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The Spin of a Rotating Body

The spin of a rotating body is of the order

S ∼ mRvspin,

where m and R denote the mass and typical size of the body, respectively,
and vspin represents the velocity of the body’s surface.
We are interested in compact bodies, so

R ∼
Gm

c2 , and then S ∼ Gm2 vspin

c2 .



Nomenclature on PN Spin-Dependent Effects

Formal counting: PN orders are counted in terms of 1/c originally present in the
Einstein equations, i.e. the spin variables do not contribute to counting of 1/c.
Then, e.g., spin-orbit effects in EOM start as follows:

1PN + 2PN + · · · .

Maximally rotating bodies: vspin ∼ c =⇒ S ∼
Gm2

c
= O(c−1).

Spin-orbit (i.e. linear in S) effects in EOM:

1.5PN + 2.5PN + · · · ;

spin-spin effects in EOM:

2PN + 3PN + · · · .

Slowly rotating bodies: vspin � c =⇒ S ∼
Gm2vspin

c2 = O(c−2).

Spin-orbit (i.e. linear in S) effects in EOM:

2PN + 3PN + · · · ;

spin-spin effects in EOM:

3PN + 4PN + · · · .



Words are Better than Numbers

Just words, no 1/c counting:

leading-order (LO)
+ next-to-leading-order (NLO)
+ next-to-next-to-leading-order (NNLO) + · · · .
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General Remarks and Summary

Generalized ADM formalism for spinning objects is described in Section 7 of 2018
Schäfer/Jaranowski Living Reviews in Relativity article and will not be discussed
here.
We present a novel Hamiltonian formulation of the spin-orbit interaction of two
spinning compact bodies, valid to linear order in the spins of the bodies (and to
any PN order in the orbital part of the interaction).
It allows one to derive spin-orbit contribution to the orbital equations of motion
without having to solve Einstein’s field equations with a spin-dependent
energy-momentum tensor. One does not use Tulczyjew’s pole-dipole
energy-momentum tensor. One does not use the Papapetrou translational
equations of motion as well.
Devised and used by Damour, Jaranowski & Schäfer (2008)
to compute leading-order and next-to-leading-order two-body spin-orbit
Hamiltonians. Then extended by Steinhoff, Hergt & Schäfer (2008)
to compute next-to-leading-order spin(1)-spin(2) Hamiltonian.
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3-Dimensional Euclidean Spin Vector (1/2)

The translational and rotational equations of motion of a spinning particle
in curved spacetime, to linear order in the spin, read:

m
Duµ

dτ
=

1
2
εαβλρ
√
−g

S̃µuβuνR
ν
µλρ,

DS̃µ

dτ
= 0.

Here uµ is normalized 4-velocity of the spinning particle,

uµ := c−1 dxµ

dτ
, uµuµ = −1,

τ denotes the proper time parameter along the world line xµ(τ),
m and S̃µ is mass and 4-dimensional spin vector of the spinning particle,
D is the 4-dimensional covariant derivative,
Rνµλρ the Riemann curvature tensor, g := det(gµν),
εαβλρ is the completely antisymmetric (flat-spacetime) Levi-Civita symbol
with ε0123 = 1.
We shall not need to consider the translational equations of motion.



3-Dimensional Euclidean Spin Vector (2/2)

The 4-dimensional length of S̃µ is preserved along the world line:

DS̃µ

dτ
= 0 =⇒ gµν S̃µS̃ν = s2, s2 = const.

Making use of covariant spin supplementary condition

S̃µu
µ = 0 =⇒ S̃0 = −S̃iv i

(
v i := c−1dx i/dt

)
,

one gets
gµν S̃µS̃ν = G ij S̃i S̃j = s2,

where G ij is a positive-definite symmetric matrix:

G ij := g ij − g0iv j − g0jv i + g00v iv j .

The positive-definite symmetric matrix G ij

admits a unique positive-definite symmetric square root,
say H ij = H ji , such that

G ij = H ikHkj .

