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Abstract

Since the first detection of Gravitational Waves ~8 years ago, the field has literally exploded in
multiple directions that include multi-wavelength astronomy and astrophysics, approximation
methods in general relativity, numerical relativity, applications of machine learning to waveform
model building, forefront cosmological issues such as the Hubble tension, and nuclear
physics issues related to the equation of state of neutron stars and nuclear processes at
extreme temperature. Therefore Gravitational Wave Science has emerged as one of the most
exciting fields to work on, that now attracts young researchers in large numbers.

At the same time the very explosion of the field makes it difficult for these researchers to
grasp, even in broad terms, the conceptual and mathematical foundation of the theory of
Gravitational Waves since these foundations are rarely discussed in the specific areas these
researchers work in everyday. The purpose of my lectures is to fill this gap.

As | will discuss, the notion of ‘radiation’ requires global and rather subtle constructions.

For several decades there was considerable confusion even about the physical reality of
gravitational waves in full general relativity! This confusion was dispelled, thanks to a beautiful
interplay between physics and geometry. | believe that every theoretical researcher in the field
should be aware, at least in general terms, of the way that difficulties associated with

coordinate invariance are overcome and fully gauge invariant mathematical quantities representing
physical observables are extracted. This awareness would provide a broad perspective that

can guide their own research. Furthermore, as | discuss in the last two lectures, foundational
issues can also have concrete applications in addressing “practical issues’.

Content: The first lecture discusses some subtleties associated with the notion of radiation already for

Maxwell fields in Minkowski space. The second lecture shows that the techniques used to define an

unambiguous notion of electromagnetic radiation can be directly generalized to gravitational waves in exact
general relativity. The third lecture introduces the BMS group as the asymptotic symmetry group and in the
fourth lecture | show how these symmetries lead to an infinite set of observables and balance laws they
satisfy. In the last two lectures | discuss applications of these balance laws to improve the waveform
models, first explaining the need for improvement, and then providing concrete illustrations of these
improvements.



PLAN OF THE MINI-COURSE
My lectures will focus on

(i) Part I: Conceptual and Mathematical issues associated with gravitational waves (GWs) in full, non-
linear general relativity. They will thus complement other lectures on approximation methods and
numerical relativity by providing the concepts and mathematical notions they use;

and,

(i) Part Il: How these results in exact general relativity can be used as diagnostic tools to test the
accuracy of model waveforms. Normally one uses numerical simulations to evaluate the accuracy
but there are regions of parameter space where numerical simulations are sparse. The diagnostic
tests come from identities that must be satisfied in exact GR. Their strength lies in the fact that they
enable one to test accuracy of waveform models even when one does not have the exact waveform
to compare them with! They focus on the accuracy of the waveform vis a vis (infinitely many)
physical observables, thereby bringing out the physical nature of the inaccuracy and suggesting
directions for improvements in all regions of the parameter space. Furthermore, they can be used
to test accuracy of NR waveforms themselves.

Main References where further details for the material covered can be found:

Lecture 1: Sections 1 and 2 of AA & Bonga, Gen. Rel. Gravit. Grab. 49, 122 (43pp) (2017);
https://arxiv.org/pdf/1707.09914.

Sections | and Il of Newman and Penrose, Proc. R. Soc (London) 305, 175-204 (1968)

Lecture 2: Sections | and Il of AA, in the GR Centennial volume, edited by Beiri & Yau; https://arxiv.org/pdf/1409.1800
Section Il (parts 8-11) of R. Penrose, Proc. R. Soc (London) 284, 159-203 (1965)

AA, J. Math. Phys. 22, 2885-2895 (1981)

Lecture 3: http://igpg.gravity.psu.edu/research/asymquant-book.pdf Pages 44-54
AA, De Lorenzo & Khera, Phys. Rev. D101, 044005 (1-17) (2020)  https://arxiv.org/pdf/1910.02907.pdf

Lecture 4: http://igpg.gravity.psu.edu/research/asymquant-book.pdf Pages 55-77
Phase space of radiative modes: AA & A. Magnon, Comm. Math. Phys. 86, 55-68 (1982).
BMS. Hamiltonians/fluxes: AA & Streubel, Proc. R. Soc (London) A376, 585-607 (1981)

