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Effective One-Body Formalism

Effective one-body (EOB) formalism provides accurate templates
needed for detection of gravitational-wave signals
(and estimation of their parameters) of coalescing black-hole binaries.
EOB templates correspond to the full coalescence process of BH/BH systems
from early inspiral to ringdown.
EOB formalism is based on approximate results and it allows to model
analytically motion and radiation of BH/BH system from its adiabatic inspiral,
through merger, up to vibrations of the resultant Kerr BH.
After incorporating tidal interactions EOB formalism
also describes BH/NS and NS/NS systems.

EOB formalism was initiated in 1999–2000
by T.Damour and A.Buonanno
at the 2PN level and is being developed
since then by them and their collaborators.
T.Damour, PJ, G.Schäfer, 2000: incorporating
3PN-level orbital dynamics;
T.Damour, PJ, G.Schäfer, 2008: incorporating
next-to-leading order spin-orbit corrections;
T.Damour, PJ, G.Schäfer, 2015: incorporating
4PN-level orbital dynamics.

(A.Buonanno and T.Damour, PRD, 2000)



Main Idea and Structure of EOB Approach

Waveforms computed numerically and by means of the PN approximation of high
enough order agree very well in the region, where the objects are sufficiently far
away.
Gravitational waves emitted in the last stage of the BH/BH evolution are
accurately describable as a superposition of several quasi-normal modes of the
Kerr BH.
Main idea of EOB approach: extend the domain of validity of PN and BH
perturbation theories up to merger and define EOB waveform as:

hEOB(t) = θ(tm − t) hins+plunge(t) + θ(t − tm) hringdown(t),

θ(t) denotes Heaviside’s step function, tm is the time at which the two
waveforms hins+plunge and hringdown are matched.
Ringdown waveform hringdown(t) is computed from BH perturbation theory.
Computation of inspiral + plunge waveform hins+plunge(t) requires usage of
resummation techniques, which include translation of real two-body problem
into effective one and usage of Padé approximants.
The EOB approach comprises three ingredients:

— PN conservative Hamiltonian −→ EOB-improved Hamiltonian;

— PN gravitational-wave luminosities −→ EOB radiation-reaction force;
— a description of the GW waveform emitted by a coalescing binary system.



Why Does It Work?

The merging phase could be very
complicated...

but it is not...
(templates used for GW150914)
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Real Two-Body Problem vs Effective One-Body Problem

M := m1 + m2, µ :=
m1m2

m1 + m2
, ν :=

µ

M
=

m1m2
(m1 + m2)2 , 0 ≤ ν ≤

1
4

At the Newtonian level the two-body problem can be reduced to motion of
a test particle of mass µ orbiting around an external mass M.

The EOB approach is a general relativistic generalization of this fact.

Real two-body problem:
two black holes of masses m1, m2 and spins S1, S2

orbiting around each other

l
Effective one-body problem:

one test particle (with additional nongeodesic corrections)
of mass µ and spin S∗

moving in some background metric g effective
αβ

The effective metric g effective
αβ is a ν-deformed Kerr metric

of mass M and spin SKerr := S1 + S2.
The spin of the effective particle reads

S∗ :=
m2
m1

S1 +
m1
m2

S2 + (spin-orbit terms).



The Mapping Rules Between the Two Problems
(Motivated by Quantum Considerations)

The adiabatic invariants (the action variables) Ii =
∮
pi dqi

are identified in the two problems.
The energies are mapped through a function f :

Eeffective = f (Ereal),

f is determined in the process of matching.

One looks for a metric g effective
αβ such that the energies of the bound states of

a particle moving in g effective
αβ are in one-to-one correspondence with the

energies of the two-body bound states:

Eeffective(Ii ) = f (Ereal(Ii )) .

The identification of the action variables guarantees
that the two problems are mapped by a canonical transformation.