One defines a constant-in-magnitude 3-dimensional Euclidean spin vector Si ≡ S i

as
Si := H ij S̃j , SiSi = s2.



Spin Precession Equation

Evolution equation for the spin vector Si :

dSi
dt

= V ijSj , V ij :=
dH ik

dt
(H−1)kj + H ik Ṽ kl (H−1)lj ,

Ṽ ij := c
(

Γj
i0 + Γj

ikv
k − Γ0

i0v
j − Γ0

ikv
jvk
)
.

The matrix V ij is antisymmetric, V ij = −V ji , so one can introduce
the 3-dimensional Euclidean pseudo-vector
of the angular velocity of rotation of the spin,

Ωi := −
1
2
εijkV

jk (so V ij = −εijkΩk ).

One gets a Newtonian looking spin precession equation:
dS
dt

= Ω× S.
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Spin-Orbit Hamiltonian

Variables in phase space of 2 interacting spinning particles:

xa = (x ia), pa = (pai ), Sa = (Sai ) (a = 1, 2, i = 1, 2, 3).

The Poisson brackets relations:

{x ia, pbj} = δabδ
i
j , {Sai , Sbj} = δabεijkSak , zero otherwise.

One looks for a Hamiltonian of the general form:

H(xa, pa, Sa) = Ho(xa, pa) + Hso(xa, pa, Sa),

Ho is the orbital part and Hso is the spin-orbit part of H.
One can always write Hso in the general form

Hso(xa, pa, Sa) =
∑
a

Ωa(xb, pb) · Sa,

Ωa = (Ωi
a) depends on the orbital degrees of freedom (xa, pa),

but does not depend on the spins Sa.
Such introduced Ωa is not only a notation for the coefficient of Sa in Hso,
but it is equal to the angular velocity with which the spin vector Sa precesses.
To show this it is enough to compute dSa/dt,

dSa

dt
= {Sa,Hso(xb, pb, Sb)} = Ωa(xb, pb)× Sa.



The Arbitrariness in the Definition of the Conserved Spin:
a “Gauge Symmetry” [Under a Local SO(3) Group] (1/2)

The condition SiSi = s2 is unchanged, if

Si → S ′i , with S ′i = RijSj ,

where R is an arbitrary 3-dimensional Euclidean rotation matrix.
An infinitesimal rotation,

Rij = δij − θij ,
where θij is a small antisymmetric matrix, leads to

δS ≡ S′ − S = θ × S, θi ≡
1
2
εijkθjk .

An infinitesimal canonical transformation g in the phase space (x, p, S)
acts on any phase-space function f according to

δf = {f , g}.

A canonical transformation of the form

g(x, p, S) := θ(x, p) · S

transforms the spin vector according to

δS = {S, g} = θ × S,

which reproduces the effect of an infinitesimal local rotation.



The Arbitrariness in the Definition of the Conserved Spin:
a “Gauge Symmetry” [Under a Local SO(3) Group] (2/2)

The canonical transformation g also acts on the orbital degrees of freedom (x, p):

x→ x′ = x + δx = x + {x, g},
p→ p′ = p + δp = p + {p, g}.

Dynamics of the system in new variables (x′, p′, S′) is equivalent to original
dynamics, but with the Hamiltonian

H′
(
x′, p′, S′

)
:= H

(
x(x′, p′, S′), p(x′, p′, S′), S(x′, p′, S′)

)
.

The corresponding change of the spin angular velocity:

Ω→ Ω′ = Ω +
dθ
dt
.
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Computation of Precession Angular Velocities (1/2)

One splits the 4-dimensional metric gµν into 3-dimensional objects (α, βi , γij ),

α := (−g00)−1/2, βi := g0i , γij := gij ,

and one employs the ADMTT coordinate conditions

γij =

(
1 +

1
8
φ

)4
δij + hTT

ij , πii = 0 (πij = π̃ij + πij
TT).

