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© CENERAL REMARKS AND SUMMARY
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GENERAL REMARKS AND SUMMARY

@ We consider a system of two point masses, i.e. monopolar, pointlike bodies,
which interact gravitationally according to general relativity theory. Spin- and
tidal-related effects will not be discussed here.

@ We model point masses by means of Dirac § distributions.
@ We employ the ADM canonical formalism in D = d + 1 spacetime dimensions.

@ We work in asymptotically flat (d + 1)-dimensional spacetime
and use asymptotically Minkowskian reference frame with coordinates

XX =ct, x=(...,x9).

@ To solve (perturbatively) equations for the field degrees of freedom, we use
time-symmetric (half-retarded half-advanced) Green function for conservative
dynamics and retarded one for dissipative dynamics.

@ We unambiguously computed conservative Hamiltonians at Newtonian, 1PN,
2PN, 3PN, and 4PN orders and dissipative Hamiltonians at 2.5PN and 3.5PN
orders.

@ J-sources lead to ultraviolet (UV) divergences, i.e., divergences at the location of
the particles. We control them by means of dimensional regularization (DR).

@ For conservative dynamics, near-zone infrared (IR) divergences, linked to
nonlocal-in-time tail effects, are analytically regulated using a new (i.e., different
from DR-related one) length scale. The result of regularization is ambiguous and
the ambiguity is resolved by using a beyond-near-zone information.




& Usage of d-sources considerably
simplifies computations.

& Effacement principle

(Damour 1983): dimensions

and internal structure of compact
and nonrotating bodies enter their
EOM only at the 5PN order.

& One can use Js to model source

terms for black-hole spacetimes, e.g.

the Brill-Lindquist (1963) solution
of time-symmetric two-black-hole
initial value problem (Jaranowski &
Schafer 1999).

& For two-body systems d-sources
together with dimensional
regularization give unique
conservative EOM up to the 4PN
order and made it possible to
calculate gravitational-wave
luminosities up to the 4.5PN order.

FIc. 1. A two-dimensional analog of the Sch ild-K ruskal
manifold is shown isometrically imbedded in fiat three-space. The
figure shows the curvature and topology of the metric

ds*= (14-m/2r)* (dr+1'de?).
The sheets at the top and bottom of the funnel continue to infinity

and represent the asymptotically flat regions of the manifold
(r—0, r—w).
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Fic. 2. A two-dimensional analog of the hypersurface of time
symmetry of a manifold containing two “throats” is shown iso-
metrically imbedded in flat three-space. The figure illustrates the
curvature and topology for a system of two “particles” of equal
mass m, and separation large compared to m, described by the
metric

ds*= (14-m/2ry+m/2r5)*ds .
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DIMENSIONAL-REGULARIZATION LENGTH SCALE AND UNITS

@ Dimensional regularization introduces a natural length scale £,
which relates the Newtonian Gy (valid in d = 3 space dimensions)
and the D-dimensional Gp (D = d + 1, valid in d space dimensions)
gravitational constants,

Gp = Gn 4y, e:=d—3.

@ Units: quite often ¢ = 1 and Gp = 1/(167).




Particle labels:  a,b € {1,2},

masses of the particles:  m,,

position vectors of the particles: x5 = (x2,...,x%),
linear momentum vectors of the particles:  p, = (Pa1, .- -, Pad)-
For any d-vectors v = (v!,...,v?) and w = (w?!,..., w):

vowi=ovind, vl = Vo
Iy =X—Xa, r3:=]|ra|, mny:=rs/r;

fora# b: rupi=Xa—Xp, lap:i= |rab|7 Nap = rab/ralr




A (d + 1)-SPLITTING OF SPACETIME METRIC g,

ds® = guudxtdx” = —(Ndt)? + y;(dx’ + N dt)(dx + M dt),
where N and N' are respectively lapse and shift functions,

vi=gj Ni=(—g%®)"2 N =+IN with N;:= gy,
here v is the metric inverse to v (vivi = &%),

:= det(;);

lowering and raising of spatial indices is with ;.




CANONICAL MATTER+FIELD VARIABLES

Canonical matter variables:
1 d
Xa = (X5,...,x5)
? ’ ’ 8= 1,2
P. = (Pat, - - -, Pad),
Canonical field variables:
Yij = &ijs
= (KT — Ay Kyy),

Kijj is the extrinsic curvature of the hypersurface t = const.




ADM HAMILTONIAN

@ The full Einstein field equations in D dimensions in an asymptotically flat
space-time and in an asymptotically Minkowskian coordinate system
are derivable from the Hamiltonian

H[xa, P, vijs 0, N, N'] = /ddx (NH — N'H;) + 7{ d7S; (v — vk,
. I

i% denotes spacelike infinity and d9=1S; is the (d — 1)-dimensional
out-pointing surface element there.

@ The super-Hamiltonian H and super-momentum #; are defined as follows:
H(xa,p,, 755, 77) = VAN (T® —26%)
Hi(xa, 5,755, ) := VAN (T — 2G7) .

where TH” and GH" denote the energy-momentum and the Einstein tensor,
respectively,

CONSTRAINT EQUATIONS

The lapse and shift functions are Lagrangian multipliers and deliver the Hamiltonian
and momentum constraint equations of the Einstein theory,

H=0, i =0.




2-POINT-MASS ENERGY-MOMENTUM TENSOR

@ Source terms for the constraint equations are derived from the 2-point-mass
energy-momentum tensor

2

B (xH) ug' uy d+1 (b _ gn(r .
T Z’"ai/ Vel )

T, is the proper time along the world line x* = £4'(75) of the ath particle,
and ug ;= d&S /dTa.




CONSTRAINT EQUATIONS FOR 2-POINT-MASS SYSTEMS

@ The constraint equations:

1 L (’YU’TJ
VAR — — [ ik v m¥ k-
oA Z

2
—2DjmY = Zpaj 6d(x — Xa),
a=1

R is the spatial scalar curvature of the hypersurface t = const,
D; is the spatial d-dimensional covariant derivative
(actmg on a tensor density of weight one),

7’; 5= ,,Jeg(xa) is perturbatively unambigously defined and finite

(at least up to the 4PN order).

. Palpajer 5 (x —xa),




FIxXING THE GAUGE: ADMTT GAUGE (1/2)

@ The ADM Transverse-Traceless (TT) gauge:

d—2 \*=2 TT i
'y;j:(l-l-m@) 5;‘j+h;j , m =0,

where hi T =0 and 9;h] T = 0.
@ Splitting of the field momentum:
wl = F(V9) + wd,
FI(VK) =9,V + 4,V — % 8T o vk,

where 7/l = 0 and 9;m.. = 0.

The super/subscript TT denotes the application of the d-dimensional
(spatially nonlocal) TT-projection operator:
TT TTkl
f;'j = 6,] fuis

1 1
where 5;Tkl = E(éikéﬂ =F 6[/(5jk) = ﬁ&-jé“

1 _
= 5(5ik3j5/ + 510,09k + 6190k + 6 0;9)A"

1 1 d—2 5
+ m((ﬁyak@/ + 6k[6,‘6j)A + maiajakB,A .