Conservative 4PN-Accurate Hamiltonian Describing Relative Motion

Conservative 4PN-accurate ADM orbital Hamiltonian H≤4PN[x1, x2, p1, p2]
(we ignore spin-dependent corrections) is reduced to center-of-mass frame:

p1 + p2 = 0.

Rescaled dimensionless variables in the center-of-mass frame:

r :=
c2

GM
(x1 − x2), p :=

p1
µc

= −
p2
µc
, t̂ :=

c3t

GM
.

‘Non-relativistic’ orbital Hamiltonian:

Ĥnr
≤4PN[r, p] : =

H≤4PN[r, p]−Mc2

µc2

= ĤN(r, p) + Ĥ1PN(r, p) + Ĥ2PN(r, p) + Ĥ3PN(r, p) + Ĥ4PN[r, p],

ĤN(r, p) =
1
2

p2 −
1
r
, . . . .



Modelling Nonspinning Binaries
The effective metric is a static and spherically symmetric ν-deformation of the Schwarzschild
metric:

geff
µν (X ′; ν)dX ′µdX ′ν = −A(R′; ν) c2dT ′2 +

D(R′; ν)

A(R′; ν)
dR′2 + R′2(dΘ′2 + sin2 Θ′dΦ′2),

metric functions A and D are looked for in the form of PN expansions
[using dimensionless radial coordinate r ′ := c2R′/(GM)],

A(r ′; ν) = 1 +
a0(ν)

r ′
+

a1(ν)

r ′2
+

a2(ν)

r ′3
+

a3(ν)

r ′4
+

a41(ν) + a42(ν) ln r ′

r ′5
+ · · · ,

D(r ′; ν) = 1 +
d1(ν)

r ′
+

d2(ν)

r ′2
+

d3(ν)

r ′3
+

d41(ν) + d42(ν) ln r ′

r ′4
+ · · · .

Newtonian limit: a0(ν) = −2.

geff
µν tends to the Schwarzschild metric when ν → 0:

A(r ′; 0) = 1−
2
r ′
, D(r ′; 0) = 1 resummation!



Effective Hamiltonian

Effective Hamiltonian Heff is derived from the equation

µ2c2 + gµνeff (X ′)P′µP
′
ν + Q(X ′,P′) = 0, (*)

Q denotes contributions which are at least quartic in momenta,

Q(X ′,P′) = Qµ1µ2µ3µ4
4 (X ′)P′µ1P

′
µ2P
′
µ3P
′
µ4

+ Qµ1µ2µ3µ4µ5µ6
6 (X ′)P′µ1P

′
µ2P
′
µ3P
′
µ4P
′
µ5P
′
µ6 + · · · .

One can reduce the P′-dependence of Q to a dependence on the sole P′r = n′ · P′,
then the equation (*) is quadratic in the time component P′0 and Heff = −P′0:

Ĥeff(r′, p′) =
Heff(r′, p′)

µc2 =

√
A(r ′)

(
1 + p′2 +

( A(r ′)

D(r ′)
− 1
)

(n′ · p′)2 + Q̂(r′, p′)
)
,

where r′ := c2R/(GM), p′ := P/(µc), and Q̂ := Q/(µ2c2).
At the 4PN accuracy Q̂ is of the form

Q̂(r′, p′) =

(
q3(ν)

r ′2
+

q41,4(ν) + q42,4(ν) ln r ′

r ′3

)
(n′ · p′)4

+
q61,6(ν) + q62,6(ν) ln r ′

r ′2
(n′ · p′)6 +O

(
(n′ · p′)8).



Map Between the Real Energy Levels and the Effective Ones

Heff = µc2 + Hnr
(

1 + α1
Hnr

µc2 + α2

(
Hnr

µc2

)2
+ α3

(
Hnr

µc2

)3
+ α4

(
Hnr

µc2

)4
+ · · ·

)
,

for the rescaled energies it reads

Ĥeff(r′, p′) = 1 + Hred(r, p)
(

1+α1Hred(r, p) + α2(Hred(r, p))2

+α3(Hred(r, p))3 + α4(Hred(r, p))4 + · · ·
)
.