Lectures 5&6: AA, De Lorenzo & Khera, GRG 52, 107 (1-27) (2020); https://arxiv.org/pdf/1906.00913.pdf
Khera, Krishnan, AA & Del Lorenzo, Phys. Rev. D 103, 044012 (2021); https://arxiv.org/pdf/2009.06351.pdf
Mitman et al, Phys. Rev. D 103, 024031 (2021); https://arxiv.org/pdf/2011.01309.pdf
Khera, AA & Krishnan, https://arxiv.org/pdf/2107.09536.pdf
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Sections 1 and 2 of AA & Bonga, Gen. Rel. Gravit. 49, 122 (43pp) (2017); https://arxiv.org/pdf/1707.09914.
Sections 1 and 2 of Newman and Penrose, Proc. R. Soc (London) 305, 175-204 (1968)
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|.A Einstein-Rosen GWs: Fascinating History

e Einstein 1916: Quadrupole formula showing that general relativity (GR) admits
gravitational waves (GWs) in the weak field approximation around Minkowski
space. Parallel with Maxwell's theory in striking contrast with Newtonian gravity.

e But then based on his work with Nathan Rosen, in 1936, he sent a paper to
Phys. Rev. entitled Do GWs exist? The same day, he wrote to Max Born:
“Together with a young collaborator | arrived at the interesting result that
gravitational waves do not exist though they had been assumed to be a certainty
in the first approximation. This shows that non-linear gravitational wave field
equations tell us more or, rather, limit us more than we had believed up to now.”

Einstein submitted three papers to
Phys. Rev. in 1936. Only this paper
was sent to a referee. Received a 8
page report (from H.P. Robertson)
showing that there was an error, not
In the solution itself, but in their
conclusion. Einstein and Rosen had
curious reactions.

Einstein Rosen Robertson
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|.A Einstein-Rosen GWs: Final publication

e The paper finally appeared in the proceedings of the Franklin Institute, but in
the proofs Einstein reversed the conclusion and changed the titlel Nathan
continued to believe the original conclusion!!

Journal of the Franklin Institute
Volume 223, Issue 1, January 1937, Pages 43-54

On gravitational waves
A. Einstein, N. Rosen
https:/ /doi.org/10.1016 /S0016-0032(37)90583-0

Abstract

The rigorous solution for cylindrical gravitational waves is given. For the convenience of the
reader the theory of gravitational waves and their production, already known in principle, is given
in the first part of this paper. After encountering relationships which cast doubt on the existence
of rigorous solutions for undulatory gravitational fields, we investigate rigorously the case of
cylindrical gravitational waves. It turns out that rigorous solutions exist and that the problem

reduces to the usual cylindrical waves in euclidean space.
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PART lI: Balance laws as diagnostic tools for waveforms

In the last two lectures we turn to a concrete application. Recall the plan of the mini- course

(i) Part I: Conceptual and Mathematical issues associated with gravitational waves (GWs) in full, non-
linear general relativity. They will thus complement other lectures on approximation methods and
numerical relativity by providing the concepts and mathematical notions they use; and,

(i) Part 1l: How these results in exact general relativity can be used as diagnostic tools to test the
accuracy of model waveforms. Normally one uses numerical simulations to evaluate the accuracy
but there are regions of parameter space where numerical simulations are sparse. The diagnostic
tests come from identities that must be satisfied in exact GR. Therefore, one can use them to test
accuracy of candidate waveforms and suggest directions for improvements in all regions of the
parameter space. Furthermore, the balance laws can be used to test accuracy of NR waveforms
themselves.
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WAVEFORMS

This is a brief summary of procedures used to create waveforms using PN methods and numerical simulations
of Einstein’s equations, emphasizing the conceptual aspects and key assumptions and approximations. This is
only a bird’s eye view addressed to mathematical physicists and therefore glosses over many astute steps and
novel techniques that have been used to make nontrivial advances. (This material is based on joint work with De
Lorenzo and Khera). The account is not up to date. Nonetheless, this material will enable students to appreciate
why non-trivial checks on waveforms are needed and how this purpose is served by the balance laws we
discussed in these lectures.

