies, initially very far, spiral in.
Post-Newtonian (PN)
Approximation: Porturbaton Theory in (V / c) starting with Newtonian orbits

Merger.
Highly ron-limear violent phase.
Need full GR
Numerical Relativity
(NR). A single horizon forms, Huge luminosity

3 Main Avenues to produce the waveforms:
EOB: EFFective one Body Approximation: $P N+N R$ input. Phenom: Phenomenological interpolation: faster IMR PHENOM surrogate: Extrapolations of NR waveforms filling -in the parameter space.

WAVEFORMS

This is a brief summary of procedures used to create waveforms using PN methods and numerical simulations of Einstein's equations, emphasizing the conceptual aspects and key assumptions and approximations. This is only a bird's eye view addressed to mathematical physicists and therefore glosses over many astute steps and novel techniques that have been used to make nontrivial advances. (This material is based on joint work with De Lorenzo and Khera). The account is not up to date. Nonetheless, this material will enable students to appreciate why non-trivial checks on waveforms are needed and how this purpose is served by the balance laws we discussed in these lectures.

The main focus of the community has been on the part of Compact Binary Coalescence (CBC) that is directly relevant to the sensitivity band of the current gravitational wave detectors. This translates to ~ 100 quasicircular orbits where dynamics is expected to be well-modeled by the slow-motion approximation of PN expansions, and the last $\sim 10-15$ orbits for which dynamics must incorporate strong field effects of full general relativity. These last orbits are calculated using NR. In principle, one could use NR for the entire process. However, the required computational time and effort would be too large, given that we need to cover an 8 (or greater) dimensional parameter space associated with the binary. That is why a `stitching procedure' is used, where the early waveform comes from the PN analysis and the late waveform from numerical simulations. The result is often referred to as the hybrid wave form. In addition, a number of strategies -the effective one body (EOB) method [1], phenomenological interpolation [2], NR-surrogate models [3] - have been used to enhance the reach of analytical waveforms, and/or to interpolate between parameters used in numerical simulations to create a large bank of waveforms. Thus, while currently there are a few thousand CBC numerical simulations, the data banks contain 100 times as many waveforms. The full bank is used by the LIGO-Virgo collaboration for detection, parameter estimation, and testing GR. (For further details, see e.g., the review articles [4-6] and references therein.)

Various steps in this process involve approximations, guesses based on intuition, and choices that are necessary to resolve ambiguities.

Let us begin with the PN expansion. This is essentially a Taylor series in small velocity -truncated to various v / c orders- which however is not convergent; it is at best an asymptotic series. For example, for luminosity of gravitational waves in the extreme mass limit, the PN expansion starts to deviate significantly from the exact result for $\mathrm{v} / \mathrm{c}>0.2$, and the contributions up to $(\mathrm{v} / \mathrm{c})^{4}$ and $(\mathrm{v} / \mathrm{c})^{5}$ terms do so in opposite directions [7]. Consequently, even when one can carry out calculations to a high order, it is not easy to systematically control the truncation errors.

A second issue undergoes the name of Taylor approximants. The post-Newtonian waveforms are obtained starting from the PN expansions of the energy of the system $E(v / c)$ and the flux of radiated energy $F(v / c)$. However, because the procedure involves rational -rather than polynomial- functionals of $E(v / c)$ and $F(v / c)$, there is some freedom in expanding out these quantities to obtain the waveform to a given PN order. Because of this freedom, several different PN waveforms arise at a given order; this is the so-called 'ambiguity in the choice of Taylor approximants.' For unequal masses, this is generally the largest source of errors in the PN waveforms (see, e.g., [7, 8]).

Finally, in the PN literature, there is a fixed background Minkowski space at all orders and the PN solution is assumed to be stationary in the past, before some time $t<-\tau \quad[4,9]$. This assumption would seem unreasonably strong to mathematical relativists since for sources for which the initial value problem is well posed in full general relativity, if a solution is stationary in the past in this strong sense, then it is stationary everywhere. However, in the PN strategy the system is non-stationary in the future due to radiation reaction effects and the assumption of past-stationary primarily serves to make various tail terms finite. The viewpoint is that "past-stationarity" is appropriate for real astrophysical sources of gravitational waves which have been formed at a finite instant in the past" [4]. The physical idea behind this strategy is that the two bodies become gravitationally bound at a finite time $t=-\tau$ in the distant past, while being still very far away from one another, and it is argued that the metric perturbation of the background Minkowski space-time can be taken to be stationary before the capture occurs.

In lectures 5 and 6, we will use a much weaker condition, where past stationarity holds in a limiting sense as one goes to past infinity along \mathcal{f}^{+}and that too only for a certain field. The assumption is mild and expected to hold on physical grounds for CBC (although, not in scattering situations). In particular, it is perfectly compatible with non-stationary solutions in full GR.