FIXING THE GAUGE: ADMTT GAUGE (2/2)

@ Asymptotic behavior for r — oco:

b2 pTT L SN S S
P d—2 =27 pd—1° "TT T 41

@ After PN expansion of the retardations in the field functions one gets new
functions which behave badly for r — co:

hij(t — r,n) 1
hE:T(t7 nr) = U,T +O( rdfl)
hi(t,n) 1. 1

= — hy(t,n)r¥=9 + Ehij-(t,n)r47d+---+(9(

rd—2 pd—1 )-

This is the source of infrared divergences.




A PERTURBATIVE SOLVING OF THE CONSTRAINTS (1/3)

@ ¢ and V' are expressed in terms of (x,,p,, h:.jlfT el

, ) by a perturbative solving

of the constraint equations—this is done by the PN expansion of ¢ and V/,
which is slow-motion and weak-field approximation, so we assume that

v2 Gpm

B s
Working with ¢ = 1 units we thus have v = O(c~!) and m = O(c2).
@ One take into account that
ma~ O(c™?), pa~O(cT?), 6~ O(c7?),
hiT ~O(c™), 7~ Viho(eT?), who~0(c7d).

@ The PN expansion of ¢ and V' read (the numbers in parentheses denote the
formal order in 1/c):

$=dp)t @+, VI=Vo+ Vet

@ The constraints yield a system of elliptic equations for ¢ and V',
which has the structure (h;FT and 7. enter the ellipsis)

Ap=—> m(1+ )6 x—x)+ -,

i 2 j 1
AV +<1,g> a,-ajV’:*Eza:(paf+"')5d(xfxa)+....




A PERTURBATIVE SOLVING OF THE CONSTRAINTS (2/3)

@ The 3PN-accurate conservative matter Hamiltonian density can be expressed in
terms of the six functions: ¢(2), 5(4)1, 5(4)2, 5(4),-1-, V('3), ha’)ru

@ They satisfy the equations (0. = ¢9(x — x.)):

—Zmaéaa
a
A Vi + (1 ) auv(f3 = Zpa, 8a,

2
P PaiPaj
DS =D 202 ASup=0@)d_ mids ASuy =) = =0

m,
a a 2 a

PaiP. d-2 o
hiays = ( 25— 2(d— 1)8,-¢(2)3j¢(2)) '




A PERTURBATIVE SOLVING OF THE CONSTRAINTS (3/3)

@ Using the relations:

A15, = —p 2 (N — w)
- a T )

47d/2

A2
—1.) ra

r=—3a
2 (A+2)(A+d)

one can find in d dimensions ¢(2), ¢(4), V(i3), 5(4), 5(4)0-, and the quadratic in

T

(4)ij

e Eg., ¢(2) = - Z m, ATLS, = K/Z marsfd.
a a

momenta part of h




REDUCED MATTER+FIELD ADM HAMILTONIAN

@ If the constraint equations and the gauge conditions are both satisfied,
the total matter+field ADM Hamiltonian can be written in its reduced form:

Hieq [xa.pa,h;}vl‘. '“ Z/ddx Ay xa pa,h,-- i TTT]

@ The equations of motion for the particles:
6Hred P 5Hred
—red 4 e

k] - :1,2
0%’ 0 o, (2 )

P, = —

Evolution equations for the field degrees of freedom:

0 TT TTk/(SHred a y TT[jéHred
ot v i sk Bt T = 0 ShE™”

@ There is no involvement of lapse and shift functions in the equations of motion
and in the field equations for the independent degrees of freedom.
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FIELD EQUATIONS (1/2)

@ For computing the 4PN-accurate reduced Hamiltonian we need to use field
equations which follow from the 3PN-accurate part of the Hamiltonian:

red TT i 1 _ d . TT _ij
HggpN [Xavpa7hij > T ] = /d X'h§3PN(xv xaypa7hij y T )
where

hSSPN (X§ Xa; Pa» h’;‘—‘T7 W%T = Z mada + h(4) (X; Xa, pa)7
a

+ o) (i Xa, 2,) + ie) (¥ Xa, B, ) + hiao) (%i Xa, gy b © s 7).

@ For this Hamiltonian the field equations take the form

. Oh<3pN -
TT _ sTTk 97< 7
hij = (SU onk +0(c™"),
TT
. o [ Oh<spn Oh<3pN Oh<spN =
P — —(5TTU{ = = = + Gi +O(C 8)'
TT = %\ TonIT ohg Jm \OhG T )




FIELD EQUATIONS (2/2)

@ More explicitly,

2(d —2 - _
hTT 6TTkl{2 K (d_1)¢(2)7r(k3’)}+0(c 7,

1 1
”%T = 5:‘?”’{55(4)14 - EAhET + Bsyi
1 ( TT -8
+7 ) Ah TiA D2yhyg + O(c™°).
2(d —1) ( @ )
@ By combining these two equations one gets the equation for hET,
Or T =SiT, O:=-07+A4,

where the source term is

2(d —
STT 6TTI<I{S( i+ 2By + ( Bt(q‘) )

1 _
b (¢(2)AhE,T + A(¢(2)hE,T)) } +0O(c78).

@ After solving field equation for hET one can obtain W%T:
b 1 d

: -2
AT TTI ~ ki -7
ﬂ-TTZEhfj +01_150' <¢2 )+O( ):
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CONSERVATIVE MATTER HAMILTONIAN

From this point on, we limit ourselves to the conservative dynamics.

@ We further reduce of the Hamiltonian by performing the Legendre transformation
with respect to the field variables. This leads to the Routhian,

R[xos Doy BT T = oo T, BET] = [ ¥l T

@ Elimination of the field variables hTT hTT they are “integrating out”, i.e

replaced by time-symmetric solutlons (as a functional of the particle variables) of
their field equations,
Hcons[Xaa Pa] = R [Xa, paa l"slynl‘”j(xY Xa, pa)’ hslyrily(xv Xa, pa)] ?

where time derivatives of x; and p, are eliminated through the use of
lower-order equations of motion.

@ The reduced action for the particles (in Hamiltonian form) is

S= Z/pa ~dx, — /dt HCOnS[X37pa]'
a




CONSERVATIVE MATTER HAMILTONIAN: NEAR-ZONE CONTRIBUTION (1/2)

Equations for the field degrees of freedom can be combined to get
Oh; T =S, O:=-c20}+A,
Si(x, t) = S (x — xa(t), p,(t), hy " (x, t), Whp(x, 1)).
Time-symmetric and near-zone solution of the field equation,

_ T 1 _ - iy
h;I)‘”’E E?C = (Dsb’lms’/) = 5 <(Dadlv + Dret)slj>

(A7 + 287202 + c*a7%00 +--)5))

TT

After making the PN expansion of the source terms, S;j = Su);; + S(e)ij + - - -, one gets

TT loc _ pTT TT TT _ ¢TT TT _ ¢cTT | iTT
hoymi ™ (X, 8) = hiay;s (%, 8) + higyjs (5, 8) + -, Ay = Sqayi Ahgy = S(e)ij + hayi-
The functions h(j,;;ll;- and hEl(;;Fij are enough to compute 4PN-accurate conservative Hamiltonian.
Slow decay of ha)q;j(x, t) (like 1/r in d = 3) and divergence of h;g;l;j(x, t) (like r in d = 3)
for r := |x| — oo leads to infrared (IR) divergences. To regularize them one needs to
introduce a new length scale sir.