Split of the Real Hamiltonian

The 4PN-accurate Hamiltonian can be decomposed in local- and
nonlocal-in-time parts:

Ĥnr[r, p] = Ĥnr I
real(r, p; ŝ) + Ĥnr II

real [r, p; ŝ],

Ĥnr I
real(r, p; ŝ) = Ĥ local

≤ 4PN(r, p) + F (r, p) ln
r

ŝ
,

Ĥnr II
real [r, p; ŝ] = −

1
5
G2

νc8

...
I ij (t)× Pf2GMŝ/c

∫ +∞

−∞

dτ
|τ |

...
I ij (t + τ),

ŝ := s/(GM), where the scale s is a UV cutoff in the tail Hamiltonian
and an IR one in the near-zone Hamiltonian [s is an intermediate scale
between the size of the system r12 and the reduced wavelength λ/(2π)].
The arbitrary scale ŝ enters both parts, though it cancels out in the total
Hamiltonian.



Split of the Effective Hamiltonian

To the split of the real Hamiltonian, there corresponds a (4PN-accurate) split of
the various building blocks A, D̄, and Q̂ entering the effective Hamiltonian

Ĥeff(r′, p′) =

√
A(r ′)

(
1 + p′2 +

(
A(r ′)D̄(r ′)− 1

)
(n′ · p′)2 + Q̂(r′, p′)

)
.

This split looks as follows
A(r′) = AI(r′) + AII(r′), D̄(r′) = D̄I(r′) + D̄II(r′), Q̂(r′, p′) = Q̂I(r′, p′) + Q̂II(r′, p′),

AI(r′) = 1 −
2

r′
+

a2
r′2

+
a3
r′3

+
a4
r′4

+
aI
5,c + aI

5,ln ln r′

r′5
, AII(r′) =

aII
5,c + aII

5,ln ln r′

r′5
,

D̄I(r′) = 1 +
d̄1
r′

+
d̄2
r′2

+
d̄3
r′3

+
d̄ I
4,c + d̄ I

4,ln ln r′

r′4
, D̄II(r′) =

d̄ II
4,c + d̄ II

4,ln ln r′

r′4
,

Q̂I(r′, p′) =

( q42
r′2

+
qI
43,c + qI

43,ln ln r′

r′3

)
(n′ · p′)4 +

qI
62,c + qI

62,ln ln r′

r′2
(n′ · p′)6

,

Q̂II(r′, p′) =
qII
43,c + qII

43,ln ln r′

r′3
(n′ · p′)4 +

qII
62,c + qII

62,ln ln r′

r′2
(n′ · p′)6 + O

(
(n′ · p′)8)

.

After employing the I + II split of the functions A, D̄, and Q̂, one expands Ĥeff
into a PN Taylor series (i.e., with respect to p′2 ∼ 1/r ′ ∼ 1/c2). One gets

Ĥeff(r′, p′) = ĤI
eff(r′, p′) + ĤII

eff(r′, p′) +O(c−10).



Matching of the Local Part of the Hamiltonian

The identification of the action variables guarantees that the two problems
are mapped by a canonical transformation, with generating function

g̃≤4PN(r, p′) = r · p′ + g≤4PN(r, p′),

so the relation between the real phase-space coordinates (r, p)
and the effective phase-space coordinates (r′, p′) reads

x ′i = x i +
∂g≤4PN(r, p′)

∂p′i
, pi = p′i +

∂g≤4PN(r, p′)
∂x i

.

The generating function has the symbolic structure

g≤4PN(r, p′) = g≤3PN(r, p′) + (r · p′)(1 + ln r)

×
(

(p′2)4 +
1
r

(
(p′2)3 + · · ·

)
+ · · ·+

1
r4

)
.