The main focus of the community has been on the part of Compact Binary Coalescence (CBC) that is directly
relevant to the sensitivity band of the current gravitational wave detectors. This translates to ~100 quasi-
circular orbits where dynamics is expected to be well-modeled by the slow-motion approximation of PN
expansions, and the last ~10-15 orbits for which dynamics must incorporate strong field effects of full general
relativity. These last orbits are calculated using NR. In principle, one could use NR for the entire process.
However, the required computational time and effort would be too large, given that we need to cover an 8 (or
greater) dimensional parameter space associated with the binary. That is why a “stitching procedure’ is used,
where the early waveform comes from the PN analysis and the late waveform from numerical simulations. The
result is often referred to as the hybrid wave form. In addition, a number of strategies —the effective one body
(EOB) method [1], phenomenological interpolation [2], NR-surrogate models [3] — have been used to enhance
the reach of analytical waveforms, and/or to interpolate between parameters used in numerical simulations to
create a large bank of waveforms. Thus, while currently there are a few thousand CBC numerical simulations,
the data banks contain 100 times as many waveforms. The full bank is used by the LIGO-Virgo collaboration
for detection, parameter estimation, and testing GR. (For further details, see e.g., the review articles [4-6] and
references therein.)

Various steps in this process involve approximations, guesses based on intuition, and choices that are
necessary to resolve ambiguities.

Let us begin with the PN expansion. This is essentially a Taylor series in small velocity —truncated to various
v/c orders— which however is not convergent; it is at best an asymptotic series. For example, for luminosity of
gravitational waves in the extreme mass limit, the PN expansion starts to deviate significantly from the exact
result for v/c > 0.2, and the contributions up to (v/c)* and (v/c)5 terms do so in opposite directions [7].
Consequently, even when one can carry out calculations to a high order, it is not easy to systematically control
the truncation errors.

A second issue undergoes the name of Taylor approximants. The post-Newtonian waveforms are obtained
starting from the PN expansions of the energy of the system E(v/c) and the flux of radiated energy F(v/c).
However, because the procedure involves rational —rather than polynomial- functionals of E(v/c) and F(v/c),
there is some freedom in expanding out these quantities to obtain the waveform to a given PN order. Because
of this freedom, several different PN waveforms arise at a given order; this is the so-called ‘ambiguity in the
choice of Taylor approximants.’” For unequal masses, this is generally the largest source of errors in the PN
waveforms (see, e.g., [7, 8]).

Finally, in the PN literature, there is a fixed background Minkowski space at all orders and the PN solution is
assumed to be stationary in the past, before some time t< -1 [4, 9]. This assumption would seem
unreasonably strong to mathematical relativists since for sources for which the initial value problem is well
posed in full general relativity, if a solution is stationary in the past in this strong sense, then it is stationary
everywhere. However, in the PN strategy the system is non-stationary in the future due to radiation reaction
effects and the assumption of past-stationary primarily serves to make various tail terms finite. The viewpoint
is that “past-stationarity” is appropriate for real astrophysical sources of gravitational waves which have been
formed at a finite instant in the past” [4]. The physical idea behind this strategy is that the two bodies become
gravitationally bound at a finite time t = -1 in the distant past, while being still very far away from one another,
and it is argued that the metric perturbation of the background Minkowski space-time can be taken to be
stationary before the capture occurs.



In lectures 5 and 6, we will use a much weaker condition, where past stationarity holds in a limiting sense as one goes to past infinity
along # and that too only for a certain field. The assumption is mild and expected to hold on physical grounds for CBC (although, not

in scattering situations). In particular, it is perfectly compatible with non-stationary solutions in full GR.

