Event-by-event primary composition discrimination method using supervised machine learning

Washington Rodrigues de Carvalho Jr.

Faculty of Physics, Warsaw University, Poland

carvajr@gmail.com

GRAND collaboration meeting 2025, Warsaw June 3rd, 2025

Washington Carvalho (Warsaw Univ.)

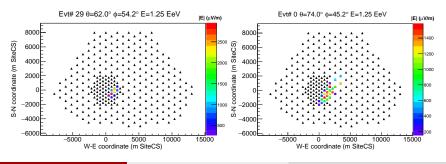
ML discrimination

Simple Machine Learning (ML) discrimination approach

- Discriminates between heavy (Fe) and ligth (p) primary composition on an event-by-event basis
- Bypasses any X_{max} reconstruction and infers composition directly:
 - Similar to Astropart.Phys 109, 41-49, 2019, but using ML
- Uses Random Forests (RF):
 - Simple approach.
 - Implemented my own RF code to really understand the algorithms
 - Not a black-box! Will also try to understand what is important for the discrimination
- Input data: RDSim simulations on a generic hexagonal array
 - Uses triggered antenna positions, peak amplitudes and spectral slopes
 - Also a restricted set without spectral slopes on GP300 (old layout B)
- Still preliminary!!

RDSim

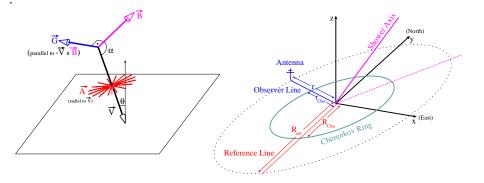
- Fast and comprehensive Monte-Carlo simulation of the radio emission and its detection.
- Takes into account the main characteristics of the detector.
 - Trigger setups, thresholds and antenna patterns
- Radio emission model based on a superposition "toymodel" that disentagles the Askaryan and Geomagnetic components



Radio emission: Superposition "toymodel"

- Based on theoretical polarizations and elliptical symmetry
- Disentangles the Askaryan and geomagnetic components to estimate the electric field in any position on the ground
- Input: Full ZHAireS simulations with specific arrival directions and just a few antennas on a line
- Toymodel can now be rotated to use simulations of a fixed azimuth angle for multiple arrival directions (takes into account sin α, etc...)
- Early/Late effects and electric field linear scaling with energy included
- NEW: the spectral slope can now be estimated at any position
- Can sweep the phase space with much fewer input simulations

Radio emission: Superposition "toymodel"



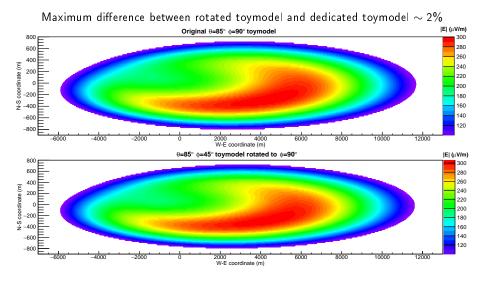
Washington Carvalho (Warsaw Univ.)

ML discrimination

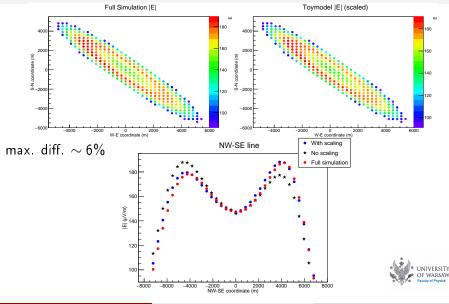
GRAND meeting, Warsaw

5 / 32

Example rotation: $\theta = 85^{\circ}$ from NW to W



Toymodel p 1EeV 80°: $|\vec{E}|$ comparison to full simulation

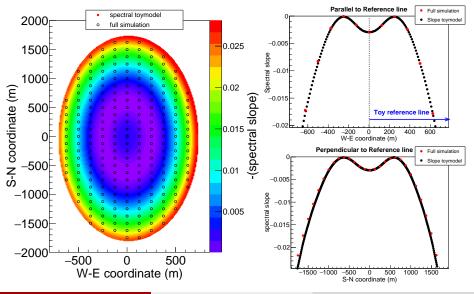


Washington Carvalho (Warsaw Univ.)

ML discrimination

7 / 32

Toymodel p1.25EeV 66°: Slope comparison to full simulation



Washington Carvalho (Warsaw Univ.)

