Post-Newtonian General Relativity and Gravitational Waves.
 Part III: Spin-Orbit Interaction of Two Spinning Compact Bodies

Piotr Jaranowski

Faculty of Physics, University of BiaŁystok, Poland

School of General Relativity, Astrophysics and Cosmology
Warszawa/Chęciny, July 24-August 4, 2023
(1) PN-Counting of the Spin-Dependent Effects
(2) General Remarks and Summary
(3) 3-Dimensional Euclidean Spin Vector in Curved Spacetime and its Angular Velocity
(4) Deriving the Spin-Orbit Hamiltonian from the Angular Velocity of the Spin 3-Vector
(5) Derivation of the Spin-Orbit Hamiltonians in the ADMTT Coordinates
(6) Poincaré Invariance of the Spin-Orbit Hamiltonians
(7) Comparison with Harmonic-Coordinate-Based Results
(8) Bibliography
(1) PN-Counting of the Spin-Dependent Effects
(2) Gendrai Rbmariks and Summary
(3) 3-Dimiensional Euclidean Spin Vector in Curved Spacetime and its Angular Velocity
(4) Deriving the Spin-Orbit Hamiltonian from the Angular Velocity of the Spin 3-Vector
 Coordinates
(6) Poincaré Invariance of the Spin-Orbit Hamiltonians
(1) COMTPARIGON WITH HARMONGGCOORDINATEFBASED RIESTLIS
(8) Bibliography

The Spin of a Rotating Body

- The spin of a rotating body is of the order

$$
S \sim m R v_{\text {spin }}
$$

where m and R denote the mass and typical size of the body, respectively, and $v_{\text {spin }}$ represents the velocity of the body's surface.

- We are interested in compact bodies, so

$$
R \sim \frac{G m}{c^{2}}, \quad \text { and then } \quad S \sim G m^{2} \frac{v_{\text {spin }}}{c^{2}} .
$$

- Formal counting: PN orders are counted in terms of $1 / c$ originally present in the Einstein equations, i.e. the spin variables do not contribute to counting of $1 / c$. Then, e.g., spin-orbit effects in EOM start as follows:

$$
1 \mathrm{PN}+2 \mathrm{PN}+\cdots
$$

- Maximally rotating bodies: $v_{\text {spin }} \sim c \Longrightarrow S \sim \frac{G m^{2}}{c}=\mathcal{O}\left(c^{-1}\right)$. Spin-orbit (i.e. linear in S) effects in EOM:

$$
1.5 \mathrm{PN}+2.5 \mathrm{PN}+\cdots ;
$$

spin-spin effects in EOM:

$$
2 \mathrm{PN}+3 \mathrm{PN}+\cdots .
$$

- Slowly rotating bodies: $v_{\text {spin }} \ll c \Longrightarrow S \sim \frac{G m^{2} v_{\text {spin }}}{c^{2}}=\mathcal{O}\left(c^{-2}\right)$. Spin-orbit (i.e. linear in S) effects in EOM:

$$
2 \mathrm{PN}+3 \mathrm{PN}+\cdots
$$

spin-spin effects in EOM:

$$
3 P N+4 P N+\cdots .
$$

Words are Better than Numbers

- Just words, no $1 / \mathrm{c}$ counting:
leading-order (LO)
+ next-to-leading-order (NLO)
+ next-to-next-to-leading-order (NNLO) $+\cdots$.
(1) PN-Counting of the Spin-Dependent Effects
(2) General Remarks and Summary
(3) 3-Dintenstonal Euclidean Spin Vector in Curybd Spacbtinib and its Angular Velocity
 Velocity of the Spin 3-Vector
(5) Derivation of the Spin-Orbit Haniltonians in the ADMTT Coordinates

6) Poincaré invariance of the Spin-Orbit Hamitionians
(7) Comparison-with Harmonic-Coordinate-Based Resulits

General Remarks and Summary

- Generalized ADM formalism for spinning objects is described in Section 7 of 2018 Schäfer/Jaranowski Living Reviews in Relativity article and will not be discussed here.
- We present a novel Hamiltonian formulation of the spin-orbit interaction of two spinning compact bodies, valid to linear order in the spins of the bodies (and to any PN order in the orbital part of the interaction).
- It allows one to derive spin-orbit contribution to the orbital equations of motion without having to solve Einstein's field equations with a spin-dependent energy-momentum tensor. One does not use Tulczyjew's pole-dipole energy-momentum tensor. One does not use the Papapetrou translational equations of motion as well.
- Devised and used by Damour, Jaranowski \& Schäfer (2008) to compute leading-order and next-to-leading-order two-body spin-orbit Hamiltonians. Then extended by Steinhoff, Hergt \& Schäfer (2008) to compute next-to-leading-order $\operatorname{spin}(1)-\mathrm{spin}(2)$ Hamiltonian.
(1) PN-Counting of the Spin-Dependent Effectis

(3) 3-Dimensional Euclidean Spin Vector in Curved Spacetime and its Angular Velocity
(4. Deriving the Spin-Orbit Hamiltonian fron the Angular Velocity of the Spin 3-Vector
 Coordinates

6) Poincaré Invariance of the Spin-Orbit Hamiltonians
S. Comitime
(8) Bibliography

3-Dimensional Euclidean Spin Vector (1/2)

- The translational and rotational equations of motion of a spinning particle in curved spacetime, to linear order in the spin, read:

$$
\begin{aligned}
m \frac{\mathrm{D} u_{\mu}}{\mathrm{d} \tau} & =\frac{1}{2} \frac{\epsilon^{\alpha \beta \lambda \rho}}{\sqrt{-g}} \tilde{S}_{\mu} u_{\beta} u_{\nu} R_{\mu \lambda \rho}^{\nu} \\
\frac{\mathrm{D} \tilde{S}_{\mu}}{\mathrm{d} \tau} & =0
\end{aligned}
$$

Here u^{μ} is normalized 4 -velocity of the spinning particle,

$$
u^{\mu}:=c^{-1} \frac{\mathrm{~d} x^{\mu}}{\mathrm{d} \tau}, \quad u^{\mu} u_{\mu}=-1
$$

τ denotes the proper time parameter along the world line $x^{\mu}(\tau)$, m and \tilde{S}^{μ} is mass and 4-dimensional spin vector of the spinning particle, D is the 4-dimensional covariant derivative, $R^{\nu}{ }_{\mu \lambda \rho}$ the Riemann curvature tensor, $g:=\operatorname{det}\left(g_{\mu \nu}\right)$,
$\epsilon^{\alpha \beta \lambda \rho}$ is the completely antisymmetric (flat-spacetime) Levi-Civita symbol with $\epsilon^{0123}=1$.