In NR we encounter different types of errors. First, there are the truncation errors that are common to all numerical simulations. Second, the wave form is extracted at a large but finite radius, whereas the radiation field becomes truly gauge invariant and unambiguous only at infinity. Therefore, the results inherit error-bars associated with the choice of extraction radius [10]. Third, the waveform is obtained by integrating twice with respect to time the radiation field encoded in the component Ψ_{4} of the Weyl tensor. This requires introduction of coordinate systems and null tetrads which become unambiguous only at infinite distance from sources. Finally, although one does have tools to calculate full Ψ_{4} (modulo the ambiguities inherent in working at a finite radius), there are numerical errors due to high frequency oscillations which are suppressed if one calculates only the first few (spin-weighted) spherical harmonics because of the 'averaging' involved. Therefore, only the most dominant modes are generally reported in the NR results, rather than the full wave form.

The 'stitching procedure' is inherently ambiguous because it involves several choices (see, e.g., [11]). First, one has to decide at what stage in the CMB evolution one stitches the PN and the NR waveforms. Second one must decide which PN order and which T-approximant to use. Third, the PN and the NR waveforms are generally computed using different co-ordinate systems and therefore one has to introduce additional inputs for a meaningful matching. These choices are driven by intuition and guided by past experience rather than clear-cut, unambiguous mathematical physics procedures.

Next, because the PN expansion and NR simulation are based on quite different conceptual frameworks, there are several seemingly ad-hoc elements involved. In PN calculations, the sources are taken to be point particles in Minkowski space. In NR, there is no background Minkowski space and black holes are represented by dynamical horizons (and neutron stars with suitable fluids). In the case of black holes, the individual masses and spins are determined by the horizon geometry. Therefore, for the stitching procedure, one starts with a controlled set of NR initial data (given by the Bowen-York [12] or the Brandt-Bru"gmann [13] strategy) satisfying constraints of exact GR and evolves. Now, these data contain some 'spurious radiation' which escapes the grid quickly. After this occurs, one re-evaluates the source parameters in the numerical solution and matches them with the source parameters of the PN solution. One then chooses an interval in the time or the frequency domain and evolves both the PN and NR solutions and compares their waveforms. There are several ways to 'measure' the difference between the two waveforms and one minimizes it by tweaking the time of matching, the interval over which the matching is done, and the choice of source parameters in the two schemes.

Conceptually, it is important to note that the matching is done only for the waveform -i.e., for the two asymptotic forms of the metric that capture the radiative modes in the two schemes. In the interior, there is no obvious correspondence between the PN and NR solutions. In particular, there is no simple relation between the 'particle trajectories' representing the black holes, determined by the PN equations, and the dynamical horizons determined by numerical simulations.

These considerations make it clear that even for the $\sim 1 \%$ of waveforms in the data banks that are obtained just from PN and NR, there is no systematic way to measure how well they agree with the predictions of exact GR. Inputs that go into the construction of the remaining $\sim 99 \%$ of the waveforms are even less driven by fundamental considerations. To mathematical relativists, this can seem shocking. But it is important to note that similar phenomenological considerations and mixture of science and art are heavily used also in other areas of physics, such as QCD.

It is a tribute to the physical intuition and technical ingenuity behind these hybrid waveforms, that the matched-filtering procedure could lead to detections of coalescing binaries.

An Illustrative list of References

[1] A. Buonanno, Y. Pan, H. P. Pfeiffer, M. A. Scheel, L. T.Buchman, and L. E. Kidder, Effective- one-body waveforms calibrated to numerical relativity simulations: Coalescence of nonspin- ming, equal-mass black holes, Phys. Rev. D 79, 124028 (2009).
[2] P. Ajith et al, Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins, Phys. Rev. Lett. 106, 241101 (2011).
[3] S. E. Field et al, Fast prediction and evaluation of gravitational waveforms using surrogate models, Phys. Rev. X 4, 031006 (2014).
[4] L. Blanchet, Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Relativity, 17, 2 (2014).
[5] A. Buonanno and B. Sathyaprakash, Sources of gravitational waves, In General Relativity and Gravitation: A Centennial Perspective, edited by A. Ashtekar et al (Cambridge UP, Cambridge, 2015).
[6] L. Blanchet, Analyzing gravitational waves with general relativity, arXiv:1902.09801.
[7] T. Damour, B. lyer and B. Sathyaprakash, Comparison of search templates for gravitational waves from binary inspiral, Phys. Rev. D 63044023 (2001).
[8] I. MacDonald et al, Suitability of hybrid gravitational waveforms for unequal-mass binaries, Phys. Rev. D 87, 024009 (2013).
[9] L. Blanchet and T. Damour, Radiative gravitational fields in general relativity I. General structure of the field outside the source, Phil. Trans. R. Soc. (London) A 320, 379-430 (1986).
[10] N. T. Bishop and L. Rezzolla, Extraction of gravitational waves in numerical relativity, L. Living Rev Relativ. 19:2 (2016).
[11] A. Ramos-Buades, S. Husa and G. Pratte Simple procedures to reduce eccentricity of binary black hole simulations, Phys. Rev. D 99023003 (2019).
[12] J. W. Bowen, J. Rauber and J. W. York, Two black holes with axisymmetric parallel spins: Initial data", Class. Quant. Grav., 1591-610 (1984).
[13] S. Brandt and B .Brugmann, A simple construction of initial data for multiple black holes, Phys. Rev. Lett., 78 3606-3609 (1997).
Two types of errors:
(1) Systematic errors: Associated with approximations or "well inotivated tricks" used in creating waveform models. stortuts are inevitable because we want to cover a 8-dimensional parameter spare a computational sped is important. Examples: (i) Higher li modes are often ignored in the (spin-weighted) spherical harmonic decomposition of (ho-itix) or Ψ_{a}^{0} (ii) 'Fast' 'practical' way to accommodate precession (ie. components of the 2.spins \vec{S}, and $\overrightarrow{S_{2}}$ of thenal to \vec{L}.) (iii) Kay inputs from NR are included.
(2) Statistical errors: Associated with fluctuations in line detector noise (a necessary dato analysis to extract signal from noise).
so for (for BBH in particular), the systematic errors one smaller than statistical and hence models are adequate for otecction, estimation of main parameters and tests of GR (although error:bars could be reduced).

