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Gravitational-Wave Signal from Coalescence of Black-Hole Binary

A laser-interferometric detector measures differential displacement
along the detector’s arms:

∆L(t) = δLx (t)− δLy (t) = h(t) L0, h(t) ∼ 10−21,

where L0 = 4 km for LIGO detectors or L0 = 3 km for Virgo/KAGRA detectors,
h(t) is the dimensionless gravitational-wave strain.

The detected waveforms match the predictions of general relativity
for the inspiral and merger of a pair of stellar-mass black holes

and the ringdown of the resulting single Kerr black hole.



Very Sensitive Search Algorithms

The expected gravitational-wave
signals are weak compared to
instrumental noise,
therefore the detection of signals
and identification of their sources
requires employing very sensitive
search procedures.

Each search procedure defines a detection statistic that ranks likelihood of
presence a gravitational-wave signal in the data.
One then identifies candidate events of high enough value of the detection
statistic that are detected at all operating observatories and their time of arrivals
are consistent with the intersite propagation times.
The significance of a candidate event is determined by false alarm rate (FAR):
the rate at which detector noise produces events with a detection-statistic value
equal to or higher than the detection-statistic value of the candidate event.
This translates to a false alarm probability: a probability of observing one or
more noise events as strong as the candidate event during the analysis time.



Two Main Types of Search Algorithms

Two types of search algorithms are used in data analysis:

searches for generic gravitational-wave transients,
which operate without a specific waveform model
and identify coincident excess power
in a time-frequency representation of the data;
matched-filtering searches using relativistic models of
compact binary coalescence waveforms,
they correlate the data with a copy of a waveform,
i.e. a template, one expects to find in the data.



Results of Generic Transient Searches (from Observing Run O1)

GW150914

Significance of GW150914: FAR < 1.00× 10−7 yr−1 (GstLAL pipeline).

GW151226

Significance of GW151226: FAR < 1.00× 10−7 yr−1 (GstLAL pipeline).

Normalized amplitude of a time-frequency representation of the strain data
(left for LIGO Hanford, right for LIGO Livingston detector)



Advantages and Challenges of Matched Filtering
Advantages

Matched filtering has better sensitivity than unmodeled searches.
Constraining space of possible signals decreases false alarm rate.
One can use signal-based vetoes to separate signals from transient noise.

Challenges
It loses sensitivity if templates do not match signals:

accurate waveform models, i.e. templates, are needed;
parameters of template must be close enough to signal: templates’ parameters
have to cover space spanned by the signal’s parameters densly enough.

One has to construct a discrete bank of templates parametrized by possible
values of the gravitational-wave signal’s parameters:

h(t;m1,m2, S1, S2,Λ1,Λ2, . . .),

where m1, m2 and S1, S2 are masses and spins of binary components,
Λ1, Λ2, . . . are tidal parameters.

Construction of accurate templates requires
accurate enough solution of relativistic two-body problem

for each value of signal’s parameter present in the bank of templates.



Matched-Filtering Search (1/2)

For each template h(t) and for the
strain data from a single detector
s(t), the analysis calculates the
matched-filter signal-to-noise ratio

ρ(ta) :=
|〈s|h〉(ta)|√
〈h|h〉

,

where ta is time of arrival of the
signal and the correlation is defined as

〈s|h〉(ta) = 4
∫ ∞

0

s̃(f )h̃∗(f )

Sn(f )
e2πifta df ,

Sn(f ) is the one-sided (average)
power spectral density of the detector
noise, s̃(f ) is the Fourier transform of
s(t),

s̃(f ) :=

∫ ∞
−∞

s(t)e−2πiftdt.

ρ(ta) is maximized with respect to the time of arrival of the signal.



Matched-Filtering Search (2/2)

Each maximal value of ρ(ta) is reweighted by the value of a chi-squared statistic
testing whether the data in several different frequency bands are consistent with
the template.
When, say, two LIGO detectors are operating:

— event pairs that occur within a 15-ms window and come from the same
template are selected (the 15-ms window is determined by the 10-ms
intersite propagation time plus 5 ms for uncertainty in arrival time of
weaker signals);

— the quadrature sum of the reweighted ρ(ta) of two coincident events is
calculated.