In NR we encounter different types of errors. First, there are the truncation errors that are common to all
numerical simulations. Second, the wave form is extracted at a large but finite radius, whereas the radiation
field becomes truly gauge invariant and unambiguous only at infinity. Therefore, the results inherit error-bars
associated with the choice of extraction radius [10]. Third, the waveform is obtained by integrating twice with
respect to time the radiation field encoded in the component UJ‘,r of the Weyl tensor. This requires introduction
of coordinate systems and null tetrads which become unambiguous only at infinite distance from sources.
Finally, although one does have tools to calculate full W, (modulo the ambiguities inherent in working at a finite
radius), there are numerical errors due to high frequency oscillations which are suppressed if one calculates
only the first few (spin-weighted) spherical harmonics because of the ‘averaging’ involved. Therefore, only the
most dominant modes are generally reported in the NR results, rather than the full wave form.

The ‘stitching procedure’ is inherently ambiguous because it involves several choices (see, e.g., [11]). First, one
has to decide at what stage in the CMB evolution one stitches the PN and the NR waveforms. Second one
must decide which PN order and which T-approximant to use. Third, the PN and the NR waveforms are
generally computed using different co-ordinate systems and therefore one has to introduce additional inputs
for a meaningful matching. These choices are driven by intuition and guided by past experience rather than
clear-cut, unambiguous mathematical physics procedures.

Next, because the PN expansion and NR simulation are based on quite different conceptual frameworks, there
are several seemingly ad-hoc elements involved. In PN calculations, the sources are taken to be point particles
in Minkowski space. In NR, there is no background Minkowski space and black holes are represented by
dynamical horizons (and neutron stars with suitable fluids). In the case of black holes, the individual masses
and spins are determined by the horizon geometry. Therefore, for the stitching procedure, one starts with a
controlled set of NR initial data (given by the Bowen-York [12] or the Brandt-Bru'gmann [13] strategy)
satisfying constraints of exact GR and evolves. Now, these data contain some ‘spurious radiation’ which
escapes the grid quickly. After this occurs, one re-evaluates the source parameters in the numerical solution
and matches them with the source parameters of the PN solution. One then chooses an interval in the time or
the frequency domain and evolves both the PN and NR solutions and compares their waveforms. There are
several ways to ‘measure’ the difference between the two waveforms and one minimizes it by tweaking the
time of matching, the interval over which the matching is done, and the choice of source parameters in the two
schemes.

Conceptually, it is important to note that the matching is done only for the waveform —i.e., for the two
asymptotic forms of the metric that capture the radiative modes in the two schemes. In the interior, there is no
obvious correspondence between the PN and NR solutions. In particular, there is no simple relation between
the ‘particle trajectories’ representing the black holes, determined by the PN equations, and the dynamical
horizons determined by numerical simulations.

These considerations make it clear that even for the ~1% of waveforms in the data banks that are obtained
just from PN and NR, there is no systematic way to measure how well they agree with the predictions of exact
GR. Inputs that go into the construction of the remaining ~99% of the waveforms are even less driven by
fundamental considerations. To mathematical relativists, this can seem shocking. But it is important to note
that similar phenomenological considerations and mixture of science and art are heavily used also in other
areas of physics, such as QCD.

It is a tribute to the physical intuition and technical ingenuity behind these hybrid waveforms, that the
matched-filtering procedure could lead to detections of coalescing binaries.
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Using the Balance Laws as a Diagnostic Tool

Waveforms from EOB, Phenom and Surrogate models have proved to be invaluable for the
impressive detections of the CBCs through gravitational waves. But we are entering an era of
abundant event rates (soon, as many as 1000 BBH mergers a year with masses <100 M !)
and with LISA and 3g detectors we will achieve a much greater sensitivity over a significantly
larger frequency band. For more accurate parameter estimations and tests of GR, one needs
quantitative measures of the accuracy of waveforms, relative to exact GR.

+ Key problem: We don’t know the exact GR waveforms! So in the literature, accuracy tests
involve comparisons with NR. But there are big regions in the parameter space where the
NR simulations are sparse, so direct comparison is not possible. Also NR results
themselves have some errors (e.g., extraction of the wave form at a finite distance; truncation errors; absence
of higher harmonics of waveforms).

+ Balance laws provide an alternate route that complements NR: Can be used anywhere in
the parameter space; and can be used to test NR itself.