Waveforms from EOB, Phenom and Surrogate models have proved to be invaluable for the impressive detections of the CBCs through gravitational waves. But we are entering an era of abundant event rates (soon, as many as 1000 BBH mergers a year with masses <100 M !) and with LISA and 3 g detectors we will achieve a much greater sensitivity over a significantly larger frequency band. For more accurate parameter estimations and tests of GR, one needs quantitative measures of the accuracy of waveforms, relative to exact GR.

- Key problem: We don't know the exact GR waveforms! So in the literature, accuracy tests involve comparisons with NR. But there are big regions in the parameter space where the NR simulations are sparse, so direct comparison is not possible. Also NR results themselves have some errors (e.g., extraction of the wave form at a finite distance; truncation errors; absence of higher harmonics of waveforms).
- Balance laws provide an alternate route that complements NR: Can be used anywhere in the parameter space; and can be used to test NR itself.
- Key feature: Provide an Infinite number of constraints on waveforms, without having to know what the exact GR waveform is ! Whatever the exact waveform is, it must satisfy these supermomentum (and angular momentum) balance laws. Therefore, given any candidate (EOB, Phenom, surrogate, ...) waveform, its violation of these constraints provides and objective measure of how far it is from exact GR, without the need of comparison with the (unknown) exact waveform.

Supermomentum balance law:

$$
Q_{f n}[u=-\infty]-Q_{f n}[u=\infty]=F_{f n}[9]
$$

$$
\begin{aligned}
& \text { witt } \\
& Q_{f n}\left[u_{a}\right]=-\frac{1}{4 \pi} G \oint_{u_{0}} d^{2} S \underbrace{f(0, \varphi)} \operatorname{Re}\left[\Psi_{2}^{0}+\bar{\sigma} \cdot \hat{\sigma} 0\right](0, \varphi) \quad \begin{array}{c}
\text { as } u_{0} \rightarrow+\infty \\
\hline
\end{array} \\
& F_{f_{n}}[\varphi]=\frac{1}{4 \pi G} \int_{q^{-1}} d S d u \underbrace{f(0, \varphi)}_{\text {Anbivary }}\left[|\dot{\sigma} 0|^{2}-\operatorname{Re} \partial^{2} \dot{\bar{\sigma}} 0\right](u, 0, \varphi) \\
& \left\{\begin{array}{l}
\dot{\sigma}^{-0} \sim 0\left(\frac{1}{141^{1+\varepsilon}}\right) \rightarrow 0 \\
a s u \rightarrow \pm \infty
\end{array}\right. \\
& \text { as } u \rightarrow \pm \infty \\
& \begin{array}{l}
\text { Finite total } \\
\text { energy ald. }
\end{array} \\
& \text { energy } 2 \text { lng. } \\
& \begin{array}{l}
\text { momentum } \\
\text { radiated actors 4) }
\end{array}
\end{aligned}
$$

since $f(0, \varphi)$ is arbitrary: one constraint for each 0 a φ
by initial a finalmasses
$\begin{aligned} & \text { provided by } \\ & \text { the wave form model. }\end{aligned}$ \& the kick velocity
Gas shown below)
Any candidate Waveform must satisfy these infinitely many constraints to desired accuracy.

Let us apply the simplest constraint by integrating the equation with first fut $Y_{p m}(0, \varphi)$: 4-momentum balance law.
Mi^{+}: From Mi_{i} and energy-momentum flux
We already learn something about accuracy of waveforms. for You $(0, \varphi)$.

GW150914

SEOBV3 \& IMR Phenom PV2

GW150914

(publically available data)

In the posterior probability distribution for the inferred observable $M_{\text {it }}$ (final mass): Phenom yielded a rice Gaussian. But in EOB: a strange double hump.
signalled need to reexamine. \longrightarrow Traced to the way EOB treats precession. Leads to a double hump in the posterior probabities of components of two spins 1 to \vec{L}. The double hump in the spin-components directly correlated with that in the remnant mass.
$2^{\text {nd }}$ example: Posterior probabilities of kick velocity \vec{v} :
suppose the 3 -momentum carried away is in the x-direction:

$$
\vec{P} \equiv P \hat{x} ; \quad P \equiv-\frac{1}{4 \pi \sigma} \int_{g} d u d^{2} S(\sin \theta \cos \varphi)|\dot{\sigma} 0|^{2} \equiv \begin{aligned}
& \gamma M_{i^{+}} v \\
& \gamma=1 / \sqrt{1-v^{2} / c^{2}}
\end{aligned}
$$

"3-momentum balance law" provide probability distributions.