Matching of the Nonlocal Part of the Hamiltonian (1/6)

One can reduce nonlocal-in-time dynamics to local-in-time one by means of
Delaunay (action-angle) reduction.
The action-angle variables for Newtonian motion in the fixed plane
(â := a/(GM) is semimajor axis and e is eccentricity):

` is the mean anomaly, its conjugate L :=
√
â,

g ≡ ω is the argument of the periastron, its conjugate G :=
√

â(1− e2).
The mean anomaly ` is an angle that increases uniformly in time at the rate of
2π radians every orbital period.
The argument of the periastron g is the angle subtended between the direction
of the ascending node and the direction of the orbit’s periastron.



Matching of the Nonlocal Part of the Hamiltonian (2/6)

The Newtonian Delaunay Hamiltonian,

ĤN(`, g ,L,G) =
1
2

p2 −
1
r

= −
1

2L2 .

Equations of motion

d`
dt̂

=
∂ĤN

∂L
=

1
L3 ≡ Ω̂(L),

dg
dt̂

=
∂ĤN

∂G
= 0,

dL
dt̂

= −
∂ĤN

∂`
= 0,

dG
dt̂

= −
∂ĤN

∂g
= 0,

where the time variable t̂ := t/(GM) and Ω̂ is the rescaled Newtonian orbital
frequency. It satisfies the rescaled Kepler law:

Ω̂ = â3/2.



Matching of the Nonlocal Part of the Hamiltonian (3/6)

Elimination of periodically varying terms

The expression (which enters the nonlocal-in-time piece Ĥnr II
real )

F(t, τ) :=
...
I ij (t)

...
I ij (t + τ),

can be rewritten as (here n1, n2, n3 are positive integers)

F(`, τ̂) =
∑

n1,n2,±n3

C±n1n2n3 e
n1 cos(n2`± n3Ω(L)τ̂).

After integarting over τ̂ any term containing n2 6= 0 generates ∝ cos(n2`)

contribution to Ĥnr II
real .

Any term of the type A(L) cos(n`) in a first-order perturbation εH1(`,L) can be
eliminated by a canonical transformation with generating function of the type
g(L, `) = B(L) sin(n`):

δgH1 = {ĤN(L), g} = −
∂ĤN(L)

∂L
∂g

∂`
= −n Ω(L)B(L) cos(n`),

the choice B := A/(n Ω) eliminates the term A cos(n`) in Ĥnr II
real .



Matching of the Nonlocal Part of the Hamiltonian (4/6)

`-averaged Hamiltonian

One can simplify the 4PN Hamiltonian Ĥnr II
real by replacing it by its `-averaged

value,

ˆ̄Hnr II
real (L,G; ŝ) :=

1
2π

∫ 2π

0
d` Ĥnr II

real [r, p; ŝ] = −
1
5

G2

νc8 Pf2ŝ/c

∫ +∞

−∞

dτ̂
|τ̂ |
F̄ ,

where F̄ denotes the `-average of F(`, τ̂).
ˆ̄Hnr II

real (L,G; ŝ) is given as an expansion in (only even) powers of e.
One can employ the Bessel-Fourier expansion of the quadrupole moment
(e = 2.718 . . . should be distinguished from the eccentricity e)

Iij (`; e) =
+∞∑

p=−∞
I pij (e) eip`.



Matching of the Nonlocal Part of the Hamiltonian (5/6)

Explicit form of ˆ̄Hnr II
real (L,G; ŝ)

ˆ̄Hnr II
real (L,G; ŝ) =

4

5

G2

νc8

(
Ω

GM

)6 ∞∑
p=1

p6|I p
ij

(e)|2 ln

(
2p

eγE Ωŝ

c

)

=
ν

c8L10

(
64

5

(
2 ln 2 + ln

(
eγE ŝ

cL3

))
+

1

5

(
296

3
ln 2 + 729 ln 3 +

1256

3
ln

(
eγE ŝ

cL3

))
e2

+

(
29966

15
ln 2 −

13851

20
ln 3 + 242 ln

(
eγE ŝ

cL3

))
e4

+

(
−

116722

15
ln 2 +

419661

320
ln 3 +

1953125

576
ln 5 +

1526

3
ln

(
eγE ŝ

cL3

))
e6 + O(e8)

)
.