After PN expansion of all quantities the angular velocity is decomposed as

Ωi
a = Ωi

a(2) + Ωi
a(4) +O(c−6),

where

Ωi
a(2) ∝ G/c2 (LO contribution),

Ωi
a(4) ∝ G/c4 + G2/c4 (NLO contribution).



Computation of Precession Angular Velocities (2/2)

The LO and NLO angular velocities:

Ωi
a(2)/c =

1

2
εijk Rega

{
β(3)j,k +

(
α(2),j −

1

2
φ(2),j

)
vka(1)

}
,

Ωi
a(4)/c =

1

2
εijk Rega

{
β(5)j,k + β(3)kα(2),j −

1

2
φ(2)β(3)j,k +

1

16
φ(2)φ(2),j v

k
a(1)

−
1

2
φ(4),j v

k
a(1) − hTT

(4)kl,j v
l
a(1) + (α(4),j − α(2)α(2),j )vka(1) + π̃

jl
(3)

vka(1)v
l
a(1)

−
1

2
α(2),k v

j
a(1)

vla(1)v
l
a(1) +

1

4

v̇
j
a(1)

c
vka(1)v

l
a(1)v

l
a(1) +

(
α(2),j −

1

2
φ(2),j

)
vka(3)

}
.

Computation relies on:
(i) insertion of the explicit form of the 2PN-accurate metric describing

two spinless particles (one needs to know φ(2), φ(4), π̃ij
(3)

, hTT
(4)ij

,
α(2), α(4), β(3)i , β(5)i ).

(ii) expressing the velocities v i
a in terms of the canonical variables,

(iii) Hadamard’s “partie finie” regularization of the self-interaction terms.



The Result: LO and NLO Spin-Orbit Hamiltonians

The LO and NLO angular velocities in terms of xa and pa:

Ω1(2) =
G

c2 r2
12

( 3m2
2m1

n12 × p1 − 2n12 × p2
)
,

Ω1(4) =
G2

c4 r3
12

{(
−

11

2
m2 − 5

m2
2

m1

)
n12 × p1 +

(
6m1 +

15

2
m2
)

n12 × p2

}

+
G

c4 r2
12

{(
−

5m2p2
1

8m3
1
−

3(p1 · p2)

4m2
1

+
3p2

2
4m1m2

−
3(n12 · p1)(n12 · p2)

4m2
1

−
3(n12 · p2)2

2m1m2

)
n12 × p1

+

( (p1 · p2)

m1m2
+

3(n12 · p1)(n12 · p2)

m1m2

)
n12 × p2 +

( 3(n12 · p1)

4m2
1

−
2(n12 · p2)

m1m2

)
p1 × p2

}
.

The spin-orbit Hamiltonians to LO and NLO orders:

Hso(xa, pa, Sa) =
1
c2 HLO

so (xa, pa, Sa) +
1
c4 HNLO

so (xa, pa, Sa) +O(c−6),

1
c2 HLO

so (xa, pa, Sa) =
∑
a

Ωa(2)(xb, pb) · Sa,

1
c4 HNLO

so (xa, pa, Sa) =
∑
a

Ωa(4)(xb, pb) · Sa.

The translational equations of motion of two spinning particles:

ẋa =
∂H(xb, pb, Sb)

∂pa

, ṗa = −
∂H(xb, pb, Sb)

∂xa
.
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Poincaré Algebra

One should prove the existence of ten phase-space generators

H(xa, pa, Sa), Pi (xa, pa, Sa), Ji (xa, pa, Sa), Gi (xa, pa, Sa),

whose Poisson brackets reproduce the Poincaré algebra:

{Pi ,Pj} = 0, {Pi ,H} = 0, {Ji ,H} = 0,

{Ji ,Pj} = εijk Pk , {Ji , Jj} = εijk Jk ,

{Ji ,Gj} = εijk Gk ,

{Gi ,H}= Pi ,

{Gi ,Pj}=
1
c2 H δij ,

{Gi ,Gj}= −
1
c2 εijk Jk .