Balance law is badly violated in both models.

Diagnostics: Higher modes, that are' essential to get the correct v were ignored in both models. Have since been incorporated.

Balance law constraint for $l \geqslant 2$.
Usual assumptions made in the CBC analyses:
(1) $\dot{\sigma}(u, b, \varphi)=O\left(\frac{1}{|u|+\varepsilon}\right)$ for some $\epsilon>0$ as $u \rightarrow \pm \infty$
(2) System is asymptotically stationary as $u \rightarrow \pm \infty$ (As u $\rightarrow \infty$, Kerr solution; assumption OK

As $u \rightarrow-\infty$ usual PN ássumption: Quite strong.
one car significantly weaken this requirement (2):
(1) $\Rightarrow \lim _{\rightarrow \rightarrow 5} \mathcal{Z}_{n} K_{a b b} \cong$ \& $\lim _{\rightarrow 9} \mathcal{Z}_{n} K_{a b} \hat{=} 0$ ie $\psi_{4}^{0}, \psi_{3}^{0}$ \& $\dot{\psi}_{2}^{0} \rightarrow 0$ as $u \rightarrow \pm \infty$ only require that $\dot{\psi}_{1}{ }^{0} \rightarrow 0$ as $u \rightarrow \pm \infty$
Intersting consequence: In the Bondi-frame in which 3-momentum vanishes (at $u=-\infty$ or $u=\infty$), ψ_{2}^{0} is real and spherically symmetric.

- However, in general the past and future rest frames are different because gravitational waves carry away 3-momentom: Black hole kick: Typical NR simulations $\sim \frac{v}{C} \sim$ few $100 \mathrm{~km} / \mathrm{s}$.
- suppose the 3 -momentum carried away is in the x-direction:

$$
\begin{array}{r}
\vec{P} \equiv P \hat{x} ; \quad P \equiv-\frac{1}{4 \pi G} \int d u d^{2} s(\sin \theta \cos \varphi)|\dot{\sigma} \cdot|^{2} \equiv \gamma M_{i+} v \\
v: \text { determined by the } v=1 / \sqrt{1-v^{2} / c^{2}}
\end{array}
$$

waveform and the remnant mass $M_{i^{t}}$.

- Let us work in the rest frame adapted to $i^{0} \quad(u \rightarrow-\infty)$ Then $\left(\frac{\varphi_{2}^{c}}{0}(u=-\infty)=G M_{i o}\right.$: spherically symmetric
$\Psi_{2}^{u}(u=+\infty)=G M_{i t}$ in the Bondi conformal frame in which final BH is @ rest $\left.\vec{P}\right|_{i+}=0$
Two frames related to each other by velocity v. Hence, in the past rest frame $\Psi_{2}^{0}(u=+\infty)=\frac{G M_{i^{+}}}{r^{3}\left(1-\frac{v}{C} \sin \theta \cos \varphi\right)^{3}}$
ThUS, $\left[\Psi_{2}\right]_{u=-\infty}^{u=\infty}$ determined by $M_{i o}, M_{i+}$ and kick velocity \vec{v}
$\underset{\text { Balance }}{\text { Law }}: G M, 0-\frac{G M_{i}+}{r^{3}\left(1-\frac{y}{c} \sin \theta \cos \varphi\right)^{3}}=\int_{-\infty}^{\infty} d u\left(\left.1 \dot{\sigma}_{0}\right|^{2}-R e \partial^{2} \dot{\sigma}_{0}^{0}\right)(u, 0, \varphi)$.

Thus all terms in the co no of balance laws

$$
\left[\Psi_{2}^{0}\right]_{u=-\infty}^{u=\infty}(\theta, \varphi)=\int_{-\infty}^{\infty} d u(\underbrace{|\dot{\sigma} \cdot|^{2}-R e \partial^{2} \dot{\sigma}^{0}}_{\text {Waveform }})(u, \varphi, \varphi) .
$$

Labels, Moo, Mit a waveform.
can be computed for each waveform in the cotalog! Question: How well does a given labelled waveform satisfy them?
can decompose the waveform into Ylem's and obtain a constraint for each (l, m). We already discussed $l=0,1$. For $l=2$: Dominant modes $m= \pm 2$. In waveform models and NR, one aims at great accuracy for these.