- We shall not need to consider the translational equations of motion.

3-Dimensional Euclidean Spin Vector (2/2)

- The 4-dimensional length of \tilde{S}^{μ} is preserved along the world line:

$$
\frac{\mathrm{D} \tilde{S}_{\mu}}{\mathrm{d} \tau}=0 \quad \Longrightarrow \quad g^{\mu \nu} \tilde{S}_{\mu} \tilde{S}_{\nu}=s^{2}, \quad s^{2}=\text { const. }
$$

- Making use of covariant spin supplementary condition

$$
\tilde{S}_{\mu} u^{\mu}=0 \quad \Longrightarrow \quad \tilde{S}_{0}=-\tilde{S}_{i} v^{i} \quad\left(v^{i}:=c^{-1} \mathrm{~d} x^{i} / \mathrm{d} t\right)
$$

one gets

$$
g^{\mu \nu} \tilde{S}_{\mu} \tilde{S}_{\nu}=G^{i j} \tilde{S}_{i} \tilde{S}_{j}=s^{2},
$$

where $G^{i j}$ is a positive-definite symmetric matrix:

$$
G^{i j}:=g^{i j}-g^{0 i} v^{j}-g^{0 j} v^{i}+g^{00} v^{i} v^{j} .
$$

- The positive-definite symmetric matrix $G^{i j}$ admits a unique positive-definite symmetric square root, say $H^{i j}=H^{j i}$, such that

$$
G^{i j}=H^{i k} H^{k j} .
$$

- One defines a constant-in-magnitude 3-dimensional Euclidean spin vector $S_{i} \equiv S^{i}$ as

$$
S_{i}:=H^{i j} \tilde{S}_{j}, \quad S_{i} S_{i}=s^{2}
$$

Spin Precession Equation

- Evolution equation for the spin vector S_{i} :

$$
\begin{aligned}
\frac{\mathrm{d} S_{i}}{\mathrm{~d} t}=V^{i j} S_{j}, & V^{i j}:=\frac{\mathrm{d} H^{i k}}{\mathrm{~d} t}\left(H^{-1}\right)^{k j}+H^{i k} \tilde{V}^{k l}\left(H^{-1}\right)^{j j}, \\
& \tilde{v}^{i j}:=c\left(\Gamma^{j}{ }_{i 0}+\Gamma^{j}{ }_{i k} v^{k}-\Gamma^{0}{ }_{i 0} v^{j}-\Gamma^{0}{ }_{i k} v^{j} v^{k}\right) .
\end{aligned}
$$

- The matrix $V^{i j}$ is antisymmetric, $V^{i j}=-V^{j i}$, so one can introduce the 3-dimensional Euclidean pseudo-vector of the angular velocity of rotation of the spin,

$$
\Omega_{i}:=-\frac{1}{2} \varepsilon_{i j k} V^{j k} \quad\left(\text { so } V^{i j}=-\varepsilon^{i j k} \Omega_{k}\right) .
$$

- One gets a Newtonian looking spin precession equation:

$$
\frac{\mathrm{dS}}{\mathrm{~d} t}=\Omega \times \mathrm{S} .
$$

(1) PN-Counting of the Spin-Dependent Effectis

(3) 3-Dinimstonal Euclidean Spin Vector in Curybd Spacbtimb and its Angular Velocity
(4) Deriving the Spin-Orbit Hamiltonian from the Angular Velocity of the Spin 3-Vector
(5) Derivation of the Spin-Orbit Haniltonians in the ADMTT Coordinates

(7) Comparison with Harmonic-Coordinate-Based Resulis
(3) Duntiontinum

- Variables in phase space of 2 interacting spinning particles:

$$
\mathbf{x}_{a}=\left(x_{a}^{i}\right), \quad \mathbf{p}_{a}=\left(p_{a i}\right), \quad \mathbf{S}_{a}=\left(S_{a i}\right) \quad(a=1,2, \quad i=1,2,3) .
$$

The Poisson brackets relations:

$$
\left\{x_{a}^{i}, p_{b j}\right\}=\delta_{a b} \delta_{j}^{i}, \quad\left\{S_{a i}, S_{b j}\right\}=\delta_{a b} \varepsilon_{i j k} S_{a k}, \quad \text { zero otherwise. }
$$

- One looks for a Hamiltonian of the general form:

$$
H\left(\mathbf{x}_{a}, \mathbf{p}_{\mathrm{a}}, \mathbf{S}_{a}\right)=H_{\mathrm{o}}\left(\mathrm{x}_{\mathrm{a}}, \mathbf{p}_{\mathrm{a}}\right)+H_{\mathrm{so}}\left(\mathbf{x}_{\mathrm{a}}, \mathbf{p}_{\mathrm{a}}, \mathbf{S}_{\mathrm{a}}\right),
$$

H_{o} is the orbital part and $H_{\text {so }}$ is the spin-orbit part of H.

- One can always write $H_{\text {so }}$ in the general form

$$
H_{\mathrm{so}}\left(\mathrm{x}_{a}, \mathrm{p}_{a}, \mathrm{~S}_{a}\right)=\sum_{a} \Omega_{a}\left(\mathrm{x}_{b}, \mathrm{p}_{b}\right) \cdot \mathrm{S}_{a},
$$

$\boldsymbol{\Omega}_{a}=\left(\Omega_{a}^{i}\right)$ depends on the orbital degrees of freedom ($\mathrm{x}_{\mathrm{a}}, \mathbf{p}_{a}$), but does not depend on the spins \mathbf{S}_{a}.