Matching of the Nonlocal Part of the Hamiltonian (6/6)

Explicit form of ˆ̄HII
eff(L,G)

ˆ̄HII
eff(L,G) :=

1

2π

∫ 2π

0
d` ĤII

eff [r′, p′ ]

=
1

2L10

(
aII
5,c + aII

5,ln ln(L2) +
1

4

(
20aII

5,c − 9aII
5,ln + 2d̄ II

4,c + 2(10aII
5,ln + d̄ II

4,ln) ln(L2)
)
e2

+

( 1

8

(
105aII

5,c −
319

4
aII
5,ln + 15d̄ II

4,c −
11

2
d̄ II
4,ln + 3qII

43,c

)
+

3

8

(
35aII

5,ln + 5d̄ II
4,ln + qII

43,ln
)

ln(L2)

)
e4

+

(
1

192

(
5040aII

5,c − 5018aII
5,ln + 840d̄ II

4,c − 533d̄ II
4,ln + 252qII

43,c − 78qII
43,ln + 60qII

62,c
)

+
1

16

(
420aII

5,ln + 70d̄ II
4,ln + 21qII

43,ln + 5qII
62,ln

)
ln(L2)

)
e6 + O(e8)

)
.

The matching equation
ˆ̄HII

eff(L,G) = ˆ̄Hnr II
real (L,G)

leads to unique values of the coefficient of ˆ̄HII
eff(L,G).



The Real EOB-Improved 4PN-Accurate Hamiltonian

Results of the 4PN-accurate matching for energy map:

α1 =
ν

2
, α2 = 0, α3 = 0, α4 = 0.

The energy map can be written as

Heff
µc2 =

H2
real −m2

1c
4 −m2

2c
4

2m1m2c4 ,

from this the real EOB-improved 4PN-accurate Hamiltonian follows:

HEOB-improved
real = Mc2

√
1 + 2ν

(
Heff
µc2 − 1

)
.
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Radiation Reaction for Quasi-Circular Motions (1/2)

We restrict to the planar dynamics described by the local-in-time real
EOB-improved 3PN-accurate Hamiltonian (we omit the primes in the canonical
variables) HEOB-improved

real (r , pr , pφ). It gives the following conservative equations of
motion:

ṙ =
∂HEOB-improved

real (r , pr , pφ)

∂pr
,

φ̇ =
∂HEOB-improved

real (r , pr , pφ)

∂pφ
,

ṗr = −
∂HEOB-improved

real (r , pr , pφ)

∂r
,

ṗφ = 0.



Radiation Reaction for Quasi-Circular Motions (2/2)

For quasi-circular motions (|ṙ | � r φ̇) it is enough, too a good approximation,
to add only the φ component of the damping force, what modifies the equation
for ṗφ,

ṗφ = Fφ.

As ṗφ is just the total angular momentum of the binary system, the above
equation expresses the rate of loss of angular momentum under gravitational
radiation reaction.
In the case of quasi-circular orbits there is a simple relation between angular
momentum loss −Fφ(φ̇) and energy loss L(φ̇),

L(φ̇) = −φ̇Fφ(φ̇).

Finally,
ṗφ = −

1
φ̇
L(φ̇).
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Padé Approximants

Padé approximant of (k, l)-type (with k + l = n) for series
w(x) = c0 + c1 x + · · ·+ cn xn (with c0 6= 0):

Pk
l (w(x)) :=

Nk (x)

Dl (x)
,

where the polynomials Nk (of degree k) and Dl (of degree l) are such
that the Taylor expansion of Pk

l (w(x)) coincides with w(x) up to O(xn+1) terms:

Nk (x)

Dl (x)
= c0 + c1 x + · · ·+ cn x

n +O(xn+1).