But in the $s \times s$ catalog, the $\ell=2, m=0$ mode was poorly represented until recently. Source of error: Believed to be associated with extraction at large spectral methods) but finite radius. Cauchy characteristic evolution gave
accurate results because they extract wave firms at 4 . But significantly slower. so hera a sees collaboration used the finite time version (ia $u \in\left(u_{1}, u_{2}\right)$, rather than $u \in(-\infty, \infty)$) of the balance law to obtain accurate $(2,0)$ mode of the waveform and updated the sees catalog in 2021 .
Mittman, et al, Rev. D 103, 024031 (2021); https://arxiv.org/pdf/2011.01309.pdf (BxS + Penn State) Mitman et al, Phys. Rev. D 104, 02451 (2021); https://arxiv.org/pdf/2104.07052.pdf (BxS + Penn State) e Improvement of Recoil velocity in SoS catalog).
other illustrative application
still higher modes in the Spin-weighted) spherical harmonic decomposition.
Khera, Krishnan, AA \& Del Lorenzo, Phys. Rev. D 103, 044012 (2021); https://arxiv.org/pdf/2009.06351.pdf
Use gravitational memory as ar inferred observable (conceptually just like $M_{i^{+}}$and $\vec{S}_{i^{+}}$) : obtained by just rewriting the balance law:

$$
\begin{aligned}
& \left(C_{l}=\frac{1}{2} \sqrt{(l-1) l(l+1)(l+2}\right) \\
& C_{l}(\Delta h)_{l m}=\frac{-2 G}{D_{L}^{2}} \times \\
& \left(M_{i 0}-\frac{M_{i-1}}{r^{3}(1-\overrightarrow{\vec{V}} \cdot \vec{r})^{3}}\right)_{l, m} \\
& +\frac{P_{l}}{2 C}\left(\int_{-\infty}^{\infty} d t|\dot{\sigma}|^{2}\right)_{l, m}
\end{aligned}
$$

If two waveform models give statistically different values of this observable, they cannot both be good approximations to GR. : Near parameter values corresponding to this event, one (or bott) waveforms reed improvement for higher modes.

For this last topic, the discussion is sketchy because I did not discuss the angular momentum balance law in this course. The purpose of this discussion is only to illustrate ways in which the balance laws can be useful as a diagnostic tool for both waveform models and NR, and can then lead to improvements. In essence each balance law focuses on an aspect of the waveform and serves to bring out limitations that would otherwise be missed.

For the course as a whole, it is interesting to note that the 6 lectures covered a very broad spectrum of ideas that have been developed over 5 decades! The constructions and techniques developed in the 1970s and 1980s still provide foundation for all the forefront theoretical work in GWs. They involve unforeseen and beautiful interplay between geometry and physics. We saw in the last two lectures that, in addition, the older ideas also have a down to earth, practical application as a diagnostic tool to probe the strengths and weaknesses of waveform models visa a via exact GR and to improve them. They can even serve to bring out limitations of NR simulations vis a vis exact GR.improve them. They can even serve to bring out limitations of NR simulations visa a vis exact GR.

This is possible because each balance law enables us to examine the accuracy of the waveform through the lens of a specific observable of exact GR \& we have an infinite number of them! This accentuates strengths \& limitations of waveforms that are not otherwise apparent.

In the attached paper (Next 4 pares)
See figures 1,4: Limitations of Waveform Models
3, 5 : $\|$ NR simulations

Waveform Models
Fig 1: Measure of improvements in EOB (from SEOBNRV3 to SEOBNR VAPHM) and Phenom (IMRPhenomPVz to IMRPhenom \times PH H-1). For Non-precessing systems. violation of angular balance law is nf ow percent. percent. Violation is reduced by a factor ~ 2 for the improved phenom model. Note the "double hump" in the improved EOB model. The model can be improved for the region in the parameter space with Kept <0.1 (See Fid 2) This illustrates the effectiveness of balame laws in suggesting directions for improvement of Waveforms.

Fig 4 : Need of improvement for precessing systems: particularly the orientation of the final spin. If the balance law held exactly, angle θ would be zero.

Numerical Relativity.
Fig 3: Top: NRSur 7 dq4remmant is often used to determine the remnant parameters. Balance law considerations led to an examination of the error estimate proulded by the model. The actual errors turned out to be much larger because the estimate did not include errors due to spin-evolution. Although this omission had bees noted, the original estimate is widely used.

Fig 5 : The simulation $5 \times S: B B H: 1134$ is an outlier for which the balance law seemed to be violated by more than 10% ! For other simulations violation is $<0.4 \%$. Thus, the balance law raised a red flag. Close examination showed that the reported orbital frequency, is erroneous. When corrected, violation is reduced to $\sim 0.15 \%$.

Testing waveform models using angular momentum

Neev Khera (D), ${ }^{1, *}$ Abhay Ashtekar (D), ${ }^{1}$ and Badri Krishnan ${ }^{2,3,4}$
${ }^{1}$ Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA 16802, USA
${ }^{2}$ Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Callinstrasse 38, D-30167 Hannover, Germany
${ }^{3}$ Leibniz Universität Hannover, 30167 Hannover, Germany
${ }^{4}$ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