- Such introduced Ω_{a} is not only a notation for the coefficient of S_{a} in $H_{\text {so }}$, but it is equal to the angular velocity with which the spin vector S_{a} precesses. To show this it is enough to compute $\mathrm{d}_{\mathrm{a}} / \mathrm{d} t$,

$$
\frac{\mathrm{d} \mathbf{S}_{a}}{\mathrm{~d} t}=\left\{\mathbf{S}_{a}, \boldsymbol{H}_{\mathrm{so}}\left(\mathrm{x}_{b}, \mathbf{p}_{b}, \mathbf{S}_{b}\right)\right\}=\boldsymbol{\Omega}_{\mathrm{a}}\left(\mathrm{x}_{b}, \mathbf{p}_{b}\right) \times \mathbf{S}_{\mathrm{a}}
$$

The Arbitrariness in the Definition of the Conserved Spin: a "Gauge Symmetry" [Under a Local SO(3) Group] (1/2)

- The condition $S_{i} S_{i}=s^{2}$ is unchanged, if

$$
S_{i} \rightarrow S_{i}^{\prime}, \quad \text { with } \quad S_{i}^{\prime}=R_{i j} S_{j}
$$

where R is an arbitrary 3-dimensional Euclidean rotation matrix.

- An infinitesimal rotation,

$$
R_{i j}=\delta_{i j}-\theta_{i j},
$$

where $\theta_{i j}$ is a small antisymmetric matrix, leads to

$$
\delta \mathbf{S} \equiv \mathbf{S}^{\prime}-\mathbf{S}=\boldsymbol{\theta} \times \mathbf{S}, \quad \theta_{i} \equiv \frac{1}{2} \varepsilon_{i j k} \theta_{j k} .
$$

- An infinitesimal canonical transformation g in the phase space ($\mathbf{x}, \mathbf{p}, \mathbf{S}$) acts on any phase-space function f according to

$$
\delta f=\{f, g\} .
$$

- A canonical transformation of the form

$$
g(\mathbf{x}, \mathbf{p}, \mathbf{S}):=\boldsymbol{\theta}(\mathbf{x}, \mathbf{p}) \cdot \mathbf{S}
$$

transforms the spin vector according to

$$
\delta \mathbf{S}=\{\mathbf{S}, g\}=\boldsymbol{\theta} \times \mathbf{S},
$$

which reproduces the effect of an infinitesimal local rotation.

The Arbitrariness in the Definition of the Conserved Spin: a "Gauge Symmetry" [Under a Local SO(3) Group] (2/2)

- The canonical transformation g also acts on the orbital degrees of freedom (\mathbf{x}, \mathbf{p}):

$$
\begin{aligned}
& \mathbf{x} \rightarrow \mathbf{x}^{\prime}=\mathbf{x}+\delta \mathbf{x}=\mathbf{x}+\{\mathbf{x}, g\} \\
& \mathbf{p} \rightarrow \mathbf{p}^{\prime}=\mathbf{p}+\delta \mathbf{p}=\mathbf{p}+\{\mathbf{p}, g\}
\end{aligned}
$$

- Dynamics of the system in new variables $\left(\mathbf{x}^{\prime}, \mathbf{p}^{\prime}, \mathbf{S}^{\prime}\right)$ is equivalent to original dynamics, but with the Hamiltonian

$$
H^{\prime}\left(\mathbf{x}^{\prime}, \mathbf{p}^{\prime}, \mathbf{S}^{\prime}\right):=H\left(\mathbf{x}\left(\mathbf{x}^{\prime}, \mathbf{p}^{\prime}, \mathbf{S}^{\prime}\right), \mathbf{p}\left(\mathbf{x}^{\prime}, \mathbf{p}^{\prime}, \mathbf{S}^{\prime}\right), \mathbf{S}\left(\mathrm{x}^{\prime}, \mathbf{p}^{\prime}, \mathbf{S}^{\prime}\right)\right)
$$

- The corresponding change of the spin angular velocity:

$$
\boldsymbol{\Omega} \rightarrow \boldsymbol{\Omega}^{\prime}=\boldsymbol{\Omega}+\frac{\mathrm{d} \boldsymbol{\theta}}{\mathrm{~d} t}
$$

(1) PN-Counting of the Spin-Dependent Effectis

(3) 3-Dimbnstonal Euclidean Spin Vector in Curybd Spacbtinib and its Angular Velocity
 Velocity of the Spin 3-Vector
(5) Derivation of the Spin-Orbit Hamiltonians in the ADMTT Coordinates
6. Poincaré Invariance of the Spin-Orbit Hamitontans
(7) Comparison with Harmonic-Coordinate-Based Results

- Buntiontitim

Computation of Precession Angular Velocities (1/2)

- One splits the 4-dimensional metric $g_{\mu \nu}$ into 3-dimensional objects $\left(\alpha, \beta_{i}, \gamma_{i j}\right)$,

$$
\alpha:=\left(-g^{00}\right)^{-1 / 2}, \quad \beta_{i}:=g_{0 i}, \quad \gamma_{i j}:=g_{i j}
$$

and one employs the ADMTT coordinate conditions

$$
\gamma_{i j}=\left(1+\frac{1}{8} \phi\right)^{4} \delta_{i j}+h_{i j}^{\mathrm{TT}}, \quad \pi^{i i}=0 \quad\left(\pi^{i j}=\tilde{\pi}^{i j}+\pi_{\mathrm{TT}}^{i j}\right) .
$$

- After PN expansion of all quantities the angular velocity is decomposed as

$$
\Omega_{a}^{i}=\Omega_{a(2)}^{i}+\Omega_{a(4)}^{i}+\mathcal{O}\left(c^{-6}\right),
$$

where

$$
\begin{aligned}
& \Omega_{a(2)}^{i} \propto G / c^{2} \quad(\text { LO contribution }) \\
& \Omega_{a(4)}^{i} \propto G / c^{4}+G^{2} / c^{4} \quad(\text { NLO contribution }) .
\end{aligned}
$$

Computation of Precession Angular Velocities (2/2)