ZONE CONTRIBUTION (¢

'R HAMILTONIAN: N

CONSERVATIVE M

T'T loc g
@ After replacing hsymu by hsymij one gets the near-zone conservative

Hamiltonian, which is local in time:
(N arar
Hnear—zone(xas Pa) =R [Xa: Pas hsym IUOC(X; Xa, pa) hsym ‘UOC(X; Xa, pa)} :
@ The Hamiltonian Hhear-zone develops both UV and IR divergences:

Reg{ Hnear—zone (Xa, Pa) } = RegUV { H;Eaﬁoz%vne (X37 Pa) }
+ Re SIR {H;Eaﬁh;one (XB’ pa)}

The result of the IR regularization depends on the scale s|g.




CONSERVATIVE MATTER HAMILTONIAN: TAIL CONTRIBUTION (]

@ Work of Blanchet & Damour (1988):

— starting at the 4PN level it is impossible to express (in any gauge)
the near-zone metric as a functional of the instantaneous state of
the source: 4PN metric is the sum of an instantaneous functional of
the source variables and of a nonlocal-in-time tail contribution;

— to compute the near-zone effect of tail-transported correlations
a technique of matching between the exterior zone r > ri»
and the near-zone r < \/(27) was employed;

— its result depends on an arbitrary length scale sy
which plays the role of an intermediate scale between
the scale of the system ri» and the reduced wavelength A\/(27),

ro <K Sail < A/(27).




CONSERVATIVE MATTER HAMILTONIAN: TAIL CONTRIBUTION (2/2)

@ The time-symmetric part of the 4PN tail metric (Blanchet & Damour 1988)
contributes to the two-body EOM through a nonlocal-in-time Hamiltonian
(Damour, Jaranowski, & Schifer 2014) in d = 3 dimensions:

1 G2M . T dv ...
Reg® { Hyphd™[xa, P, } = 5 8 i g Pstta”/c/ vl l5(t +v),
— 00

where Pf1 denotes a Hadamard partie finie with time scale T := 2s.,;/c,

prr [T = [ Tld—| (8(v) + 8(—v) — 28(0))

|v| _
=T dv +oo dv
+/ I / - &W)
— o0

and [ is the Newtonian quadrupole moment of the blnary system:

IU::Zma(xxJ U2>.

a




CONSERVATIVE MATTER HAMILTONIAN

@ One identifies the IR-related and the tail-related regularization length scales:
SIR = Stail = S-

@ The total conservative Hamiltonian is the sum of the near-zone contribution
and the time-symmetric part of the tail contribution:

Hcons[xavpa] = Hnear*ZOﬂé(Xa«, Pa) + Heail sym [xa,pa].
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RATE DISSIPATIVE MATTER HAMILTONIAN (1/2)

More refined treatment can be found in Section 3 of 2018 Schafer/Jaranowski
Living Reviews in Relativity article.

Now we use the near-zone expansion of the retarded solutions of the field
equations,

HT = R WS Ay + T+ O
W"}‘T (5)U+ ()U+O( —7)

The split of the total reduced Hamiltonian:

TT i __ pymat int TT __ij
hjj ?WTT} = HZ3 5pn (Xaﬁpa) + HZ5 5pN [xa,pa, hj; 7”TT]

+ Hfgieg&sPN [hT ﬂ-TT}

red
H§3.5PN [Xa,Pa,

ﬁ§3'5pN is the Hamiltonian which coincides with the Hamiltonian H<3 spN
after dropping its field part,

ry - mat int
H<s.spn = HI55pn + HS5 5pN-




3.5PN-ACCURATE DISSIPATIVE MATTER HAMILTONIAN (2/2)

@ The Hamiltonian ’jlgsAspN can be decomposed into conservative and dissipative

parts

H<3 5PN (Xa, P, t) = CgognpN (xa,p,) + H%i;s5PN (%a, P, ),

where
Hon 1= HR™ + HIBG -+ (B + Hi ) + (HSBR + Hin )
int

H%i;qSPN (X37 P2 t) = Hy’ 5PN [Xa’ P hTT(t) 7TTT(’-L)}

+ Hy'pn [xa: o b (1), ()]




3.5PN-ACCURATE GRAVITATIONAL- E LUMINOSITY

@ The total time derivative of ﬁngpN is equal to its partial time derivative, and
because only the dissipative part of H<3 5pn depends explicitly on time we get

d ~ 0 ~ 0 | diss

EHSSEPN (X37P37 t) = aH§3.5PN (X37P37 t) = aHSIE_SspN (Xavl)m t) .

@ The instantaneous energy loss of the matter system due to the gravitational wave
emission is defined as

) o ..
ﬁ'%?f.spN(f) = —aHdgl;%PN (Xa;Par t) -

@ This formula was applied to derive, at the leading-order (the quadrupole formula)
and the next-to-leading-order, gravitational-wave luminosity £ of the two-body
system in quasi-elliptical motion:

inst 0 diss
L<35pN = <£§3.5PN(t)> == aH'gzé‘sPN(Xa-,Pa- t) ),
where (---) denotes time averaging over one period of the motion.
Also the leading-order spin-orbit and spin(1)-spin(2) dissipative Hamiltonians
were derived.

@ This is a direct derivation of the leading-order/next-to-leading-order
gravitational-wave luminosity.




LEADING-ORDER GRAVITATIONAL-WAVE LUMINOSITY (1/2)

@ The leading-order dissipative Hamiltonian

HShx (xouar©) = 5 [ € S = 50, 2R 0),

depends on function h(s)J

BT ) = 5= 000F™ [ &Px Syl — xale). (1)),
@ Taking into account that
2 1 1
S5 M Tw(t) = gTijsTF(f), TETF = 2 (T + Tji) — §5UTI<I<7
one gets

d
hg;};(t) = g X@ii (xa(t), pa(t))

where

1 2
X(4)ij (Xa» pa) = 60771'{ Z Fa (Iﬁ&'j - 3paipaj)

1671’ ZZ il (3nab ab 6U> }

a b#a fab




LEADING-ORDER GRAVITATIONAL-WAVE LUMINOSITY (2/2)

@ Finally, the leading-order dissipative Hamiltonian reads

Héh;;N (xa,p,, t) = 57 3.((4)ij(t) X(4)ij (Xa; Pa)

so the leading-order GW luminosity reads

S
Lo 5pN = — <§H2d‘1§§31\1 (Xaapa: t)>
= =57 (X(4)ij (t) X(a)ij (Xa, P2))

d . . 2
—5m <5 (eix@i) = Gp) >

+57 ( (k)7 -
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4PN-ACCURATE CONSERVATIVE HAMILTONIAN: UV/IR DIVERGENCES

cons

Zipn[Xa, Po] = Hn(xa, p,) + Hipn(xa, p,)
+ Hopn(Xa, p,) + Hapn(Xa, P,) + Hapn[Xa, P,

Hn(%a, ;) = Regyy { HI™ " (xa,p,) },
Hipn(Xa, P,) = Reguy { HIpN ~*"(Xa, P.) }»
Hapn(Xa, P,) = Reguy { Hapn ~*"(Xa; P.) }»
Hzpn(Xa, P,) = Reguy { H3pN ~*"(Xa, P.) }»
Hapn [Xa, P,] = Regyy { HIpN R conv (Xas Pa) } + Regir { HIpN 1% Giv (Xa, P.) }
+ Reg®{ Hyan " [xa, P, }-

All regularization procedures used are described in detail in Appendix A of 2015
Jaranowski/Schéafer PRD article.