Poincaré Algebra Generators

The translation Pi and rotation Ji generators are realized as

Pi (xa, pa, Sa) =
∑
a

pai , Ji (xa, pa, Sa) =
∑
a

(
εik` x

k
a pa` + Sai

)
.

The Hamiltonian H(xa, pa, Sa) = Ho(xa, pa) + Hso(xa, pa, Sa), where

Ho(xa, pa) = (m1 + m2)c2 + HN
o (xa, pa) +

1
c2 H1PN

o (xa, pa)

+
1
c4 H2PN

o (xa, pa) +O(c−6),

Hso(xa, pa, Sa) =
1
c2 HLO

so (xa, pa, Sa) +
1
c4 HNLO

so (xa, pa, Sa) +O(c−6).

The center-of-mass vector G(xa, pa, Sa) = Go(xa, pa) + Gso(xa, pa, Sa), where

Go(xa, pa) =
∑
a

maxa +
1
c2 G1PN

o (xa, pa) +
1
c4 G2PN

o (xa, pa) +O(c−6),

Gso(xa, pa, Sa) =
1
c2 GLO

so (xa, pa, Sa) +
1
c4 GNLO

so (xa, pa, Sa) +O(c−6).

The LO term is known from the special-relativistic limit,

GLO
so (xa, pa, Sa) = −

S1 × p1
2m1

+ (1↔ 2).



The Method of Undetermined Coefficients

The most general form of GNLO
so can a priori depend on 8 unknown dimensionless

coefficients g1, . . . , g8 [(V1,V2,V3) := V1 · (V2 × V3) = εijkV
i
1V

j
2V

k
3 ]:

GNLO
so =

p2
1

8m3
1

S1 × p1

+
Gm2
r12

{
g1

S1 × p1
m1

+ g2
S1 × p2

m2
+

(
g3

(n12 · p1)

m1
+ g4

(n12 · p2)

m2

)
n12 × S1

+
(
g5

(
S1, n12, p1

)
m1

+ g6

(
S1, n12, p2

)
m2

)
n12

}

+
Gm2
r2
12

{
g7

(
S1, n12, p1

)
m1

+ g8

(
S1, n12, p2

)
m2

}
x1 + (1 ↔ 2).

The generators Pi , Ji , H, and Gi in the forms given above exactly satisfy
the relations {Pi ,Pj} = 0, {Pi ,H} = 0, {Ji ,H} = 0, {Ji ,Pj} = εijk Pk ,
{Ji , Jj} = εijk Jk , {Ji ,Gj} = εijk Gk .
There exist unique values of the coefficients g1, . . . , g8 ensuring the fulfillment of
the relations {Gi ,H} = Pi , {Gi ,Pj} = 1

c2 H δij , {Gi ,Gj} = − 1
c2 εijk Jk .
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The Transformation Between the ADM and Harmonic Variables

The NLO spin-dependent contributions in the translational and rotational
equations of motion of two spinning particles, were computed in harmonic
coordinates by BBF (Blanchet, Buonanno, and Faye, 2006).
BBF use two different spin variables:
spin variables SBBF

a with nonconserved Euclidean magnitudes,
and spin variables Sc BBF

a with conserved Euclidean lengths.
We look for the explicit transformation between
the ADM variables (xa, pa, Sa),
and the harmonic variables (ya, va := ẏa, Sc BBF

a ):

ya(t) = Ya(xb(t), pb(t), Sb(t)),

Sc BBF
a (t) = Σa(xb(t), pb(t), Sb(t)).



The Transformation Between Spin Variables

BBF computed the angular velocity vector ΩBBF
a ,

dSc BBF
a

dt
= ΩBBF

a × Sc BBF
a , a = 1, 2.

We have reexpressed ΩBBF
a (yb, vb) in terms of ADM variables

and compared the result with Ωa(xb, pb). We have found

ΩBBF
a(2) (yb, vb) = Ωa(2)(xb, pb),

ΩBBF
a(4) (yb, vb) = Ωa(4)(xb, pb) +

dθa

dt
,

where

θ1 =
G

c4r12

(
−

(n12 · p2)

4m1
n12 × p1 +

(n12 · p2)

m2
n12 × p2 −

9
4m1

p1 × p2

)
.