Binary Coalescence Searches in Observing Run O1

The waveforms depend on the masses
m1, m2 of the binary components and
their dimensionless spins |χ1| and
|χ2| [χa := cSa/(Gm2

a), a = 1, 2].
The searches targeted binaries with
individual masses from 1 to 99M�,
total mass not greater than 100M�,
and dimensionless spins up to 0.9895.
Waveforms modeling systems with
total mass less than 4M�:
PN inspiral waveforms
accurate to 3.5PN order.
Waveforms modeling systems with
total mass larger than 4M�:
inspiral+merger+ringdown waveforms
constructed by means of the
effective-one-body formalism.
Around 250 000 templates were used.

The waveform model assumes that the
spins of the merging objects are aligned
with the orbital angular momentum,
but the resulting templates can recover
systems with misaligned spins (in the
parameter region of detected signals).



Computing Power Constraints

Construction of bank of templates requires multiple integration of
— partial differential equations in numerical relativity,
— ordinary differential equations in approximate analytical relativity.

For detection of gravitational-wave signals originated from
coalescences of binaries made of spinning black holes/neutron stars
with arbitrary mass ratios, due to limitations in available computing power,
it will not be possible in the nearest future
to construct bank of templates based purely on numerical results.
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Different Approaches for Solving Relativistic Two-Body Problem

Numerical relativity (breakthrough in 2005).
Approximate ‘analytical’ methods:

— post-Newtonian (PN) expansion,
— post-Minkowskian (PM) expansion,
— black-hole perturbation self-force based approach

(Adam Pound’s lectures).
The adjective “analytical” means here methods that rely on
solving explicit (that is analytically given) ordinary differential equations,
contrary to full numerical relativity simulations that involve solving systems
of partial differential equations.

Effective-one-body formalism (EOB): combines results of PN/PM approaches,
black-hole perturbation theory, and numerical relativity.



PN expansion:
0th order—Newtonian gravity;
nPN order—corrections of order( v

c

)2n
∼
(
Gm

rc2

)n

to the Newtonian gravity.
PM expansion: expansion in powers of G .

Perturbation approach:
m1
m2
� 1.

The nPM-order expansion controls all terms in the corresponding PN
approximation through (n − 1)PN order.



Different “Flavours” of the PN/PM Expansions

ADM Hamiltonian approach (Damour/Jaranowski/Schäfer).
Harmonic-coordinate based direct iteration (Blanchet et al.).
Effective field theory approach: advanced calculations of scattering amplitudes
using generalized unitarity, double-copy construction, eikonal resummation, and
advanced multiloop integration methods.
“Tutti frutti” approach (Bini/Damour/Geralico) combines various analytical
approximation methods: PN, PM, multipolar post-Minkowskian, effective field
theory, gravitational self-force, effective one body, and Delaunay averaging.
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Gravitational Waves from Inspiralling Binary on Circular Orbits

The gravitational-wave strain measured by the laser-interferometric detector and
induced by gravitational waves from coalescing compact binary made of nonspinning
bodies in circular orbits during inspiral phase:

h(t) =
C

D

[
φ̇(t)

]2/3
sin
[
2φ(t) + α

]
,

where φ(t) is the orbital phase of the binary [so φ̇(t) := dφ(t)/dt is the angular
frequency], D is the luminosity distance of the binary to the Earth, C and α are some
constants.

The time evolution of the orbital phase φ(t) is computed from the balance equation:

dE
dt

= −L =⇒ φ = φ(t),

which both sides have the following PN expansions:

E = EN +
1
c2 E1PN +

1
c4 E2PN +

1
c6 E3PN +

1
c8 E4PN +O

(
(v/c)10),

L = LN +
1
c2 L1PN +

1
c3 L1.5PN +

1
c4 L2PN +

1
c5 L2.5PN

+
1
c6 L3PN +

1
c7 L3.5PN +

1
c8 L4PN +

1
c9 L4.5PN +O

(
(v/c)10).



4.5PN-Accurate Binding Energy in the Center-of-Mass Frame
for Circular Orbits

Notation

Masses of the bodies: m1,m2, M := m1 + m2, µ :=
m1m2
M

,

ν :=
µ

M
=

m1m2
(m1 + m2)2 , 0 ≤ ν ≤

1
4

;

dimensionless PN parameter introduced for circular orbits : x :=
(GMφ̇)2/3

c2 .