STRUCTURE OF THE HAMILTONIAN DENSITY: CONTACT AND FIELD-LIKE TERMS

@ The near-zone Hamiltonian can be written as
H= [He ', Hex) = HB) + M) +0D(x),

;D' gives no contribution to the H.
By changing D', both Hﬁﬁ{act and ’Hgi‘g‘i change,
but H should should remain unchanged.

@ One can also shift time derivatives,

//\dex:—/Adex—&-%/Adex.

Dropping the total time derivative is equivalent to performing a canonical
transformation.




STRUCTURE OF CONT. AND FIELD-LIKE TERMS

@ Structure of contact ’H(D)

contact t€rms:

D
’Hgon)tact = S1(x) 6d(x —x1)+ (1 ¢ 2).
@ Structure of field-like H]Egz terms in d = 3 dimensions (at least up to 4PN order):

D £ £ £ 2,
HD) =S cp(m1py)® (m2- 1) (01 p2) (2 - po)™
£ O £

X 15 ry®(r + o+ r2)7;

using one can reduce field-like integrands to

0 L )
cerry?(rn + r2 4 r2)".




LOOKING FOR THE CORRECT 3-DIMENSIONAL REGULARIZATION (1/4)

@ “Good” d-functions of Infeld and Plebanski (1954—60); they satisfy, besides
having the properties of ordinary Dirac §-functions, the condition

1
ﬁ(ﬁ( —x3)=0, k=1,...,p (for some positive integer p).
X —Xa

@ A natural generalization of the concept of “good” J-functions is “partie finie”
value of function at its singular point xg (here mmax is some nonnegative integer):

o

1
Fltatrma) = S am(na)r, freg(xa)::ﬂ/dﬂao(na).

M=— Mmax

@ All contact integrals are evaluated as

{/d3x f(x)63(x — x‘.,,)}reg o= ()




LOOKING FOR THE CORRECT 3-DIMENSIONAL REGULARIZATION (2/4)

@ Infeld and Plebanski assumed that the “tweedling of products” is always satisfied:

(fl f2)reg (Xa) = flreg (xa)ereg (Xa)7

but this is generally wrong for arbitrary singular functions f; and 7.
Problems with fulfilling this property begin at the 3PN order.

@ It is natural to demand that
S(x) 83(x — Xa) = Sreg(xa) 8> (x — Xa),
then, taking another singular function T, one gets
T(x) S(x) 3 (x — Xa) = T(X) Sreg(Xa) 03 (x — xa).
This implies (TS)reg(xa) = Treg(Xa) Sreg(xa)-




LOOKING FOR THE CORRECT 3-DIMENSIONAL REGULARIZATION (3/4)

@ Another consequence of employing d-sources is necessity to differentiate singular

and homogeneous functions using a distributional derivative.

Let f be a function defined in a neighbourhood of the origin of R3, it is said to
be a positively homogeneous function of degree A, if for any number a > 0

f(ax) = a* f(x).

Let k := —X\ — 2. If X is an integer and if A < —2 (i.e., k is a nonnegative
integer), then within the standard distribution theory one derives the formula

(=1 k83 (%)
k! OxM - .- Oxlk

Bif(x) = 8 F(x) + X 7§da,- F) X - i,

Jx
where J;f on the Ihs denotes the derivative of f considered as a distribution,
while 9;f on the rhs denotes the derivative of f considered as a function
(which is computed using the standard rules of differentiation), X is any smooth
close surface surrounding the origin and do; is the surface element on X.

The distributional derivative does not obey the Leibniz's rule. Let us suppose

that it does, then
-1 =/11 1 -1 1-1
O = f*‘(:?z) s i

But the rhs can be computed using standard differential calculus (no terms
with 63(x)), whereas computing the lhs one obtains some term proportional to
9;03(x).




LOOKING FOR THE CORRECT 3-DIMENSIONAL REGULARIZATION (4/4)

@ The Riesz-implemented Hadamard regularization is based on the Hadamard
“partie finie” and the Riesz analytic continuation procedures; it relies on
multiplying the full integrand, say i(x), of the divergent integral by two
regularization factors (r := |x — x1|, r = |x — x2]),

i) — i) ()" (2)7,

S1 2

and studying the double limit € — 0, e2 — 0 within analytic continuation
in the complex €1 and e planes (here s; and s are arbitrary 3-dimensional
UV regularization scales).

@ The result of employing the 3-dimensional regularization procedures described
above is ambiguous—it depends on the way one writes integrands
when transforming them using integration by parts (both in space and in time).




CONTACT TERMS IN d DIMENSIONS: HADAMARD’S “PARTIE |

fde—l ag(na),

@ ‘“Partie finie”, i.e., the finite part (FP) of a singular function:

Sreg(x2) = FP, S :
o(x) o

oo
m
a

S(xs + rany) = Z am(xa) r.

M=—Mmax

)

Qqg_1 is the volume of the (d — 1)-dimensional unit sphere.

@ Regularization of contact terms:

{S(X) 6% (x — xa)}reg (FP, $)6%(x — x,),

= FP,S.

{/ d% S(x) 6%(x — xé,)}reg :

@ Important feature (in general not valid in d = 3 dimensions):
FP.(fif- ) = (FP,fi) (FP.f) - - - .




3PN-RELATED EXAMPLE

@ d-dimensional Newtonian potential,
¢(2) = — Z my Afléa =K Z mar‘g*d.
a a
@ 3PN Hamiltonian contains the term
4
/ d9x (¢(2)(x))* 69(x — x1)

= /ddx 54(m1r127d + m2r227d)4 6d(x —x1),
R(d) <2 = lim r127d =0, therefore
X—>X]

/ddx (@) (x))* 0%(x — x1) = k* (marfy ¥)* = (FP1 )",
@ In other words in d dimensions
FP1 (¢y) = (FP1o)".
@ One easily cheks that in 3 dimensions

FP1 (60y) # (FPLé@)".




DISTRIBUTIONAL DIFFERENTIATION OF HOMOGENEOUS FUNCTIONS IN d DIMENSIONS

The 3-dimensional formula for distributional differentiation of homogeneous functions
is valid (without any change) also in the d-dimensional case. E.g., it gives

52 2 d/2
L(i) :{ 8 (i)} fL&-de(xfxa)
Ox'0x rgi2 Ox'0xI r572 ordinary dT(d/2-1)

d ninl, — & 4md/2
—(d -2 S uo_ 5/'5d _
( ) rd dr(d/2—1) "” (x —xa),
1 479/2
Al — ) = ———— 6 (x — xa),
(r;f'_Q) I(d/2-1) ( )

(in d=3: A(%) = —4r 53 (x — xa)).




RiESzZ KERNEL

@ Instead of d-dimensional Dirac distributions one can try to use d-dimensional
Riesz kernels:

dix — = i _
6%(x xa)—sall_rn)+6ga(x Xa),

r(d=ca)/2) .-a

where  dc,(x —x5) := WT—(E/Z) :

@ One replaces in the constraint equations Dirac-d-sources by Riesz kernels,
solves the constraints pertubatively and develop the whole PN scheme.

@ At the end of computations, one takes the limits e; — 0T, o — 0,
and only after this one computes d — 3 limit.

@ No distributional differentiations are needed.

@ The usage of the Riesz kernel directly in 3 dimensions does not resolve
ambiguities.




THE EXTENDED HADAMARD REGULARIZATION (1/2)

@ The extended Hadamard regularization (EHR) is a specific variant of

3-dimensional Hadamard regularization devised by Blanchet & Faye
and used by them in computation of the 3PN two-point-mass EOM in harmonic
coordinates (2000-01).