- The LO and NLO angular velocities:

$$
\begin{aligned}
& \Omega_{a(2)}^{i} / c=\frac{1}{2} \varepsilon_{i j k} \operatorname{Reg}\left\{\beta_{(3) j, k}+\left(\alpha_{(2), j}-\frac{1}{2} \phi(2), j\right) v_{a(1)}^{k}\right\}, \\
& \Omega_{a(4)}^{i} / c=\frac{1}{2} \varepsilon_{i j k} \operatorname{Reg} a\left\{\beta_{(5) j, k}+\beta_{(3) k}{ }^{\alpha}(2), j-\frac{1}{2} \phi{ }_{(2)} \beta_{(3) j, k}+\frac{1}{16} \phi_{(2)}{ }^{\phi}(2), j v_{a(1)}^{k}\right. \\
& -\frac{1}{2} \phi_{(4), j} v_{a(1)}^{k}-h_{(4) k l, j}^{\mathrm{TT}} v_{a(1)}^{\prime}+\left(\alpha_{(4), j}-\alpha_{(2)} \alpha_{(2), j}\right) v_{a(1)}^{k}+\tilde{\pi}_{(3)}^{j l} v_{a(1)}^{k} v_{a(1)}^{\prime} \\
& \left.-\frac{1}{2} \alpha_{(2), k} v_{a(1)}^{j} v_{a(1)}^{\prime} v_{a(1)}^{\prime}+\frac{1}{4} \frac{\dot{v}_{a(1)}^{j}}{c} v_{a(1)}^{k} v_{a(1)}^{\prime} v_{a(1)}^{\prime}+\left(\alpha_{(2), j}-\frac{1}{2} \phi_{(2), j}\right) v_{a(3)}^{k}\right\} \text {. }
\end{aligned}
$$

- Computation relies on:
(i) insertion of the explicit form of the 2PN-accurate metric describing two spinless particles (one needs to know $\phi_{(2)}, \phi_{(4)}, \tilde{\pi}_{(3)}^{i j}, h_{(4) i j}^{\mathrm{TT}}$, $\left.\alpha_{(2)}, \alpha_{(4)}, \beta_{(3) i}, \beta_{(5) i}\right)$.
(ii) expressing the velocities v_{a}^{i} in terms of the canonical variables,
(iii) Hadamard's "partie finie" regularization of the self-interaction terms.

The LO and NLO angular velocities in terms of \mathbf{x}_{a} and \mathbf{p}_{a} :

$$
\begin{aligned}
\boldsymbol{\Omega}_{1(2)}= & \frac{G}{c^{2} r_{12}^{2}}\left(\frac{3 m_{2}}{2 m_{1}} \mathbf{n}_{12} \times \mathbf{p}_{1}-2 \mathbf{n}_{12} \times \mathbf{p}_{2}\right), \\
\boldsymbol{\Omega}_{1(4)}= & \frac{G^{2}}{c^{4} r_{12}^{3}}\left\{\left(-\frac{11}{2} m_{2}-5 \frac{m_{2}^{2}}{m_{1}}\right) \mathbf{n}_{12} \times \mathbf{p}_{1}+\left(6 m_{1}+\frac{15}{2} m_{2}\right) \mathbf{n}_{12} \times \mathbf{p}_{2}\right\} \\
& +\frac{G}{c^{4} r_{12}^{2}}\left\{\left(-\frac{5 m_{2} \mathbf{p}_{1}^{2}}{8 m_{1}^{3}}-\frac{3\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)}{4 m_{1}^{2}}+\frac{3 \mathbf{p}_{2}^{2}}{4 m_{1} m_{2}}-\frac{3\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{4 m_{1}^{2}}-\frac{3\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{2}}{2 m_{1} m_{2}}\right) \mathbf{n}_{12} \times \mathbf{p}_{1}\right. \\
& \left.+\left(\frac{\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)}{m_{1} m_{2}}+\frac{3\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{1} m_{2}}\right) \mathbf{n}_{12} \times \mathbf{p}_{2}+\left(\frac{3\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)}{4 m_{1}^{2}}-\frac{2\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{1} m_{2}}\right) \mathbf{p}_{1} \times \mathbf{p}_{2}\right\} .
\end{aligned}
$$

The spin-orbit Hamiltonians to LO and NLO orders:

$$
\begin{aligned}
H_{\mathrm{so}}\left(\mathrm{x}_{a}, \mathbf{p}_{a}, \mathrm{~S}_{a}\right) & =\frac{1}{c^{2}} H_{\mathrm{so}}^{\mathrm{LO}}\left(\mathrm{x}_{a}, \mathbf{p}_{a}, \mathrm{~S}_{a}\right)+\frac{1}{c^{4}} H_{\mathrm{so}}^{\mathrm{NLO}}\left(\mathrm{x}_{a}, \mathbf{p}_{a}, \mathrm{~S}_{a}\right)+\mathcal{O}\left(c^{-6}\right), \\
\frac{1}{c^{2}} H_{\mathrm{so}}^{\mathrm{LO}}\left(\mathrm{x}_{a}, \mathbf{p}_{a}, \mathrm{~S}_{a}\right) & =\sum_{a} \boldsymbol{\Omega}_{a(2)}\left(\mathrm{x}_{b}, \mathbf{p}_{b}\right) \cdot \mathrm{S}_{a} \\
\frac{1}{c^{4}} H_{\mathrm{so}}^{\mathrm{NLO}}\left(\mathrm{x}_{a}, \mathbf{p}_{a}, \mathrm{~S}_{a}\right) & =\sum_{a} \boldsymbol{\Omega}_{\mathrm{a}(4)}\left(\mathrm{x}_{b}, \mathbf{p}_{b}\right) \cdot \mathrm{S}_{a} .
\end{aligned}
$$

The translational equations of motion of two spinning particles:

$$
\dot{\mathbf{x}}_{a}=\frac{\partial H\left(\mathbf{x}_{b}, \mathbf{p}_{b}, \mathbf{S}_{b}\right)}{\partial \mathbf{p}_{a}}, \quad \dot{\mathbf{p}}_{a}=-\frac{\partial H\left(\boldsymbol{x}_{b}, \mathbf{p}_{b}, \mathbf{S}_{b}\right)}{\partial \mathbf{x}_{a}}
$$