Abstract

The anticipated enhancements in detector sensitivity and the corresponding increase in the number of gravitational wave detections will make it possible to estimate parameters of compact binaries with greater accuracy assuming general relativity(GR), and also to carry out sharper tests of GR itself. Crucial to these procedures are accurate gravitational waveform models. The systematic errors of the models must stay below statistical errors to prevent biases in parameter estimation and to carry out meaningful tests of GR. Comparisons of the models against numerical relativity (NR) waveforms provide an excellent measure of systematic errors. A complementary approach is to use balance laws provided by Einstein's equations to measure faithfulness of a candidate waveform against exact GR. Each balance law focuses on a physical observable and measures the accuracy of the candidate waveform vis a vis that observable. Therefore, this analysis can provide new physical insights into sources of errors. In this paper we focus on the angular momentum balance law, using post-Newtonian theory to calculate the initial angular momentum, surrogate fits to obtain the remnant spin and waveforms from models to calculate the flux. The consistency check provided by the angular momentum balance law brings out the marked improvement in the passage from IMRPhenomPv2 to IMRPhenomXPHM and from SEOBNRv3 to SEOBNRv4PHM and shows that the most recent versions agree quite well with exact GR. For precessing systems, on the other hand, we find that there is room for further improvement, especially for the Phenom models.

I. INTRODUCTION

The next generation of gravitational wave detectors with much higher sensitivity are on the horizon [1-5]. We can expect detection of compact binaries with orders of magnitude higher signal to noise ratio than current measurements. Consequently it will allow unprecedented precision in the tests of general relativity in the highly nonlinear regime. Moreover it will allow high precision parameter estimation of the compact binary. However to carry out these procedures, it is essential to have accurate waveform models whose systematic errors are smaller than the measurement errors.

Gravitational wave observations allow several families of tests of general relativity(GR) [6-8]. Many such tests can be done without waveform models, such as parameterized tests of post-Newtonian (PN) theory [9-13] or tests with the quasinormal ringdown frequencies [14-16]. However these tests rely on the analytic solutions from the perturbative regimes. For testing the highly nonlinear merger regime, waveform models are indispensable. For example one can perform the residual test, where the difference between the data and the best fit waveform obtained from a model is tested for consistency with being purely noise $[7,8]$. Some tests can combine many events to have increasing stringency. However it has been shown that accuracy requirements of models also increase for such tests, and that current models may not be sufficiently accurate to perform such tests using detections

[^0]made so far [17].
Waveform models are created using a diverse range of innovative ideas. However to obtain any model it is necessary to make approximations, and the ensuing systematic errors are unavoidable. A useful way to measure the error is by computing the mismatch of the models against numerical relativity (NR) waveforms using a detectors noise spectrum. If the mismatch \mathcal{M} between NR and the model satisfies $\mathcal{M} \leq 1 / \rho^{2}$, where ρ is the detector signal to noise ratio of an event, then the model will not have significant biases in parameter estimation [18, 19]. Although it has been argued that this sufficient condition can be relaxed in practice [20], nevertheless the mismatch requirement must still scale as $1 / \rho^{2}$. In these analyses one takes NR to be a proxy for the exact GR waveform. Therefore, the accuracy for NR must increase for future detectors as well [21].

On the other hand there are additional tools to measure errors of waveform models from GR: Balance laws. The balance laws don't depend on NR and can thus be used at any point in parameter space, especially where NR simulations are sparse. Moreover the balance laws may provide new insights into sources of errors. Exact GR in asymptotically flat spacetime has a large asymptotic symmetry group: the Bondi-Metzner-Sachs (BMS) group [22, 23]. This group gives rise to infinitely many balance laws [24, 25]. In addition to the more familiar energy, momentum, and the Poincaré angular momentum balance laws, there is an infinite family of supermomentum balance laws. Application of the supermomentum balance law to test waveform systematics was discussed in $[26,27]$. The application of the 3 -momentum balance

III. RESULTS

We now apply the methods discussed to waveform models as well as to NR simulations. To test the waveform models across parameter space we select random points in parameter space and check violations of the balance law. We divide our study of the models in two parts: precessing and non-precessing systems. For both these families we restrict the parameter space to a finite compact region. Since we are dealing with binary black holes that are initially in quasicircular orbits, the parameter space is described by the mass ratio q and the dimensionless spins $\vec{\chi}_{1}, \vec{\chi}_{2}$. We restrict these parameters to be within range of applicability of NRSur7dq4. Additionally, since NRSur7dq4 only models waveforms for finite time, we would like the NRSur7dq4 waveforms to be long enough so that we can use PN methods at its start. While NRSur7dq4 goes up to mass ratio 4, the waveforms start at higher frequencies with increasing mass ratio. Therefore to be able to safely use PN expressions, initially we restrict the mass ratio to $q \leq 2$. This allows us to safely use waveforms starting at 5.8×10^{-3} in dimensionless units. Additionally we also restrict spin magnitudes to be less than 0.8 to be within the training data range of NRSur7dq4, as well as the remnant data fit NRSur7dq4Remnant that we use.

For the NR simulations we use the publicly available SXS catalog [68] of NR simulations. But we restrict consideration to numerical simulations that lie in the parameter range considered above.

A. Non-Precessing systems

In this section we test satisfaction of the balance law for randomly selected 20,000 non-precessing points in the parameter space. The spins are in the z-direction with χ_{1}^{z} and χ_{2}^{z} uniformly and independently distributed in the interval $[-0.8,0.8]$. We obtain the distribution of mass ratio q indirectly from the distribution of masses m_{1} and m_{2} to replicate commonly chosen priors. We take masses m_{1} and m_{2} to be independent and uniform, subject to constraints $1 / 2<m_{1} / m_{2}<2$ and $20<m_{1}+m_{2}<160$. Then for each of these points, we will test how well the balance law is satisfied.