The basic idea is to associate to any function F € F, where the set F comprises
functions smooth on R3 except for the two points (around which they admit

a power-like singular expansion) a pseudo-function PfF, which is a linear form
acting on functions from F:

(PfF, G) := Pfs, s, /d3x FG, forany G € F,
where Pfs, s, means partie finie of the divergent integral (it depends on
two—one per each singularity—arbitrary regularization scales s; and sp).
The Dirac -functions §, are represented by the pseudo-functions Pfd, defined by
(Pfda, G) := Greg(xa), forany G € F,
The product F§, is represented by another pseudo-function Pf(Fd,):
(Pf(Fda), G) := (FG)reg(xa), forany G € F.
As a consequence, in general Pf(Fd,) # Freg(xa)Pfda.

To ensure the possibility of integration by parts, partial derivatives of singular
functions are specifically treated. This leads to a distributional derivative, which
differs in general from the Schwartz derivative. E.g.,

-1 i , =1 f
oPf- = —pt + 27Pf(rn'd), Schwartz derivative gives 0;— = — n
r r2 r r2




THE EXTENDED HADAMARD REGULARIZATION (2/2)

The definitions adopted by EHR disagree with DR rules.

@ In generic d dimensions one can always use

F(x)67 (x — x5) = A& (xa) 8(x — xa),

where F(9) is the d-dimensional version of 3-dimensional F. This leads to the
following DR rule, which disagrees with the EHR rule:

[F(x) 83(x — xa)] o = (dn:g Flﬁgg(xa)) 8 (x — xa).

The EHR differentiation when applied to smooth functions of compact support,
coincides with Schwartz differentiation. However, in the 3PN-level computations
it operated with other singular functions and gave the results different from the
results obtained by applying Schwartz differentiation.

The definition of Schwartz differentiation is valid in d dimensions, what supports
the use of this definition also in three dimensions.

The computation using EHR can not be combined with DR. This can be seen
from DR completion of the 3PN EOM in harmonic coordinates: before applying
DR it was necessary to subtract all contributions, which were direct consequences
of the use of EHR.

However, at the 3PN level the difference between the final results of EHR

and DR computations of two-point-mass EOM can be described in terms of

one dimensionless ambiguity parameter.




LOOKING FOR THE PROPER MODIFICATION OF THE SCHWARTZ THEORY?

@ Inspired by the EHR of Blanchet & Faye, mathematicians have recently
developed the theory of “thick distributions”: Estrada & Fulling (2007) in one
dimension, and Yang & Estrada (2013) in higher dimensions. This theory is
connected with the EHR, but is not equivalent to the latter and it can not be
used to improve regularization issues in the PN two-body problem.

(-..) it is not correct to say that the work of Laurent Schwartz justifies
everything that physicists do with the Dirac delta function, because
sometimes they do things that are clearly wrong. There is a spectrum of
responses to this situation. The first (chosen by too many mathematicians)
is to dismiss distributions as untrustworthy, a kind of pornography that
should be kept out of the hands of engineering and science students.
Another (adopted by many practitioners) is to rationalize after the fact
whatever interpretation of the symbols gives the right answer in the problem
at hand (...) sometimes this is done in blatant contradiction to
interpretations adopted in other contexts. A safer approach is to regard the
delta function as a heuristic device that leads rapidly to formulas whose
correctness must then be rigorously verified (e.g., by substituting a putative
solution back into a differential equation). But one cannot be satisfied just
with this; if distributions are unambiguously defined as linear functionals on
spaces of test functions, then their properties must be unambiguous, and
the mathematician should determine which formulas and calculational rules
are true and why—tightening up the definitions when necessary.

[R.Estrada & S.A.Fulling, Int. J. Appl. Math. Stat. 10, 25 (2007)]




FI1ELD-LIKE TERMS

@ In d dimensions:

d\./B8+d B+d
/r{lrzﬁddx—ﬂ'dﬂr(a; >r< ;— >r<7a+2+ >ra+6+d.

(- 3r(- DT ™

@ In d = 3 dimensions (Jaranowski & Schifer 1998):

/rlarf(rl + o) dPx = 2n rf;“”vﬁ
x(Bla+2,8+2)Bip(—a—B—y—4a+B+4)
—B(—a—B—-4,8+2)Bip(—a—v—2,a+2)

—B(—a—B—4a+2)Bs(-B—7—2,B+2)),

where B is the beta function and B; /, is the incomplete beta function:

1
B2 (o, B) = 2F1<1—/370t;a+1:§>>

a2e

2F; is the Gauss hypergeometric function.




FIELD-LIKE TERMS: RIESZ-IMPLEMENTED HADAMARD REGULARIZATION

@ Let the integrand i(x) develops only local poles,
then its RH-regularized value reads

) = [ i0(3)" (2)"

_A+c1<1 +In2—2>+cz<1 +Inr1—2>+(9(q,62)

s1 and sy are arbitrary UV regularization scales.
@ The pole, say o< 1/€1, comes from the part of the integrand i(x)
which develops logarithmic singularities (i.e. locally behaves like 1/r3),
i(x)=---+&mi)r >+, whenx—x.
The pole part can be recovered by RH regularization of the integral
of & (n1) r; > over the ball B(x1, £1):
n 01

IIRH(3; €)= / & (n1) rf3(—)€1 d3r; = Cl( +In —) + O(a1)-
B(x1,£1)

S1 S1




FIELD-LIKE TERMS: IMPLEMENTATION OF DR

@ It is enough to replace IR(3; 1) and IfM(3; €2) by their d-dimensional versions
h(d, %) and h(d, %), where £y is the DR length scale.

@ One considers d-dimensional version of the expansion of i(x),

i(x):~~~+51(d,€0;n1)rff3d+-~~ ,  when x — xq,
and defines
- 1 14
h(d, €) :=/ &(d, toim) k34 dr = cl(— —+In —1) + B+ O(e).
B(x1,41) 2 o

@ The DR correction to the RH-regularized integral /RH (3; €1, €2):
IRM(3; 61, 2) — IFH (35 e1) — IRY(3; €2) + h(d, £o) + h(d, o)

—A+AA-ST2 B2 o).
2¢ Lo

The result is as if all computations were fully done in d dimensions.




LoCAL d-DIMENSIONAL UV ANALYSIS

@ One looks for the local behavior, say, around x = x1, of the solution of equation
Af(x) = g(x — x1,%x — X2).
@ One expands the source term g around r; = |x — x|

o

g(x —x1,X — x) = g(rnmy, nmy + ronip) = Yy gi(m)rf,

k=—m

where m > 0 is some nonnegative integer. After applying the operator A~ to
each term of the expansion one gets the expansion of the solution near x = x;:

fnonhom(x): Z Ail(gk(nl)r{()'
k=—m

@ The formal solution of the Poisson equation has the form of the integral

f(x) = 7n/ddx/g(x')|x — x|,

One expands the kernel around r = 0 and integrates the sum term by term,

oo
|x —x'|>~9 = |nny — A{nj|?~9 = Z Ke(ng;nj, r)rf.
£=0

fom(x) = —1 Y [ % g(x)Ko(wsin, ).
£=0




EXAMPLE (1/2)

@ The distributional differentiation is necessary when one differentiates
homogeneous functions under the integral sign. Let us consider the following

locally divergent integral:
1 1
pii Plj/d3x (3,'3,'*) e
n I’2

We shall regularize this integral in two different ways.