- Key feature: Provide an Infinite number of constraints on waveforms, without having to
know what the exact GR waveform is | Whatever the exact waveform is, it must satisfy
these supermomentum (and angular momentum) balance laws. Therefore, given any candidate
(EOB, Phenom, surrogate, ...) waveform, its violation of these constraints provides and objective
measure of how far it is from exact GR, without the need of comparison with the (unknown)
exact waveform.
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(@) Angolar momerstor balance law : Applfcations
Khera, AA & Krishnan, https://arxiv.org/pdf/2107.09536.pdf
(Relevant pages included: read the figure captions as well)

For this last topic, the discussion is sketchy because | did not discuss the angular momentum balance law in
this course. The purpose of this discussion is only to illustrate ways in which the balance laws can be useful as
a diagnostic tool for both waveform models and NR, and can then lead to improvements. In essence each
balance law focuses on an aspect of the waveform and serves to bring out limitations that would otherwise be

missed.

For the course as a whole, it is interesting to note that the 6 lectures covered a very broad spectrum
of ideas that have been developed over 5 decades! The constructions and techniques developed in
the 1970s and 1980s still provide foundation for all the forefront theoretical work in GWs. They
involve unforeseen and beautiful interplay between geometry and physics. We saw in the last two
lectures that, in addition, the older ideas also have a down to earth, practical application as a
diagnostic tool to probe the strengths and weaknesses of waveform models vis a via exact GR and to
improve them. They can even serve to bring out limitations of NR simulations vis a vis exact
GR.improve them. They can even serve to bring out limitations of NR simulations vis a vis exact GR.

This is possible because each balance law enables us to examine the accuracy of the waveform
through the lens of a specific observable of exact GR & we have an infinite number of them! This
accentuates strengths & limitations of waveforms that are not otherwise apparent.
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The anticipated enhancements in detector sensitivity and the corresponding increase in the number
of gravitational wave detections will make it possible to estimate parameters of compact binaries
with greater accuracy assuming general relativity(GR), and also to carry out sharper tests of GR
itself. Crucial to these procedures are accurate gravitational waveform models. The systematic
errors of the models must stay below statistical errors to prevent biases in parameter estimation
and to carry out meaningful tests of GR. Comparisons of the models against numerical relativity
(NR) waveforms provide an excellent measure of systematic errors. A complementary approach is to
use balance laws provided by Einstein’s equations to measure faithfulness of a candidate waveform
against exact GR. Each balance law focuses on a physical observable and measures the accuracy of
the candidate waveform vis a vis that observable. Therefore, this analysis can provide new physical
insights into sources of errors. In this paper we focus on the angular momentum balance law,
using post-Newtonian theory to calculate the initial angular momentum, surrogate fits to obtain
the remnant spin and waveforms from models to calculate the flux. The consistency check provided
by the angular momentum balance law brings out the marked improvement in the passage from
IMRPhenomPv2 to IMRPhenomXPHM and from SEOBNRv3 to SEOBNRv4PHM and shows that the most
recent versions agree quite well with exact GR. For precessing systems, on the other hand, we find

that there is room for further improvement, especially for the Phenom models.

I. INTRODUCTION

The next generation of gravitational wave detectors
with much higher sensitivity are on the horizon [1-5].
We can expect detection of compact binaries with or-
ders of magnitude higher signal to noise ratio than cur-
rent measurements. Consequently it will allow unprece-
dented precision in the tests of general relativity in the
highly nonlinear regime. Moreover it will allow high pre-
cision parameter estimation of the compact binary. How-
ever to carry out these procedures, it is essential to have
accurate waveform models whose systematic errors are
smaller than the measurement errors.

Gravitational wave observations allow several families
of tests of general relativity(GR) [6-8]. Many such tests
can be done without waveform models, such as param-
eterized tests of post-Newtonian (PN) theory [9-13] or
tests with the quasinormal ringdown frequencies [14-16].
However these tests rely on the analytic solutions from
the perturbative regimes. For testing the highly nonlin-
ear merger regime, waveform models are indispensable.
For example one can perform the residual test, where the
difference between the data and the best fit waveform ob-
tained from a model is tested for consistency with being
purely noise[7, 8]. Some tests can combine many events
to have increasing stringency. However it has been shown
that accuracy requirements of models also increase for
such tests, and that current models may not be suffi-
ciently accurate to perform such tests using detections
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made so far [17].