We first calculate the spin of the remnant black hole $\vec{\chi}_{\text {bal }}$ using the balance law, from Eq. (4). For nonprecessing systems, by symmetry we have that $\vec{\chi}_{\text {bal }}=$ $a_{\text {bal }} \hat{z}$. We can compare this to the remnant spin $\vec{\chi}_{\mathrm{fit}}=$ $a_{\mathrm{fit}} \hat{z}$ obtained from the fit NRSur7dq4Remnant. Mismatch between $\chi_{\text {bal }}$ and $\chi_{\text {fit }}$ provides us the desired measure of accuracy of the waveform model under consideration. In Fig. 1 we plot the distribution of $a_{\text {bal }}-a_{\text {fit }}$ across the random points in parameter space. To help identify the errors coming from waveform modelling, we also show an estimate of the errors from the fit. We obtain this by taking the 90% interval of the error estimates provided by NRSur7dq4Remnant for the samples of points consid-

FIG. 1. Non-precessing systems: The distribution of the difference ($a_{\text {bal }}-a_{\mathrm{fit}}$) between the magnitudes of the remnant spin calculated by using the angular momentum balance law and using the fit NRSur7dq4Remnant. The distribution is calculated for different waveform models using the same sample points. The shaded region shows the error estimate of the fit.
ered. Similarly we estimate the PN truncation error by using the 90% interval of the distibution of the difference between the 3.5 PN and 3 PN terms. Although the PN trunction error is not shown in the plot, it is 65% of the fit error, but it does not include the errors from ignoring spin-spin interaction terms.
Fig. 1 shows that, overall, the agreement between $a_{\text {bal }}$ and a_{fit} is of order 10^{-2}. Moreover we see clear evidence for the improvement of SEOBNRv4PHM over SEOBNRv3 and of IMRPhenomXPHM over IMRPhenomPv2. The surrogate model has the best performance, with all the balance law violation consistent with solely coming from the fit and PN truncation errors. By comparison, although the mismatch is only at a 10^{-2} level for EOB and Phenom, the modelling errors are significantly larger than those coming from the fit and PN truncation errors; thus there is room for further improvement.

Note also that for SEOBNRv4PHM the plot has an interesting double hump. We find that these humps are correlated with the effective spin parameter $\chi_{\text {eff }}$ defined as

$$
\begin{equation*}
\chi_{\mathrm{eff}}=\frac{m_{1} \chi_{1}^{z}+m_{2} \chi_{2}^{z}}{m_{1}+m_{2}} \tag{6}
\end{equation*}
$$

The correlation -shown in Fig. 2- brings out the sharp difference between distributions for $\chi_{\text {eff }}<-0.1$ and $\chi_{\text {eff }}>-0.1$. This illustrates the power of the balance law to identify regions of parameter space where errors are higher, thereby providing guidance for further improvements of the waveform model.

B. Precessing systems

As in Sec. III A, we randomly select 20,000 points in parameter space, but now using precessing systems, and

FIG. 2. The distribution of balance law violation for SEOBNRv4PHM from Fig. 1. Here we have split the points in parameter space in two, with $\chi_{\text {eff }}<-0.1$ and $\chi_{\text {eff }}>-0.1$. This split separates the double hump in SEOBNRv4PHM, and shows us that the balance law violation is larger for negative $\chi_{\text {eff }}$.
evaluate the violation of the angular momentum balance law for them. The spins are sampled independently with an isotropic distribution. The spin magnitude is taken to be uniformly distributed in $[0,0.8]$. The mass ratio is sampled from the same distribution as in Sec. III A.

The remnant spin is now arbitrarily oriented. Therefore to compare $\vec{\chi}_{\text {bal }}$ with $\vec{\chi}_{\mathrm{fit}}$, we are led to compare their magnitudes $a_{\text {bal }}$ and $a_{\text {fit }}$, and also to calculate the angle $\Delta \theta$ between them. However there is a difference in the calculation of error estimates because, as discussed in Sec. II C, for precessing systems the fitting procedure complicated by evolution of spin with time. This is accounted for by using a spin evolution model, which introduces further errors in $a_{\text {fit }}$ and $\Delta \theta$. The reported error estimates from the fit NRSur7dq4Remnant do not include these errors. Therefore we will estimate these errors by a direct comparison with NR simulations. The NR simulations are taken from the SXS public catalog [68] of NR simulations. We choose quasicircular binary black hole simulations that are long enough to include our choice of starting frequency and have parameters that lie within the range under consideration in this paper. We also drop the first 337 older simulations. We are then left with 672 precessing NR simulations. For these simulations we compute the remnant spin using the fit and compare to the actual NR value. The result is shown in Fig. 3, where we see that the error quoted in NRSur7dq4Remnant is much smaller than the actual error. We thus use the 90% interval from these 672 simulations as the error estimate instead. However because the fit is trained against these simulation, the errors might in fact be larger for regions of parameter space with a scarcity of simulations. Nonetheless for the rest of this paper we use these error estimates, keeping in mind that they are not meant to be sharp.