@ We first replace in the integrand differentiations with respect to x' by those with
respect to x; (obviously 9jry = —01;r1). Then we shift the differentiations before
the integral sign and apply directly the Riesz formula. The result is

1) 1 d3x
Plr'Plj/d3X (3,'3]71) 7 = PLiPy 31,'311'/71,4
2 2

2\ _ 4n[p} — 4(n2 - py)?
= p1j p1j 01,04 (7rT> _ 4nlpy 2l .
12

4
i

We have obtained this result performing integration first and then difFerentiation.J




EXAMPLE (2/2)

@ Now we shall regularize the integral doing differentiation first. To do it we have
to use the distributional differentiation, which gives

1 P 1 A7
010y~ = (3nimd - 53) 5 5 950 (x — ).

We substitute this into the integral:

1 3( 2 4 1
p1i p1j /d3x (alaji) /d3 1112 pl) pl Wp% /d3X763(X—X1)-
r rl r2 r2

The second integral on the RHS is obviously regularized to
1
Bx—Bx—x1) =
-/ r3 r

To calculate the first integral on the RHS we apply 3-dimensional
Riesz-implemented Hadamard regularization. We obtain

/d3 3(n12 - Pl)2 —p?  167[p? — 3(n12 - P1)2]

riry 3r
Collecting all the results together we get the result, which coincides with the
result obtained before.

@ The two ways of regularizing the integral, described above, give the same result
only if we apply distributional differentiation when we perform differentiation
before integration.




UV REGULARIZATION OF 3PN /4PN HAMILTONIANS

@ Regularization of the 3PN Hamiltonian:
AH:?PRNcorreCti°"(xa,pa;s) = C(xa,p,) + O(e) (no pole part!),
T RH DR correction L
Reguy {Hspn (xa, p,)} := lim {H3PN(Xa7Pa) + AHzpy (Xa, Pai c)}~
@ Regularization of the near-zone IR-convergent part of the 4PN Hamiltonian:

+ G3(xa,p,)In % + O(e).
0

One finds unique Di(xa,p,) and Di(xa,p,) such that the following limit is finite:

g G(xa,p
AHEPRNCO"eCtIon(Xa, P.; E) - Cl(xa7 pa) 4= %

: — RH
Reguy (ISR 20%on, (500220} = lim, (B, i com (50, 2)

+A,_Izll:)':)R’\‘correction (Xa,- D F)

ar<

d /Di(xa,p,) ro
+a(7a + D(xa,p,) In E)}




REGULARIZATION OF THE NEAR-ZONE IR DIVERGENCES (1/2)

@ All terms generating IR divergences have the following structure

fi(x) A7 (Fi) = () A2 02 S
They develop the logarithmic divergences linked to a decay of the integrand
o r=373(d=3) a5 = |x| — oo.

@ Damour/Jaranowski/Schifer (2014-15) used two methods to perform IR
regularization. In both methods one introduces a new IR regularization length
scale s.

— Maodifying behavior of the h(Ié)TU at spatial infinity: in all the IR-divergent
terms one can make the replacement

A1 [h(T4)Tu] L A-L |:(§>B}:'a%':|TT7

and then take the finite part of the IR pole at B = 2(d — 3).
— d-dimensional version of the Riesz-implemented Hadamard regularization:
one multiplies, before integrating it over space, the full integrand by a factor

ey

and take the finite part of the IR pole occurring at a + 8 = 2(d — 3).




REGULARIZATION OF THE NEAR-ZONE IR DIVERGENCES (2/2)

@ Both methods yield the same result modulo a time derivative
and a change in some constant C,

Regir { Hisk. % div } (Xa, Pa; C) = X(Xa, P,)
2 G?M -\ nz d
e 7( li) <'" <t C) +7; 6(xa,p),
The constant C enters the Hamiltonian through the term In(ri2/s) + C.

@ The addition of the constant C to the logarithm In(r12/s) is related to the
arbitrariness of the IR-regularization scale s:
replacing s by s’ = e~ s is equivalent to replacing C by C’ = C + \.




THE TOTAL 2-POINT-MASS CONSERVATIVE 4PN HAMILTONIAN

@ After adding the IR-convergent part (and dropping the total time derivative)
and the tail contribution one gets the total 4PN Hamiltonian,

H4PN [Xa’ Pai C] = RegUV{ n;?\ll”zl%nionv}(xé'v pa) + ReglsR { HES?\‘I’:Zl??nZiV}(Xm Pai C)
+ Reg® {Hyp ™ } [xa, P.]

2 G2M r
—X(Xaypa)““g?(lu) <| E-‘1‘C>

Gzl\/l > dv
57 fzs/c/ — IU(t+V).
@ Because
1 G?M - too dy ... 2 G’M 2
_g — I,J PfQS/C[m |v| li(t+v) = —( Iu) In(2s/c) + - -
the dependence on s cancels between the near-zone and tail contributions,
and the total 4PN Hamiltonian reads

2 G?M ...
Hypn[xa,p,; C] = x(xa,P,) + *7( iz)® €

1G2M - © dv ..
- gT Iy Pf2r12/6/ i li(t + v).




DETERMINATION OF THE VALUE OF THE CONSTANT C:

USING BEYOND-NEAR-ZONE INFORMATION

@ One needs a calculation which takes into account the transition between
the near zone and the wave zone without losing any information.
Such a calculation was performed by Bini & Damour (2013)
within the gravitational self-force approach
in the case of the dynamics of circular orbits
and in the first order in the symmetric-mass-ratio v := mymy/(m1 + my)?.

@ It is enough to consider the 4PN-accurate gauge-invariant link between the
binding energy E := H — Mc? and the angular momentum j := cJ/(Gmymy)
along circular orbits,

+ot

. 1 1 aipn(v ajon (V) + 2oy (V) Inj
E<apn(iv) = —Euczﬁ <1 4 71,2( ) 4P j84PN :

@ The comparison of the linear in v 4PN-level term predicted by Hipn[xa, P,; C]
to that derived from the results of Bini & Damour (2013)
yields the unique value of C (C = —1681/1536).
This completed the determination of the 4PN conservative dynamics of
2-point-mass systems.




© ComPUTATION OF THE 4PN-ACCURATE CONSERVATIVE HAMILTONIAN

o THE RESULT: 4PN-ACCURATE CONSERVATIVE HAMILTONIAN



DM HAawMmIL

He apnbia: pal = H2SEN (o, pa) + HESRIO s, pa] (2= 1,2).

LOCAL-IN-TIME 4PN-ACCURATE HAMILTONIAN

local 2 =
H§4PN(X3, Pa) = (my + mp)c® + HN(xa, pa) + ;HIPN(XB$ Pa)

1 1 1
1 1
+ 74H2PN(><.;, Pa) + ?HSPN(Xav Pa) + 78H4C1JDC§ (xas Pa)-
c [a C'

NONLOCAL-IN-TIME 4PN HAMILTONIAN
(Blanchet-Damour 1988, Damour-Jaranowski-Schifer 2014)

2
1G°M .. +oo dv ..
Hnonlocal[x pal = —— i x Pf / — Ii(t+v) ).
APN a, Pa s 8 i 2rip/c \ [_ v J




NEWTONIAN

2PN HAMILTONIANS

The operation “+(1 R 2)” used below denotes the addition for each term of another term obtained by the label permutation 1 <+ 2.