Waveform models are created using a diverse range
of innovative ideas. However to obtain any model it is
necessary to make approximations, and the ensuing sys-
tematic errors are unavoidable. A useful way to measure
the error is by computing the mismatch of the models
against numerical relativity (NR) waveforms using a de-
tectors noise spectrum. If the mismatch M between NR
and the model satisfies M < 1/p?, where p is the de-
tector signal to noise ratio of an event, then the model
will not have significant biases in parameter estimation
[18, 19]. Although it has been argued that this sufficient
condition can be relaxed in practice [20], nevertheless the
mismatch requirement must still scale as 1/p%. In these
analyses one takes NR to be a proxy for the exact GR
waveform. Therefore, the accuracy for NR must increase
for future detectors as well [21].

On the other hand there are additional tools to mea-
sure errors of waveform models from GR: Balance laws.
The balance laws don’t depend on NR and can thus be
used at any point in parameter space, especially where
NR simulations are sparse. Moreover the balance laws
may provide new insights into sources of errors. Exact
GR in asymptotically flat spacetime has a large asymp-
totic symmetry group: the Bondi-Metzner-Sachs (BMS)
group [22, 23]. This group gives rise to infinitely many
balance laws [24, 25]. In addition to the more familiar en-
ergy, momentum, and the Poincaré angular momentum
balance laws, there is an infinite family of supermomen-
tum balance laws. Application of the supermomentum
balance law to test waveform systematics was discussed
in [26, 27]. The application of the 3-momentum balance
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III. RESULTS

We now apply the methods discussed to waveform
models as well as to NR simulations. To test the wave-
form models across parameter space we select random
points in parameter space and check violations of the
balance law. We divide our study of the models in two
parts: precessing and non-precessing systems. For both
these families we restrict the parameter space to a fi-
nite compact region. Since we are dealing with binary
black holes that are initially in quasicircular orbits, the
parameter space is described by the mass ratio ¢ and the
dimensionless spins Y1, X¥2. We restrict these parameters
to be within range of applicability of NRSur7dq4. Addi-
tionally, since NRSur7dq4 only models waveforms for fi-
nite time, we would like the NRSur7dq4 waveforms to be
long enough so that we can use PN methods at its start.
While NRSur7dq4 goes up to mass ratio 4, the wave-
forms start at higher frequencies with increasing mass
ratio. Therefore to be able to safely use PN expressions,
initially we restrict the mass ratio to ¢ < 2. This al-
lows us to safely use waveforms starting at 5.8 x 1073
in dimensionless units. Additionally we also restrict spin
magnitudes to be less than 0.8 to be within the training
data range of NRSur7dq4, as well as the remnant data fit
NRSur7dg4Remnant that we use.

For the NR simulations we use the publicly available
SXS catalog [68] of NR simulations. But we restrict con-
sideration to numerical simulations that lie in the param-
eter range considered above.

A. Non-Precessing systems

In this section we test satisfaction of the balance law
for randomly selected 20,000 non-precessing points in the
parameter space. The spins are in the z-direction with
X7 and x5 uniformly and independently distributed in the
interval [—0.8,0.8]. We obtain the distribution of mass
ratio ¢ indirectly from the distribution of masses m; and
my to replicate commonly chosen priors. We take masses
my and msg to be independent and uniform, subject to
constraints 1/2 < my/mg < 2 and 20 < my + mg < 160.
Then for each of these points, we will test how well the
balance law is satisfied.