Binding energy of two-point-mass system in circular orbits:

E(x ; ν) = −
µc2x

2

(
1 + e1PN(ν) x + e2PN(ν) x2 + e3PN(ν) x3 +

(
e4PN(ν) +

448

15
ν ln x

)
x4 + O

(
x5))

,

e1PN(ν) = −
3

4
−

1

12
ν, e2PN(ν) = −

27

8
+

19

8
ν −

1

24
ν

2
,

e3PN(ν) = −
675

64
+

( 34445

576
−

205

96
π

2
)
ν −

155

96
ν

2 −
35

5184
ν

3
,

e4PN(ν) = −
3969

128
+

(
−

123671

5760
+

9037

1536
π

2 +
896

15
(2 ln 2 + γE)

)
ν

+

(
−

498449

3456
+

3157

576
π

2
)
ν

2 +
301

1728
ν

3 +
77

31104
ν

4

(γE is the Euler’s constant).



4.5PN-Accurate Gravitational-Wave Luminosity
for Circular Orbits

L(x ; ν) =
32c5

5G
ν

2x5
{

1 + `1PN(ν) x + 4π x3/2 + `2PN(ν) x2 + `2.5PN(ν) x5/2 +
(
`3PN(ν) −

856

105
ln(16x)

)
x3

+ `3.5PN(ν) x7/2 +

(
`4PN(ν) +

( 232597

8820
+

20739

245
ν

)
ln x

)
x4

+
(
`4.5PN(ν) −

3424

105
π ln(16 x)

)
x9/2 + O

(
x5)}

,

`1PN(ν) = −
1247

336
−

35

12
ν, `2PN(ν) = −

44711

9072
+

9271

504
ν +

65

18
ν

2
, `2.5PN(ν) =

(
−

8191

672
−

535

24
ν

)
π,

`3PN(ν) =
6643739519

69854400
+

16

3
π

2 −
1712

105
γE +

(
−

134543

7776
+

41

48
π

2
)
ν −

94403

3024
ν

2 −
775

324
ν

3
,

`3.5PN(ν) =

(
−

16285

504
+

214745

1728
ν +

193385

3024
ν

2
)
π,

`4PN(ν) = −
323105549467

3178375200
+

232597

4410
γE −

1369

126
π

2 +
39931

294
ln 2 −

47385

1568
ln 3

+

(
−

1452202403629

1466942400
+

41478

245
γE −

267127

4608
π

2 +
479062

2205
ln 2 +

47385

392
ln 3
)
ν

+

( 1607125

6804
−

3157

384
π

2
)
ν

2 +
6875

504
ν

3 +
5

6
ν

4
,

`4.5PN(ν) =

(
265978667519

745113600
−

6848

105
γE +

( 2062241

22176
+

41

12
π

2
)
ν −

133112905

290304
ν

2 −
3719141

38016
ν

3
)
π.
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Post-Newtonian Two-Body Problem (Without Spins and Tidal Effects)

There are two sub-problems, usually analyzed separately:
problem of deriving equations of motion (EOM),
problem of computing gravitational-wave luminosities.

EOM N 1PN 2PN 2.5PN 3PN 3.5PN 4PN 4.5PN 5PN∗ 5.5PN 6PN∗∗ 6.5PN 7PN

Luminosity — — — N — 1PN 1.5PN 2PN 2.5PN 3PN 3.5PN 4PN 4.5PN

Red color = worked out completely;
orange color = worked out almost completely (as far as I know).
∗3 numerical coefficients of the EOB representation of the 5PN dynamics are still controversial.
∗∗4 numerical coefficients of the EOB representation of the 6PN dynamics are unknown.
(EOB = effective one-body)

EOM at orders N, 1PN, 2PN, and 3PN are purely conservative,
EOM at orders 2.5PN and 3.5PN are purely dissipative.
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2.5PN-Accurate Two-Body Equations of Motion (Without Spins)

0PN (Newtonian): Newton 1687.
1PN (∝ v2/c2): Lorentz & Droste 1917 (extended-body derivations);
Einstein, Infeld, & Hoffmann 1938 (surface-integral method),

Robertson 1938 (1PN periastron advance);
Fock 1939 & Petrova 1940 (PhD thesis, published 1949 only)