From these results one can deduce that

Σa(xb, pb, Sb) = Sa + θa(xb, pb)× Sa.



The Transformation Between Orbital Degrees of Freedom (1/4)

One can decompose the transformation Ya between ADM and harmonic orbital
degrees of freedom into spin-independent and spin-dependent terms:

Ya(xb, pb, Sb) = xa + Yo
a (xb, pb) + Yso

a (xb, pb, Sb),

where the spin-dependent term is of the form

Yso
a (xb, pb, Sb) = Yso

a(2)(xb, pb, Sb) + Yso
a(4)(xb, pb, Sb) +O(c−6).

The LO spin-dependent part equals

Yso
a(2)(xb, pb, Sb) =

Sa × pa

2m2
ac

2 .



The Transformation Between Orbital Degrees of Freedom (2/4)

One determines the NLO spin-dependent part by using the method of
undetermined coefficients. One thus consideres the most general template
for Yso

a(4), which depends on 12 unknown coefficients:

Yso
1(4)(xa, pa, Sa) = −

p2
1

8c4m4
1

S1 × p1 +
Gm2
c4r12

1

m1

(
a1

S1 × p1
m1

+ a2
S1 × p2

m2

+

(
a3

(n12 · p1)

m1
+ a4

(n12 · p2)

m2

)
n12 × S1 +

(
a5

(
S1, n12, p1

)
m1

+ a6

(
S1, n12, p2

)
m2

)
n12

)

+
G

c4r12

(
b1

S2 × p1
m1

+ b2
S2 × p2

m2
+

(
b3

(n12 · p1)

m1
+ b4

(n12 · p2)

m2

)
n12 × S2

+

(
b5

(
S2, n12, p1

)
m1

+ b6

(
S2, n12, p2

)
m2

)
n12

)
.



The Transformation Between Orbital Degrees of Freedom (3/4)

First Method
One can compute the coefficients a1, . . . , a6, b1, . . . , b6 by comparing the ten
conserved quantities derived by BBF in harmonic coordinates,

E
(
ya, va, Sc BBF

a ), P
(
ya, va, Sc BBF

a ), J
(
ya, va, Sc BBF

a ), G
(
ya, va, Sc BBF

a ),

with the ten phase-space Poincaré generators constructed within Hamiltonian
formalism. This is done by making replacements

ya → Ya(xb, pb, Sb)

va → Va(xb, pb, Sb) = {Ya(xb, pb, Sb),H(xb, pb, Sb)}

Sc BBF
a → Σa(xb, pb, Sb)

The values of the coefficients a1, . . . , a6, b1, . . . , b6 must fulfill the equations
E
(
Ya(xb, pb, Sb ), Va(xb, pb, Sb ),Σa(xb, pb, Sb )

)
= H(xa, pa, Sa),

P
(
Ya(xb, pb, Sb ), Va(xb, pb, Sb ),Σa(xb, pb, Sb )

)
=
∑
a

pa,

J
(
Ya(xb, pb, Sb ), Va(xb, pb, Sb ),Σa(xb, pb, Sb )

)
=
∑
a

(
xa × pa + Sa

)
,

G
(
Ya(xb, pb, Sb ), Va(xb, pb, Sb ),Σa(xb, pb, Sb )

)
= G(xa, pa, Sa).

One obtains a unique set of values for all coefficients a1, . . . , a6, b1, . . . , b6.



The Transformation Between Orbital Degrees of Freedom (4/4)

Second Method
One compares the right-hand side of the 2PN-accurate translational equations of
motion,

dva

dt
= Aa(yb, vb, Sc BBF

b ),

to its direct Hamiltonian recomputation

Aa = {Va,H} =
{
{Ya,H},H

}
.
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