Last (Innermost) Stable Cirular Orbit

The reduced angular momentum of the system
in the center-of-mass reference frame:

j :=
J

Gm1m2
.

In the test-mass limit and along circular orbits:

j(x ; ν = 0) =
1√

x(1− 3x)
, x :=

1
c2 (GMφ̇)2/3.

the pole x = 1/3 corresponds to light ring (the last unstable circular orbit).
In the test-mass limit (ν = 0) LSCO is for x = 1/6,
which is the minimum of the function j2(x ; 0).
For ν 6= 0 one defines the location od the LSCO
as the minimum of the function j2(x ; ν).



Last (Innermost) Stable Cirular Orbit for ν 6= 0

4PN-accurate PN computations give

j2(x ; ν) =
1

x

(
1 +

(
3 +

1

3
ν

)
x + j2(ν) x2 + j3(ν) x3 + (j41(ν) + j42(ν) ln x) x4

)
.

One constructs the sequence of Padé approximants of j2(x ; ν):

j2P1
(x ; ν) :=

1

x
P0

1

[
1 + (3 +

1

3
ν) x

]
=

1

x
(

1 −
(

3 + 1
3 ν
)
x
) ,

j2P2
(x ; ν) :=

1

x
P1

1

[
1 + (3 +

1

3
ν) x + j2(ν) x2

]
,

j2P3
(x ; ν) :=

1

x
P2

1

[
1 + (3 +

1

3
ν) x + j2(ν) x2 + j3(ν) x3

]
,

j2P4
(x ; ν) :=

1

x

(
P3

1

[
1 + (3 +

1

3
ν) x + j2(ν) x2 + j3(ν) x3 + j41(ν) x4

]
+ j42(ν) x4 ln x

)
.

At all PN levels the test-mass result is recovered exactly:

lim
ν→0

j2
Pn

(x ; ν) =
1

x(1− 3x)
for n = 1, 2, 3, 4.
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Padé-Improved EOB Potential A(u; ν)

The EOB potential A(u; ν) = −g eff
00 (u; ν) (with u := 1/r ′)

has the following 4PN-accurate Taylor expansion:

A(u; ν) = 1− 2u + 2νu3 + a4(ν)u4 +
(
a51(ν) + a52(ν) ln u

)
u5 +O(u6).

By continuity with the test-mass case ν → 0, one expects that A(u; ν) will exhibit
a simple zero defining an EOB “effective horizon” that is smoothly connected, when
ν → 0, to the Schwarzschild event horizon at u = 1/2.
Therefore it is reasonable to factor a zero of A(u; ν) by introducing the Padé-improved
AP4 (u; ν) defined at the 4PN level as

AP4 (u; ν) := P1
4
[
1− 2u + 2νu3 + a4(ν)u4 + (a51(ν) + a52(ν) ln u)u5] .
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4 Usage of Padé Approximants

5 NR-Improved EOB Waveforms

6 Bibliography



Synergy Between EOB Formalism and Numerical Relativity

Select sample of NR waveforms
↓

Introduce EOB flexibility parameters
and calibrate them to NR waveforms

↓
Define NR-improved EOB waveforms
(used in analysis of LIGO/Virgo data)

Flexibility Parameters in the EOB Potential A(u; ν)
(for nonspinning bh/bh systems)

Instead of using the 4PN-accurate truncated Taylor expansion
(maybe in Padé-improved form),

A4PN(u; ν) = 1− 2u + 2νu3 + a4(ν)u4 + (a51(ν) + a52(ν) ln u)u5,

one considers (maybe in Padé-improved form) 3-parameter class of
extensions of A4PN(u; ν) defined by

A(u; ν, b61, b62, b63) := A4PN(u; ν) + ν(b61 + b62ν + b63ν
2)u6 + a62(ν)u6 ln u.



1 Aim and Structure of EOB Formalism

2 EOB-Improved 4PN-Accurate Hamiltonian

3 Incorporating Radiation Reaction Effects

4 Usage of Padé Approximants
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