H (xa. pa)

HipN(sa,pa) =

Hapn(xa. pa)
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© CoMPUTATION OF THE 4PN-ACCURATE CONSERVATIVE HAMILTONIAN

o POINCARE INVARIANCE OF THE 4PN-ACCURATE DYNAMICS



POINCARE ALGEBRA (1/4)

@ General-relativistic isolated systems admit the Poincaré group as a global
symmetry. Therefore any coordinate system respecting asymptotic flatness
should embody some representation of this symmetry.

@ The presence of a Poincaré symmetry is equivalent to requiring the existence of
generators P#(x5,p,) and JH¥(x,,p,, t) realized as functions on the extended
two-body phase-space (x1, X2, Pp1, P2, t), whose usual Poisson brackets

of Og of Og )
f , t), ,P, t)} = - — —_—
(Flre,po ) 800 0 = 3 (5 8 — 208

satisfy the Poincaré algebra [here 7., = diag (—1,+1,+1,+1) and ¢ = 1]:
{Pr,P"} =0,
{P;L"J,UO'} — _np./) po + npcr Pp"
{J/“"J‘“”} _ 77]1/;) JHo 4 ’Ip,p Jve 4 n(r;z Jrv 7[(71/ JPH

@ One decomposes P* and J* into: the total energy P® = H (including the
rest-mass contribution), three momentum P’, angular momentum
Ji= %5’“ Jie, and boost vector K/ := J©0 (Ki represents the constant of
motion associated to the center of mass theorem).

@ One further decomposes the boost vector K' as
Ki(x-?’ p37 t) = Gi(X37pa) —t Pi(xavpa)7

where G' is the center-of-mass(energy) vector.




POINCARE ALGEBRA (2/4)

o The Poincaré algebra relations explicitly read
{Pi. P} =0, {4 i} = e,
{4, Pi} = €iiP;
{Pi, H} =0, {J;, H} =0,
{Ji, G} = € G,
{Gi, H} = P;,
{G;, P;} = c~2Hsy;,
{Gi, G} = —c %€

These relations have to be fulfilled with 4PN accuracy.




POINCARE ALGEBRA (3/4)

@ The Hamiltonian H entering Poincaré algebra is the full 4PN-accurate
Hamiltonian,

H<apn[Xa, ] = HEGBN (%a, p,) + HIBNC [xa, B,
HEEN (xa,p,) = Y mac® + Hi(xa, p,) + Hipn(Xa; P,) + Hopn(Xas P,)
a

+ H3PN(X27 pa) + Héllc%’clé\lll(xiﬁ pa)'

@ The nonlocal-in-time piece H}fgﬁ{}oca] is Galileo invariant, because

GuM i 3 iJ
j=—2-"75 (4x1<2v{§ - — (m2 vi2) X3 Xﬁ) -
) 12




POINCARE ALGEBRA (4/4)

@ The Hamiltonian H is translationally and rotationally invariant, therefore the
total linear and angular momenta are simply realized as

Xa,Pa Z Pais  Ji (Xa:pa) = Z EUkX Pak

@ They exactly satisfy the relations {P;, P;} =0, {J;, J;} = €jucJk,
{Ji, Pi} = €jxPx, {Pi,H} =0, {J;, H} = 0.




LOOKING FOR THE 4PN-ACCURATE CENTER-OF-M

THE METHOD OF UNDETERMINED COEFFICIENTS (1/2)

@ The condition for full Poincaré invariance boils down to the existence of
a center-of-mass three-vector G satisfying the three non-trivial relations

{Gi, H} = Pi, {G;, Pj} = c2Hé;, {Gi, G} = —c ek
@ One constructs G as a vector from x, and p, only, therefore the relation
{Ji, G} = G
will be exactly satisfied.
@ The generic form of the three-vector G reads

G(xa,2a) = D (Ma(x6: Ps) xs + Na(x6: P) P, )

a
where M, and N, possess the following 4PN-accurate expansions

M, = ms + Male + M?PN + M?PN + M;le,

N, Na2PN + NSPN + NSLPN.




LOOKING FOR THE 4PN-ACCURATE CENTER-OF-M

THE METHOD OF UNDETERMINED COEFFICIENT

One writes the most general expressions for the successive PN approximations to
the functions M, and N, as sums of scalar monomials of the form

2\ n n; 2\ n n, n
o pmo PT \ ' (P1-P2\7?/P5\ " (m2-py \™ (m12-pp\™ m" mn7
n 712 2 2 1 2
mi mymy mj m my

where ng, ..., n7 are nonnegative integers, ¢, are dimensionless coefficients to be
determined.
One constrains the possible values of ng, ..., n7 using dimensional analysis,

Euclidean covariance (including parity symmetry), time reversal symmetry
(which imposes that M, is even and N, is odd under the operation p, — —p,),
and the 1 <> 2 relabeling symmetry.

At the 4PN level the most general patterns for the functions MAPN and NAPN
involve 210 coefficients cy.

To find them it is enough to use only the relation
{Gi, H} = P.
At the 4PN level it yields 525 equations to be satisfied by the coefficients c,.

One finds a unique solution to these equations. Then one checks that this
solution satisfies the remaining two Poincaré algebra relations:

{Gi, Pj} = c?Hé;, {Gi, G} = —c ek
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© ComPUTATION OF THE 4PN-ACCURATE CONSERVATIVE HAMILTONIAN

o 3PN-ACCURATE DELAUNAY HAMILTONIAN



Relative motion in the center-of-mass frame (p; + p, = 0):

(X1,X2,p1,P2) — (r,p);

reduced variables in the center-of-mass frame:

X1 — X _ b1 _ P = t

GM ’ 1 w’ GM"~

‘Non-relativistic’ (i.e. without rest-mass contribution) ADM Hamiltonian of the
2-point-mass system:
GNR ._ H—(my + m2)c2.
7



Conservative 3PN-accurate Hamiltonian describing relative motion
= . i =
HR (r,p) = Hi (r,p) + =2 Mien (1,p)
1 - 1 -
+ — Hepn (r,p) + < Hspx (1, p)
c c

= 1 1
HN (I‘,p): Epz = ;7

The functional form of the Hamiltonian HNR (r,p) is gauge dependent.



The relative-motion Hamiltonian HNR is invariant
under time translations and spatial rotations:

H"® (r,p) = h(r,(n-p)*,p?) (n:=1/r),

therefore energy and angular momentum of the system are conserved:

E:=H“W(r,p), j: =rXxp

- GuM

(J =X X Pp; +X2 ><p2).



Polar coordinates (r, ¢) in the plane of the relative trajectory:

r = (rcos ¢, rsin¢,0).

The Hamilton-Jacobi equation

05  ~\r/. 0S5
= H y T~ =0
ot * (r 81‘)

has solution for the action integral S of the form

~ S ~~ = 4
S::GuiM:fEtJrJ(iw#/dr\/R(r;E,J),

R(r; E,j) is the effective radial potential.



R is obtained by solving the equation
E =A% (r,p) = h(r,(n-p)*,p°)
for p? [where p, := (n - p)], after having replaced p? by
2

J

=, with j:=]|j|:
2 j= il

p’=(n-p)’+ (nxp)=p’+

E = h(r,p?,p? +j?/r’) = R=R(r;E,j)=p(r;E,j).