(1) PN-Counting of the Spin-Dependent Effects

(3) 3-Dimiensional Euclidean Spin Vector in Curved Spacetime and its Angular Velocity
(4) Deriving the Spin-Orbit Hamiltonian from the Angular Velocity of the Spin 3-Vector
 Coordinates
(6) Poincaré Invariance of the Spin-Orbit Hamiltonians
(7) Comparison with Harmonic-Coordinate-Based Resulits
(8) Bibliography

Poincaré Algebra

One should prove the existence of ten phase-space generators

$$
H\left(\boldsymbol{x}_{a}, \mathbf{p}_{a}, \mathbf{S}_{a}\right), P_{i}\left(\boldsymbol{x}_{\mathrm{a}}, \mathbf{p}_{\mathrm{a}}, \mathbf{S}_{\mathrm{a}}\right), J_{i}\left(\boldsymbol{x}_{\mathrm{a}}, \mathbf{p}_{\mathrm{a}}, \mathbf{S}_{\mathrm{a}}\right), G_{i}\left(\boldsymbol{x}_{\mathrm{a}}, \mathbf{p}_{\mathrm{a}}, \mathbf{S}_{\mathrm{a}}\right),
$$

whose Poisson brackets reproduce the Poincare algebra:

$$
\begin{aligned}
& \left\{P_{i}, P_{j}\right\}=0, \quad\left\{P_{i}, H\right\}=0, \quad\left\{J_{i}, H\right\}=0, \\
& \left\{J_{i}, P_{j}\right\}=\varepsilon_{i j k} P_{k}, \quad\left\{J_{i}, J_{j}\right\}=\varepsilon_{i j k} J_{k}, \\
& \left\{J_{i}, G_{j}\right\}=\varepsilon_{i j k} G_{k}, \\
& \left\{G_{i}, H\right\}=P_{i}, \\
& \left\{G_{i}, P_{j}\right\}=\frac{1}{c^{2}} H \delta_{i j}, \\
& \left\{G_{i}, G_{j}\right\}=-\frac{1}{c^{2}} \varepsilon_{i j k} J_{k} .
\end{aligned}
$$

- The translation P_{i} and rotation J_{i} generators are realized as

$$
P_{i}\left(\boldsymbol{x}_{a}, \mathbf{p}_{a}, \mathbf{S}_{a}\right)=\sum_{a} p_{a i}, \quad J_{i}\left(\boldsymbol{x}_{a}, \mathbf{p}_{a}, \mathbf{S}_{a}\right)=\sum_{a}\left(\varepsilon_{i k \ell} x_{a}^{k} p_{a \ell}+S_{a i}\right) .
$$

- The Hamiltonian $H\left(\mathrm{x}_{\mathrm{a}}, \mathbf{p}_{a}, \mathbf{S}_{\mathrm{a}}\right)=H_{\mathrm{o}}\left(\mathrm{x}_{\mathrm{a}}, \mathbf{p}_{a}\right)+H_{\mathrm{so}}\left(\mathrm{x}_{\mathrm{a}}, \mathbf{p}_{a}, \mathbf{S}_{\mathrm{a}}\right)$, where

$$
\begin{aligned}
& H_{o}\left(\mathrm{x}_{\mathrm{a}}, \mathbf{p}_{\mathrm{a}}\right)=\left(m_{1}+m_{2}\right) c^{2}+H_{o}^{N}\left(\mathrm{x}_{\mathrm{a}}, \mathbf{p}_{\mathrm{a}}\right)+\frac{1}{c^{2}} H_{\mathrm{o}}^{1 \mathrm{PN}}\left(\mathrm{x}_{\mathrm{a}}, \mathbf{p}_{\mathrm{a}}\right) \\
& +\frac{1}{c^{4}} H_{o}^{2 \mathrm{PN}}\left(\mathrm{x}_{\mathrm{a}}, \mathrm{p}_{\mathrm{a}}\right)+\mathcal{O}\left(c^{-6}\right), \\
& H_{\mathrm{so}}\left(\mathrm{x}_{\mathrm{a}}, \mathrm{p}_{\mathrm{a}}, \mathrm{~S}_{a}\right)=\frac{1}{c^{2}} H_{\mathrm{so}}^{\mathrm{LO}}\left(\mathrm{x}_{\mathrm{a}}, \mathrm{p}_{\mathrm{a}}, \mathrm{~S}_{a}\right)+\frac{1}{c^{4}} H_{\mathrm{so}}^{\mathrm{NLO}}\left(\mathrm{x}_{\mathrm{a}}, \mathrm{p}_{a}, \mathrm{~S}_{a}\right)+\mathcal{O}\left(c^{-6}\right) .
\end{aligned}
$$

- The center-of-mass vector $\mathbf{G}\left(\mathbf{x}_{a}, \mathbf{p}_{a}, \mathbf{S}_{a}\right)=\mathbf{G}_{\mathrm{o}}\left(\mathbf{x}_{a}, \mathbf{p}_{a}\right)+\mathbf{G}_{\text {so }}\left(\mathbf{x}_{a}, \mathbf{p}_{a}, \mathbf{S}_{a}\right)$, where

$$
\begin{aligned}
\mathbf{G}_{\mathrm{o}}\left(\mathbf{x}_{a}, \mathbf{p}_{a}\right) & =\sum_{a} m_{a} \mathbf{x}_{a}+\frac{1}{c^{2}} \mathbf{G}_{\mathrm{o}}^{1 \mathrm{PN}}\left(\mathbf{x}_{a}, \mathbf{p}_{a}\right)+\frac{1}{c^{4}} \mathbf{G}_{\mathrm{o}}^{2 \mathrm{PN}}\left(\mathbf{x}_{a}, \mathbf{p}_{a}\right)+\mathcal{O}\left(c^{-6}\right), \\
\mathbf{G}_{\text {so }}\left(\mathbf{x}_{a}, \mathbf{p}_{a}, \mathbf{S}_{a}\right) & =\frac{1}{c^{2}} \mathbf{G}_{\mathrm{so}}^{\mathrm{LO}}\left(\mathbf{x}_{a}, \mathbf{p}_{a}, \mathbf{S}_{a}\right)+\frac{1}{c^{4}} \mathbf{G}_{\mathrm{so}}^{\mathrm{NLO}}\left(\mathrm{x}_{a}, \mathbf{p}_{a}, \mathrm{~S}_{\mathrm{a}}\right)+\mathcal{O}\left(c^{-6}\right)
\end{aligned}
$$