(extended-body derivations).
2PN (∝ v4/c4):
Ohta, Okamura, Kimura, & Hiida 1974 (incomplete),
Damour & Deruelle 1981 (not complete), Damour 1982,
Damour & Schäfer 1985 (ADM-gauge Lagrangian),
Kopeikin 1985 (extended-body derivation),
Damour & Schäfer 1987 (2PN periastron advance via ADM Hamiltonian).
2.5PN (∝ v5/c5):
Damour & Deruelle 1981 (not complete), Damour 1982,
Grishchuk & Kopeikin 1983 (extended-body derivation),
Schäfer 1985 (ADM-Hamiltonian-based derivation).

Damour 1983—deriving the rate of the decay Ṗ of the orbital period of
the two-body system directly from 2.5PN-accurate EOM;
this work ended—at least to a large extent—the quadrupole formula controversy
(which was vivid in the 70th/80th of the XX century).
[See, e.g., D. Kennefick, Traveling at the Speed of Thought, Ch. 11.]



3PN Conservative Two-Body EOM (Without Spins):
the First Four Independent and Mutually Compatible Derivations

The three derivations used δ-sources and dimensional regularization (DR):

Damour, Jaranowski, & Schäfer (1998–2001),
ADM-Hamiltonian-based derivation,
initial purely 3-dim. derivation plagued by two UV-divergence-related ambiguity
parameters (one parameter fixed by the requirement of Poincaré invariance),
final 2001 non-ambiguous derivation used DR;
Blanchet, Damour, Esposito-Farèse, & Faye (2000–2004),
harmonic-coordinate-based derivation,
initial purely 3-dimensional Lorentz-invariant derivation plagued by one
UV-divergence-related ambiguity parameter,
final 2004 non-ambiguous derivation used DR;
Foffa & Sturani (2011),
effective-field-theory approach, non-ambiguous derivation using DR.

There exists only one pure 3-dimensional derivation using an extended body model
together with the strong-field point-particle limit and a surface-integral approach
(in harmonic coordinates):

Itoh & Futamase (2003–2004).



4PN Conservative Two-Body EOM (Without Spins):
the First Four Independent and Mutually Compatible Derivations

All four derivations used δ-sources and DR:
Damour, Jaranowski, & Schäfer (2012–2015),
ADM-Hamiltonian-based derivation,
final 2014 derivation used DR and beyond-near-zone information
taken from Bini & Damour (2013);
Bernard, Blanchet, Bohé, Faye, Marchand, & Marsat (2016–2017),
harmonic-coordinate-based derivation,
final 2017 derivation used DR and beyond-near-zone information
taken from Bini & Damour (2013);
then a new treating of IR divergences by means of DR by
Bernard, Blanchet, Bohé, Faye, Marchand, & Marsat (2017–2018);
Foffa, Porto, Rothstein, & Sturani (2019),
effective-field-theory approach,
non-ambiguous derivation using DR;
Blümlein, Maier, Marquard, & Schäfer (2020),
effective-field-theory approach,
non-ambiguous derivation using DR.



Gravitational-Wave Energy Flux from Binary System (Without Spins)

Lowest order (quadrupole formula):
Einstein 1918, Peters–Mathews 1963, Schäfer 1985.
1PN correction (O(v2/c2)):
Wagoner–Will 1976, Blanchet–Schäfer 1989, Jaranowski-Schäfer 1997.
1.5PN correction (O(v3/c3)):
Blanchet–Damour 1992, Wiseman 1993.
2PN correction (O(v4/c4)):
Blanchet–Damour–Iyer 1995, Will–Wiseman 1995.
2.5PN correction (O(v5/c5)):
Blanchet 1996.
3PN correction (O(v6/c6)):
Blanchet–Damour–Esposito-Farèse–Iyer 2004.
3.5PN correction (O(v7/c7)):
Blanchet 1998.
4PN/4.5PN corrections (O(v8/c8) +O(v9/c9)):
Blanchet–Faye–Henry–Larrouturou–Trestini 2023.



Availability of Balance Equations

(2001)
dE3.5PN

dt
= −L3.5PN (2004, only circular orbits) ,

(2014)
dE4.5PN

dt
= −L4.5PN (2023, only circular orbits) .
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