We first calculate the spin of the remnant black hole
Xbal using the balance law, from Eq. (4). For non-
precessing systems, by symmetry we have that Yp. =
apa12- We can compare this to the remnant spin g, =
agt 2 obtained from the fit NRSur7dg4Remnant. Mismatch
between Y. and xg provides us the desired measure of
accuracy of the waveform model under consideration. In
Fig. 1 we plot the distribution of ap, — agy across the
random points in parameter space. To help identify the
errors coming from waveform modelling, we also show an
estimate of the errors from the fit. We obtain this by
taking the 90% interval of the error estimates provided
by NRSur7dq4Remnant for the samples of points consid-
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FIG. 1. Non-precessing systems: The distribution of the dif-
ference (abai — agt) between the magnitudes of the remnant
spin calculated by using the angular momentum balance law
and using the fit NRSur7dq4Remnant. The distribution is cal-
culated for different waveform models using the same sample
points. The shaded region shows the error estimate of the fit.

ered. Similarly we estimate the PN truncation error by
using the 90% interval of the distibution of the difference
between the 3.5PN and 3PN terms. Although the PN
trunction error is not shown in the plot, it is 65% of the
fit error, but it does not include the errors from ignoring
spin-spin interaction terms.

Fig. 1 shows that, overall, the agreement between ayp,
and ag is of order 102, Moreover we see clear evidence
for the improvement of SEOBNRv4APHM over SEOBNRv3 and
of IMRPhenomXPHM over IMRPhenomPv2. The surrogate
model has the best performance, with all the balance
law violation consistent with solely coming from the fit
and PN truncation errors. By comparison, although the
mismatch is only at a 10~2 level for EOB and Phenom,
the modelling errors are significantly larger than those
coming from the fit and PN truncation errors; thus there
is room for further improvement.

Note also that for SEOBNRv4PHM the plot has an in-
teresting double hump. We find that these humps are
correlated with the effective spin parameter yog defined
as

Xeff = —————=. (6)

The correlation —shown in Fig. 2— brings out the sharp
difference between distributions for yeg < —0.1 and
Xeft > —0.1. This illustrates the power of the balance
law to identify regions of parameter space where errors
are higher, thereby providing guidance for further im-
provements of the waveform model.

B. Precessing systems

As in Sec. IIT A, we randomly select 20,000 points in
parameter space, but now using precessing systems, and
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FIG. 2. The distribution of balance law violation for

SEOBNRv4PHM from Fig. 1. Here we have split the points in
parameter space in two, with xeg < —0.1 and x.g > —0.1.
This split separates the double hump in SEOBNRv4PHM, and
shows us that the balance law violation is larger for negative

Xeff -

evaluate the violation of the angular momentum balance
law for them. The spins are sampled independently with
an isotropic distribution. The spin magnitude is taken
to be uniformly distributed in [0, 0.8]. The mass ratio is
sampled from the same distribution as in Sec. ITT A.

The remnant spin is now arbitrarily oriented. There-
fore to compare Xpa with Xg¢, we are led to compare
their magnitudes ap, and agg, and also to calculate the
angle Af between them. However there is a difference in
the calculation of error estimates because, as discussed
in Sec. II C, for precessing systems the fitting procedure
complicated by evolution of spin with time. This is ac-
counted for by using a spin evolution model, which intro-
duces further errors in ag; and Af. The reported error
estimates from the fit NRSur7dq4Remnant do not include
these errors. Therefore we will estimate these errors by
a direct comparison with NR simulations. The NR simu-
lations are taken from the SXS public catalog [68] of NR
simulations. We choose quasicircular binary black hole
simulations that are long enough to include our choice of
starting frequency and have parameters that lie within
the range under consideration in this paper. We also drop
the first 337 older simulations. We are then left with
672 precessing NR simulations. For these simulations
we compute the remnant spin using the fit and compare
to the actual NR value. The result is shown in Fig. 3,
where we see that the error quoted in NRSur7dq4Remnant
is much smaller than the actual error. We thus use the
90% interval from these 672 simulations as the error esti-
mate instead. However because the fit is trained against
these simulation, the errors might in fact be larger for re-
gions of parameter space with a scarcity of simulations.
Nonetheless for the rest of this paper we use these error
estimates, keeping in mind that they are not meant to be
sharp.
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FIG. 3. Comparison of the remnant spin from 672 pre-

cessing NR simulations that lie in the parameter range
and starting frequency considered in the paper, to the fit
NRSur7dq4Remnant. The shaded region shows the error es-
timate provided by the fit model. However as noted in [31],
this estimate doesn’t include errors from the spin evolution.
The upper plot shows the difference in the magnitude of spins,
and the lower plot shows the angle between them. We see that
for the parameters we consider and for the starting frequency
we use, the real errors are much larger than the estimates. We
use error estimates obtained from these 672 NR simulations
for the rest of the paper.