- The LO term is known from the special-relativistic limit,

$$
\mathbf{G}_{\mathrm{so}}^{\mathrm{LO}}\left(\mathbf{x}_{a}, \mathbf{p}_{a}, \mathbf{S}_{a}\right)=-\frac{\mathbf{S}_{1} \times \mathbf{p}_{1}}{2 m_{1}}+(1 \leftrightarrow 2)
$$

The Method of Undetermined Coefficients

- The most general form of $\mathbf{G}_{\mathrm{so}}^{\mathrm{NLO}}$ can a priori depend on 8 unknown dimensionless coefficients $g_{1}, \ldots, g_{8}\left[\left(V_{1}, V_{2}, V_{3}\right):=\mathbf{V}_{1} \cdot\left(\mathbf{V}_{2} \times \mathbf{V}_{3}\right)=\varepsilon_{i j k} V_{1}^{i} V_{2}^{j} V_{3}^{k}\right]$:

$$
\begin{aligned}
\mathbf{G}_{\text {so }}^{\text {NLO }}= & \frac{\mathbf{p}_{1}^{2}}{8 m_{1}^{3}} \mathbf{S}_{1} \times \mathbf{p}_{1} \\
& +\frac{G m_{2}}{r_{12}}\left\{g_{1} \frac{\mathbf{s}_{1} \times \mathbf{p}_{1}}{m_{1}}+g_{2} \frac{\mathbf{s}_{1} \times \mathbf{p}_{2}}{m_{2}}+\left(g_{3} \frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)}{m_{1}}+g_{4} \frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{2}}\right) \mathbf{n}_{12} \times \mathbf{S}_{1}\right. \\
& \left.+\left(g_{5} \frac{\left(S_{1}, n_{12}, p_{1}\right)}{m_{1}}+g_{6} \frac{\left(S_{1}, n_{12}, p_{2}\right)}{m_{2}}\right) \boldsymbol{n}_{12}\right\} \\
& +\frac{G m_{2}}{r_{12}^{2}}\left\{g_{7} \frac{\left(S_{1}, n_{12}, p_{1}\right)}{m_{1}}+g_{8} \frac{\left(S_{1}, n_{12}, p_{2}\right)}{m_{2}}\right\} \mathbf{x}_{1}+(1 \leftrightarrow 2) .
\end{aligned}
$$

- The generators P_{i}, J_{i}, H, and G_{i} in the forms given above exactly satisfy the relations $\left\{P_{i}, P_{j}\right\}=0,\left\{P_{i}, H\right\}=0,\left\{J_{i}, H\right\}=0,\left\{J_{i}, P_{j}\right\}=\varepsilon_{i j k} P_{k}$, $\left\{J_{i}, J_{j}\right\}=\varepsilon_{i j k} J_{k},\left\{J_{i}, G_{j}\right\}=\varepsilon_{i j k} G_{k}$.
- There exist unique values of the coefficients g_{1}, \ldots, g_{8} ensuring the fulfillment of the relations $\left\{G_{i}, H\right\}=P_{i},\left\{G_{i}, P_{j}\right\}=\frac{1}{c^{2}} H \delta_{i j},\left\{G_{i}, G_{j}\right\}=-\frac{1}{c^{2}} \varepsilon_{i j k} J_{k}$.
(1) PN-Counting of the Spin-Dependent Effects

(3) 3-Dimiensional Euclidean Spin Vector in Curved Spacetime and its Angular Velocity
(4) Deriving the Spin-Orbit Hamiltonian from the Angular Velocity of the Spin 3-Vector
 Coordinates
(6) Poincaré Invariance of the Spin-Orbit Hamiltonians
(7) Comparison with Harmonic-Coordinate-Based Results
(8) Bibliography

The Transformation Between the ADM and Harmonic Variables

- The NLO spin-dependent contributions in the translational and rotational equations of motion of two spinning particles, were computed in harmonic coordinates by BBF (Blanchet, Buonanno, and Faye, 2006).
- BBF use two different spin variables: spin variables $\mathbf{S}_{a}^{\text {BBF }}$ with nonconserved Euclidean magnitudes, and spin variables $\mathbf{S}_{a}^{c}{ }^{c} B B F$ with conserved Euclidean lengths.
- We look for the explicit transformation between the ADM variables (x_{a}, p_{a}, S_{a}), and the harmonic variables $\left(\mathrm{y}_{a}, \mathrm{v}_{a}:=\dot{\mathrm{y}}_{a}, \mathrm{~S}_{a}^{\mathrm{c} B B F}\right)$:

$$
\begin{aligned}
\mathbf{y}_{a}(t) & =\mathbf{Y}_{a}\left(\mathrm{x}_{b}(t), \mathbf{p}_{b}(t), \mathbf{S}_{b}(t)\right), \\
\mathbf{S}_{a}^{\mathrm{cBBF}}(t) & =\boldsymbol{\Sigma}_{a}\left(\mathrm{x}_{b}(t), \mathbf{p}_{b}(t), \mathbf{S}_{b}(t)\right) .
\end{aligned}
$$

The Transformation Between Spin Variables

- BBF computed the angular velocity vector $\Omega_{a}^{\mathrm{BBF}}$,

$$
\frac{\mathrm{d} \mathbf{S}_{a}^{\mathrm{c} B B F}}{\mathrm{~d} t}=\mathbf{\Omega}_{a}^{\mathrm{BBF}} \times \mathbf{S}_{a}^{\mathrm{c} B B F}, \quad a=1,2 .
$$