The effective radial potential R(r; E,J) is given, at the 3PN order, by the 7th-order
polynomial in 1/r:

~ 2B C
R(nEj)=A+—+—
r r
DIPN D2PN D2PN D3PN D3PN
1 2 3 4 5
t—t I+ Tt

The coefficients A, B, C start at Newtonian order, while the extra terms DI."P'\'/r""'2
start at the indicated PN order. All the coefficients are polynomials in E and j2.



The Hamilton-Jacobi theory shows that the observables of the motion are deducible
from the (reduced) radial action integral,

Ej) /rrmax r\/ R(r, Ej

min

Periastron-to-periastron period:
p 0
27GM ~ HE

W(E,j) = S(~E) 2 + 0(c7?),

periastron advance per orbit (A® := & — 27, where ® is the change of the angle ¢
between the two consecutive periastrons):

AP

o  ~
=1— —i(E,j)=0+0(c?).
P w% ) =0+0(c77)



Delaunay variables (n,j, m):

-y N ; J : Jz
M= ] =c—— == m:i=j,=—

rTJ GHMv J G,LLM’ Jz GHMv
in the quantum language,
N/ is the principal quantum number,
J/h is the total angular momentum quantum number,
Jz/h is the magnetic quantum number (by rotational symmetry, the magnetic
quantum number does not enter the Hamiltonian);
they are adiabatic invariants of the dynamics,
and they are (approximately) quantized in integers.

n—j=i(Ej) = E=H(n,}j).



3PN-accurate 2-point-mass Delaunay Hamiltonian

P 1 1 1 ;
H(n,j) = — 2 (1+ hlPN(”J)+*h2PN(”J) *6h3PN(”,J)),

1
hipn(n,j) = — — *( - V)ﬁ:
.5 b 1
hoe(n, ) = 2(7 = 2v )7 n 17 _ 7(35 _ 41/)— ¥z (145 — 150 +12)—,
L1 1 45
haen(n.)) = o, (7392 + (12372 — 8000)v + 3361,2)1_57 + 37— 2u)j47
S (14544 + (12372 — 22832)v + 19200 )i - f(zo — )
192 3n3 j2n*

3 W11 |
+ (275 — 500 + 4v )j? — (6363 — 805y + 9007 — 5%)



Angular frequencies of the rosette motion:

o2r 1 BH(n,j) 1 c
meel = 5 T Sna . an @] )
Wradial =5 T CM T on avns T O€)
Ad 1 9H(n,j
Ae _ L 9H(n.j) =0+ 0(c?).

Wperiastron — P aM j



© Oren Issues IN THE PN Two-BoDy PROBLEM



OPEN ISSUEs (1/2)

@ Completion of computations of 5PN, 5.5PN, 6PN, ... EOM of two-point-mass
systems together with computation of gravitational-wave luminosities at 5PN,
5.5PN, 6PN, ...orders, and construction of >5PN-accurate templates for
inspiralling compact binaries.

@ Computation, within the PN framework, higher-order spin-dependent effects and,
in the case of binaries containing neutron stars, higher-order tidal corrections.

@ Higher-order perturbative solutions of two-body problem are complicated, both
from computational and from conceptual point of view. Therefore it is highly
desired to have more than one independent derivation of any analytical result:

— making independent derivations (e.g. within the ADM Hamiltonian
approach) of gravitational-wave luminosities of two-point-mass system
at the 2PN, 3PN, 4PN, ...order;

— making rederivation of 4PN two-body equations of motion
using an extended body model (in d = 3 space dimensions).




OPEN ISSUES (2/2)

@ Looking for a new treatment of regularization issues related to usage of
d-sources, which would simplify higher-order PN computations.

— Replacing d-sources by sources described by some sequence of classical
functions (“the & sequence”); then there is no need for using distributional
derivatives of singular homogeneous functions.

At the 3PN level DJS (2008) successfully recomputed all UV logarithmically
divergent terms using d-dimensional Riesz kernels to model point masses.

— Looking for some extension/modification of Schwartz distribution theory
that would be suitable for purely 3-dimensional regularization.

Such an attempt was made by Blanchet & Faye (2000), but their “extended
Hadamard regularization” can not be combined with DR.

® Recompute and regularize IR divergences in the 4PN two-point-mass ADM
Hamiltonian, without usage of gravitational self-force results and without
introducing any ambiguity parameter.

@ Try to increase the level of algorithmization and automatization of computation
of 2-point-mass ADM Hamiltonians,
starting from PN iterations of constraint equations up to UV/IR regularization,
performed using a mixture of 3-dimensional RH regularization and DR. Then
compute 2-point-mass Hamiltonians at orders 4.5PN, 5PN, 5.5PN, ....




© Carcuremus! (LET US CALCULATE!)



@ Check all calculations in Example from Section 3 of these lectures.

e Find d>(2), 5(4)1, 5(4)2, and d>(4) in d dimensions.

e Find V(i3) in d dimensions.

o Compute the Newtonian Hamiltonian Hy in d di ions, Hy = — I ddxA¢(4).

e Compute the 1PN Hamiltonian Hypy in d dimensions, Hipy = — fddqub(G). Hints. (i) Knowing that ha;ll; ~ 2= d for

r — 00, show that the term b(5) ij”EE)TIj does not contribute to the Hamiltonian. (ii) Show that
2 _ j il i 5. ) . oni

= 29;(V, — 2V, 8; . Does the t a;(V, contribute to the Hamiltonian?

&y (V7)) (257 erm 0;(V{3) 7l contribu miltonian

@ Using explicit formula for the leading-order dissipative Hamiltonian Hgi?)SPN (Xa, Py, t) given in these lectures, compute
instantaneous GW luminosity in the leading-order. Then, assuming that the bodies in the system are moving along circular orbits,
average the instantaneous GW luminosity over one orbital period using Newtonian equations of motion. Computation perform in

5]
332 255,

= 3 space dimensions. Answer: £(x; v) =

Answers to Exercises 2-5.

_T(d/2-1) o 1 d—2 B oy
FE o t@ = man T e = St S San = e
S = 25 memoy R iy~ 5 (00— g+ = e ) A

T hde 8(d —1) G
2
p} w(d—2) mm
HN(a pa) = —4 — ——— 12 1 (1 & 2),
N(*a, Pa) o de—9 rld;Q + (1 <2
®%)? " 1 my o, 1 2 1
Hipn(xa, pa) = — (*(3d ~ A1 -p2) —d —=pi + 2(d = 2)%(ma - P12 'Pz)) =

8m3  4(d —1) \2 1 s

Nz(c172)2 m%mz
_ 12 ,2d—4

8(d — 12 2

+(1 e 2.




EQuATIONS NEEDED TO SOLVE EXERCISES

(d -2
Ad(2) = Zmaéa, A = Za: ( 2m,3 4d — 1) ¢(2))6a
®2)2  (d+2)p2 (d — 2)ma d—2 5
A9 = Xa: { S:ng 8(d — 1):,3 *@ 7 ga_ (St + 2d — 1) @) = 5(4)2))}5‘3
Jij2, 92 TT
— )+ @i
i =250 2 il j i 2siig, vk
AV(z) + 7aijv(3) == gpa,-sa, T3 = 8,-V(3) +9iV(3) — ;5 % V(3)»

2
ASay = 3 26a, AS(ay = ¥ Z"’a“a

a Mma
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