Using the error estimates discussed above, let us exam-
ine the violations of the angular momentum balance law.
In Fig. 4 we see the waveform models continue to perform
well, albeit with larger errors than in the non-precessing
case. For comparisons of the magnitude of the remnant
spin, NRSur7dqg4 again has the best performance, and its
balance law violations are completely consistent with the
error estimates. The PN truncation error is only 9% of
the fit error here. The accuracy of the latest EOB and
Phenom models, SEOBNRv4PHM and IMRPhenomXPHM, are
very similar to each other. Furthermore, we can clearly
see the improvement of these EOB and Phenom models
over their older versions. On the other hand, we see dif-
ferent results for the error in the angle in the lower plot
of Fig. 4. Here the fit errors are larger. The surrogate
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FIG. 4.  Precessing systems: The distribution of angular

momentum balance law violation across the parameter range
considered in the paper, using various waveform models. The
upper plot shows the difference between the magnitudes of
the remnant spin apa;, computed from the balance law, and
aft, computed using the fit NRSur7dq4Remnant. The lower
plot shows the angle Af between the remnant spin computed
using the two different methods. We also show in the shaded
region the error estimate obtained from direct comparison
with NR in Fig. 3, as opposed the quoted error estimate in
the fit.

and EOB models have violations within the fit errors.
The PN truncation error is negligible, only 0.7% of the
fit error. However the Phenom models show violations in
the angle that are much larger than the errors. Thus, our
analysis again provides pointers for further improvement.

C. Lessons from and for NR

We now apply the angular momentum balance law di-
rectly to NR simulations and discuss its implications.
The procedure is almost identical to the one we used for
waveform models, but uses the NR waveform instead of
the model waveform. More precisely, each NR simulation
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FIG. 5. The violation of angular momentum balance law for
the 131 non-precessing numerical simulations described in the
text. The solid blue curve shows the difference apar — ayy
between the magnitudes of the remnant spin computed using
the balance law, and of the horizon spin. The dashed grey line
represents the numerical convergence error, i.e., the difference
between the spin magnitudes, apa and arS RS computed
using the highest and a lower resolution NR simulation.

provides us with the waveform to calculate the flux F ,
and is labelled by the masses, spins, orbital frequency and
separation of the two progenitors at the starting time.
Using these parameters and the 3.5 PN truncation dis-
cussed in section IIB, we calculate the initial angular

-

momentum J(¢;) that is needed in the expression (4) of
Xbal. For the remnant spin X, however, there is a key
difference. We do not need the fit since we can directly
use the remnant spin computed in the NR simulation at
the horizon. The difference Xpa — Xyx Mmeasures the vio-
lation of the balance law. There is, however, a subtlety:
Since the binary system in NR may not be in the same
reference frame in numerical simulations as in the frame
we use for the PN expression, we must perform a rotation
to match the frames. For details see the Appendix.

We use the subset of simulations from the SXS public
catalog [68] described in Sec. III B. However we further
restrict ourselves to simulations where a lower resolution
run is included, allowing us to analyze numerical errors.
There are 131 such non-precessing NR simulations and
550 such precessing simulations. For all these simulations
we calculate the remnant spin Xpa from Eq. (4) with the
highest resolution run available. Then we take the second
highest resolution waveform to compute Y;2VR¢s. Finally,
by comparing Ybar to Yro'Re we obtain an estimate of
the numerical convergence errors, and by comparing Yhal
to the horizon spin ¥, we obtain a quantitative measure
of the violation of the balance law.

In Fig. 5 the solid (blue) curve shows the violation
of the angular momentum balance law for the non-
precessing simulations. While the limited number of sim-
ulations makes a direct comparison with Fig. 1 difficult,
it is clear that overall the errors are manifestly smaller.
However there is one outlier simulation SXS:BBH:1134

The orbital frequency was erroneous in the meta-data file.
Correcting it brought (Delta A) down from 0.2 to 1.5X10A{-3}!