- We have reexpressed $\Omega_{a}^{\mathrm{BBF}}\left(\mathbf{y}_{b}, \mathbf{v}_{b}\right)$ in terms of ADM variables and compared the result with $\Omega_{a}\left(\mathrm{x}_{b}, \mathbf{p}_{b}\right)$. We have found

$$
\begin{aligned}
& \boldsymbol{\Omega}_{a(2)}^{\mathrm{BBF}}\left(\mathbf{y}_{b}, \mathbf{v}_{b}\right)=\boldsymbol{\Omega}_{a(2)}\left(\mathrm{x}_{b}, \mathbf{p}_{b}\right), \\
& \boldsymbol{\Omega}_{a(4)}^{\mathrm{BBF}}\left(\mathbf{y}_{b}, \mathbf{v}_{b}\right)=\boldsymbol{\Omega}_{a(4)}\left(\mathrm{x}_{b}, \mathbf{p}_{b}\right)+\frac{\mathrm{d} \boldsymbol{\theta}_{a}}{\mathrm{~d} t},
\end{aligned}
$$

where

$$
\boldsymbol{\theta}_{1}=\frac{G}{c^{4} r_{12}}\left(-\frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{4 m_{1}} \mathbf{n}_{12} \times \mathbf{p}_{1}+\frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{2}} \mathbf{n}_{12} \times \mathbf{p}_{2}-\frac{9}{4 m_{1}} \mathbf{p}_{1} \times \mathbf{p}_{2}\right)
$$

- From these results one can deduce that

$$
\boldsymbol{\Sigma}_{a}\left(\mathrm{x}_{b}, \mathbf{p}_{b}, \mathbf{S}_{b}\right)=\mathbf{S}_{a}+\boldsymbol{\theta}_{a}\left(\mathrm{x}_{b}, \mathbf{p}_{b}\right) \times \mathbf{S}_{a} .
$$

The Transformation Between Orbital Degrees of Freedom (1/4)

- One can decompose the transformation \mathbf{Y}_{a} between ADM and harmonic orbital degrees of freedom into spin-independent and spin-dependent terms:

$$
\mathbf{Y}_{a}\left(\mathbf{x}_{b}, \mathbf{p}_{b}, \mathbf{S}_{b}\right)=\mathbf{x}_{a}+\mathbf{Y}_{a}^{\mathrm{o}}\left(\mathrm{x}_{b}, \mathbf{p}_{b}\right)+\mathbf{Y}_{a}^{\text {so }}\left(\mathbf{x}_{b}, \mathbf{p}_{b}, \mathbf{S}_{b}\right),
$$

where the spin-dependent term is of the form

$$
\mathbf{Y}_{a}^{\mathrm{so}}\left(\mathrm{x}_{b}, \mathbf{p}_{b}, \mathbf{S}_{b}\right)=\mathbf{Y}_{a(2)}^{\mathrm{so}}\left(\mathrm{x}_{b}, \mathbf{p}_{b}, \mathbf{S}_{b}\right)+\mathbf{Y}_{a(4)}^{\mathrm{so}}\left(\mathrm{x}_{b}, \mathbf{p}_{b}, \mathbf{S}_{b}\right)+\mathcal{O}\left(c^{-6}\right) .
$$

- The LO spin-dependent part equals

$$
\mathbf{Y}_{a(2)}^{\text {so }}\left(\mathbf{x}_{b}, \mathbf{p}_{b}, \mathbf{S}_{b}\right)=\frac{\mathbf{S}_{a} \times \mathbf{p}_{a}}{2 m_{a}^{2} c^{2}} .
$$

The Transformation Between Orbital Degrees of Freedom (2/4)

- One determines the NLO spin-dependent part by using the method of undetermined coefficients. One thus consideres the most general template for $\mathbf{Y}_{a(4)}^{\text {so }}$, which depends on 12 unknown coefficients:

$$
\begin{aligned}
\mathbf{Y}_{1(4)}^{\mathbf{S O}}\left(\mathbf{x}_{\mathbf{a}}, \mathbf{p}_{\mathbf{a}}, \mathbf{S}_{\boldsymbol{a}}\right)= & -\frac{\mathbf{p}_{1}^{2}}{8 c^{4} m_{1}^{4}} \mathbf{S}_{1} \times \mathbf{p}_{1}+\frac{G m_{2}}{c^{4} r_{12}} \frac{1}{m_{1}}\left(a_{1} \frac{\mathbf{S}_{1} \times \mathbf{p}_{1}}{m_{1}}+a_{2} \frac{\mathbf{S}_{1} \times \mathbf{p}_{2}}{m_{2}}\right. \\
& \left.+\left(a_{3} \frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)}{m_{1}}+a_{4} \frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{2}}\right) \mathbf{n}_{12} \times \mathbf{S}_{1}+\left(a_{5} \frac{\left(S_{1}, n_{12}, p_{1}\right)}{m_{1}}+a_{6} \frac{\left(S_{1}, n_{12}, p_{2}\right)}{m_{2}}\right) \boldsymbol{n}_{12}\right) \\
& +\frac{G}{c^{4} r_{12}}\left(b_{1} \frac{\mathbf{S}_{2} \times \mathbf{p}_{1}}{m_{1}}+b_{2} \frac{\mathbf{S}_{2} \times \mathbf{p}_{2}}{m_{2}}+\left(b_{3} \frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)}{m_{1}}+b_{4} \frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{2}}\right) \mathbf{n}_{12} \times \mathbf{S}_{2}\right. \\
& \left.+\left(b_{5} \frac{\left(S_{2}, n_{12}, p_{1}\right)}{m_{1}}+b_{6} \frac{\left(S_{2}, n_{12}, p_{2}\right)}{m_{2}}\right) \boldsymbol{n}_{12}\right) .
\end{aligned}
$$

The Transformation Between Orbital Degrees of Freedom (3/4)