FIG. 3. Comparison of the remnant spin from 672 precessing NR simulations that lie in the parameter range and starting frequency considered in the paper, to the fit NRSur7dq4Remnant. The shaded region shows the error estimate provided by the fit model. However as noted in [31], this estimate doesn't include errors from the spin evolution. The upper plot shows the difference in the magnitude of spins, and the lower plot shows the angle between them. We see that for the parameters we consider and for the starting frequency we use, the real errors are much larger than the estimates. We use error estimates obtained from these 672 NR simulations for the rest of the paper.

Using the error estimates discussed above, let us examine the violations of the angular momentum balance law. In Fig. 4 we see the waveform models continue to perform well, albeit with larger errors than in the non-precessing case. For comparisons of the magnitude of the remnant spin, NRSur7dq4 again has the best performance, and its balance law violations are completely consistent with the error estimates. The PN truncation error is only 9% of the fit error here. The accuracy of the latest EOB and Phenom models, SEOBNRv4PHM and IMRPhenomXPHM, are very similar to each other. Furthermore, we can clearly see the improvement of these EOB and Phenom models over their older versions. On the other hand, we see different results for the error in the angle in the lower plot of Fig. 4. Here the fit errors are larger. The surrogate

FIG. 4. Precessing systems: The distribution of angular momentum balance law violation across the parameter range considered in the paper, using various waveform models. The upper plot shows the difference between the magnitudes of the remnant spin $a_{\text {bal }}$, computed from the balance law, and $a_{\text {fit }}$, computed using the fit NRSur7dq4Remnant. The lower plot shows the angle $\Delta \theta$ between the remnant spin computed using the two different methods. We also show in the shaded region the error estimate obtained from direct comparison with NR in Fig. 3, as opposed the quoted error estimate in the fit.
and EOB models have violations within the fit errors. The PN truncation error is negligible, only 0.7% of the fit error. However the Phenom models show violations in the angle that are much larger than the errors. Thus, our analysis again provides pointers for further improvement.

C. Lessons from and for NR

We now apply the angular momentum balance law directly to NR simulations and discuss its implications. The procedure is almost identical to the one we used for waveform models, but uses the NR waveform instead of the model waveform. More precisely, each NR simulation

FIG. 5. The violation of angular momentum balance law for the 131 non-precessing numerical simulations described in the text. The solid blue curve shows the difference $a_{\text {bal }}-a_{\text {NR }}$ between the magnitudes of the remnant spin computed using the balance law, and of the horizon spin. The dashed grey line represents the numerical convergence error, i.e., the difference between the spin magnitudes, $a_{\text {bal }}$ and $a_{\text {bal }}^{\text {LowRes }}$, computed using the highest and a lower resolution NR simulation.
provides us with the waveform to calculate the flux $\overrightarrow{\mathcal{F}}$, and is labelled by the masses, spins, orbital frequency and separation of the two progenitors at the starting time. Using these parameters and the 3.5 PN truncation discussed in section II B, we calculate the initial angular momentum $\vec{J}\left(t_{i}\right)$ that is needed in the expression (4) of $\vec{\chi}_{\text {bal }}$. For the remnant spin $\vec{\chi}_{\mathrm{NR}}$, however, there is a key difference. We do not need the fit since we can directly use the remnant spin computed in the NR simulation at the horizon. The difference $\vec{\chi}_{\text {bal }}-\vec{\chi}_{\mathrm{NR}}$ measures the violation of the balance law. There is, however, a subtlety: Since the binary system in NR may not be in the same reference frame in numerical simulations as in the frame we use for the PN expression, we must perform a rotation to match the frames. For details see the Appendix.

We use the subset of simulations from the SXS public catalog [68] described in Sec. III B. However we further restrict ourselves to simulations where a lower resolution run is included, allowing us to analyze numerical errors. There are 131 such non-precessing NR simulations and 550 such precessing simulations. For all these simulations we calculate the remnant spin $\vec{\chi}_{\text {bal }}$ from Eq. (4) with the highest resolution run available. Then we take the second highest resolution waveform to compute $\vec{\chi}_{\text {bal }}^{\text {LowRes }}$. Finally, by comparing $\vec{\chi}_{\text {bal }}$ to $\vec{\chi}_{\text {bal }}^{\text {LowRes }}$ we obtain an estimate of the numerical convergence errors, and by comparing $\vec{\chi}_{\text {bal }}$ to the horizon spin $\vec{\chi}_{\mathrm{NR}}$ we obtain a quantitative measure of the violation of the balance law.

In Fig. 5 the solid (blue) curve shows the violation of the angular momentum balance law for the nonprecessing simulations. While the limited number of simulations makes a direct comparison with Fig. 1 difficult, it is clear that overall the errors are manifestly smaller.
However there is one outlier simulation SXS:BBH:1134 The orbital frequency was erroneous in the meta-data file. Correcting it brought (Delta A) down from 0.2 to $1.5 \times 10^{\wedge}\{-3\}$!

[^0]: * neevkhera@psu.edu