First Method

- One can compute the coefficients $a_{1}, \ldots, a_{6}, b_{1}, \ldots, b_{6}$ by comparing the ten conserved quantities derived by BBF in harmonic coordinates,

$$
E\left(\mathbf{y}_{a}, \mathbf{v}_{a}, \mathbf{S}_{a}^{\mathrm{cBBF}}\right), \quad \mathbf{P}\left(\mathbf{y}_{a}, \mathbf{v}_{a}, \mathbf{S}_{a}^{\mathrm{cBBF}}\right), \quad \mathbf{J}\left(\mathbf{y}_{a}, \mathbf{v}_{a}, \mathbf{S}_{a}^{\mathrm{cBBF}}\right), \quad \mathbf{G}\left(\mathbf{y}_{a}, \mathbf{v}_{a}, \mathbf{S}_{a}^{\mathrm{cBBF}}\right),
$$

with the ten phase-space Poincaré generators constructed within Hamiltonian formalism. This is done by making replacements

$$
\begin{aligned}
\mathbf{y}_{a} & \rightarrow \mathbf{Y}_{a}\left(\boldsymbol{x}_{b}, \mathbf{p}_{b}, \mathbf{S}_{b}\right) \\
\mathbf{v}_{a} & \rightarrow \mathbf{V}_{a}\left(\boldsymbol{x}_{b}, \mathbf{p}_{b}, \mathbf{S}_{b}\right)=\left\{\mathbf{Y}_{a}\left(\boldsymbol{x}_{b}, \mathbf{p}_{b}, \mathbf{S}_{b}\right), H\left(\boldsymbol{x}_{b}, \mathbf{p}_{b}, \mathbf{S}_{b}\right)\right\} \\
\mathbf{S}_{a}^{\mathrm{cBBF}} & \rightarrow \boldsymbol{\Sigma}_{a}\left(\boldsymbol{x}_{b}, \mathbf{p}_{b}, \mathbf{S}_{b}\right)
\end{aligned}
$$

- The values of the coefficients $a_{1}, \ldots, a_{6}, b_{1}, \ldots, b_{6}$ must fulfill the equations

$$
\begin{aligned}
& E\left(\mathbf{Y}_{a}\left(x_{b}, \mathbf{p}_{b}, \mathbf{s}_{b}\right), \mathbf{v}_{a}\left(x_{b}, \mathbf{p}_{b}, \mathbf{s}_{b}\right), \boldsymbol{\Sigma}_{a}\left(x_{b}, \mathbf{p}_{b}, \mathbf{s}_{b}\right)\right)=H\left(x_{a}, \mathbf{p}_{a}, \mathbf{s}_{a}\right), \\
& \mathbf{P}\left(\mathbf{Y}_{a}\left(x_{b}, p_{b}, S_{b}\right), \mathbf{v}_{a}\left(x_{b}, p_{b}, S_{b}\right), \boldsymbol{\Sigma}_{a}\left(x_{b}, p_{b}, S_{b}\right)\right)=\sum_{a} \mathbf{p}_{a}, \\
& \mathrm{~J}\left(\mathbf{Y}_{a}\left(x_{b}, p_{b}, S_{b}\right), V_{a}\left(x_{b}, p_{b}, S_{b}\right), \boldsymbol{\Sigma}_{a}\left(x_{b}, p_{b}, S_{b}\right)\right)=\sum_{a}\left(x_{a} \times p_{a}+\mathbf{S}_{a}\right), \\
& \mathrm{G}\left(\mathrm{Y}_{\mathrm{a}}\left(x_{b}, \mathrm{p}_{b}, \mathrm{~S}_{b}\right), \mathrm{V}_{\mathrm{a}}\left(x_{b}, \mathrm{p}_{b}, \mathrm{~S}_{b}\right), \boldsymbol{\Sigma}_{a}\left(x_{b}, \mathrm{p}_{b}, \mathrm{~S}_{b}\right)\right)=\mathrm{G}\left(x_{a}, \mathrm{p}_{a}, \mathrm{~S}_{a}\right) .
\end{aligned}
$$

- One obtains a unique set of values for all coefficients $a_{1}, \ldots, a_{6}, b_{1}, \ldots, b_{6}$.

The Transformation Between Orbital Degrees of Freedom (4/4)

Second Method

- One compares the right-hand side of the 2 PN -accurate translational equations of motion,

$$
\frac{\mathrm{d} \mathbf{v}_{a}}{\mathrm{~d} t}=\mathrm{A}_{a}\left(\mathbf{y}_{b}, \mathrm{v}_{b}, \mathrm{~S}_{b}^{\mathrm{c} B B F}\right),
$$

to its direct Hamiltonian recomputation

$$
\mathbf{A}_{\mathbf{a}}=\left\{\mathbf{V}_{\mathbf{a}}, \boldsymbol{H}\right\}=\left\{\left\{\mathbf{Y}_{\mathbf{a}}, H\right\}, H\right\} .
$$

(1) PN-Counting of the Spin-Dependent Effects

(3) 3-Dimiensional Euclidean Spin Vector in Curved Spacetime and its Angular Velocity
(4) Deriving the Spin-Orbit Hamittonian from the Angular Velocity of the Spin 3-Vector
 Coordinates
6) Poincaré Invariance of the Spin-Orbit Hamiltonians
(1) COMPARIGON WITH HARMONIG-COORDINATE-BASED RIESTITS
(8) BIBLIOGRAPHY

BIBLIOGRAPHY

(1) G. Faye, L. Blanchet, and A. Buonanno,

Higher-order spin effects in the dynamics of compact binaries. I. Equations of motion, Phys. Rev. D 74, 104033 (2006) [arXiv:gr-qc/0605139].
(2) L. Blanchet, A. Buonanno, and G. Faye,

Higher-order spin effects in the dynamics of compact binaries. II. Radiation field, Phys. Rev. D 74, 104034 (2006) [arXiv:gr-qc/0605140], Erratum: ibid. 75, 049903(E) (2007).
(3) T. Damour, P. Jaranowski, and G. Schäfer,

Hamiltonian of two spinning compact bodies with next-to-leading order gravitational spin-orbit coupling, Phys. Rev. D 77, 064032 (2008) [arXiv:0711.1048 [gr-qc]].
4 T. Damour, P. Jaranowski, and G. Schäfer,
Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling, Phys. Rev. D 78, 024009 (2008) [arXiv:0803.0915 [gr-qc]].