ML discrimination

GRAND meeting, Warsaw 8 / 32

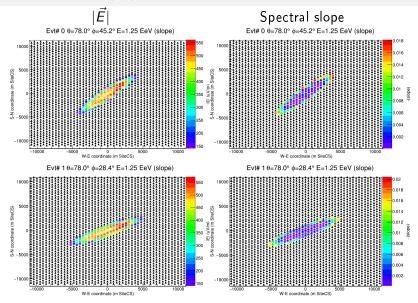
RDSim simulation parameters

- 50 p and 50 Fe input full simulations with $E_0 = 1.25$ EeV per zenith
- A total of 100 "Toymodels" were created per zenith and normalized to the exact EM energy of each fully simulated shower
 - Now every shower has the exact same EM energy
 - Erases EM energy dependence on composition
- Zeniths: 50° to 82° in steps of 4° (analyzed separately)
- \bullet Hexagonal Array with "infill" distance ("outlier" distance for $82^\circ)$
- \bullet Antenna threshold of 101 $\mu\mathrm{V/m}$ per component
- Minimum of 5 triggered antennas
- Bandwidth: 30 MHz 80 MHz (for now)
- Horizon antenna gains not included yet (for now)
- ullet For each zenith, simulated enough events to get ${\sim}10k$ triggered events
- $\bullet\,$ Created a train and a test file with ${\sim}5k$ events each
- A Gaussian energy smearing of 10% was added to each event
 - Twice the quoted 5% for Felix's and Tim's E_{EM} reconstruction method
 - Mimics the energy uncertainty of a single energy bin

Washington Carvalho (Warsaw Univ.)

ML discrimination

Event examples: $|\vec{E}|$ and spectral slope



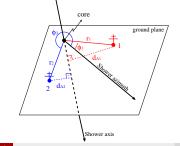
Washington Carvalho (Warsaw Univ.)

ML discrimination

10 / 32

Features

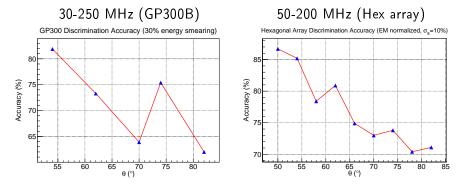
- Triggered antennas are ordered with increasing distance to the axis
- For each antenna *i* we used:
 - The distance d_{Ai} to the shower axis, the peak amplitude $|E_i|$ and the spectral slope SS_i
 - Features: d_{A1} , $|E_1|$, SS_1 , d_{A2} , $|E_2|$, SS_2 , ..., d_{Ai} , $|E_i|$, SS_i
 - The number of features is $3\times$ the number of antennas triggered by the event with the most antennas
 - For events with less antennas, missing features are subtituted by zeros
 - Primary composition also saved (p or Fe)



11/32

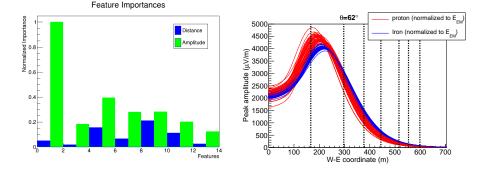
Old results using only distance and amplitude

- Very Good accuracies for such a simple method
- Accuracies tend to decrease with increasing zenith
- Analysis of the feature importances: proton showers seemed to be brighter than Fe near the core on most geometries

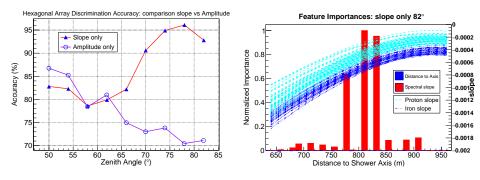


Old results using only distance and amplitude

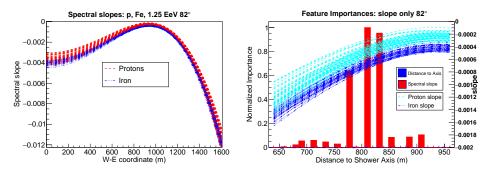
- Very Good accuracies for such a simple method
- Accuracies tend to decrease with increasing zenith
- Analysis of the feature importances: proton showers seemed to be brighter than Fe near the core on most geometries



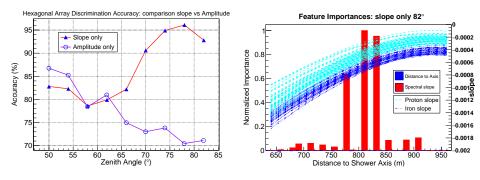
- The effect of the energy uncertainty in the slope is negligible
- Almost perfect discrimination at high zeniths!
- Accuracies tend to decrease with decreasing zenith
- Analysis of the feature importances: Most important features tend to be in regions where there is a smaller overlap between p and Fe



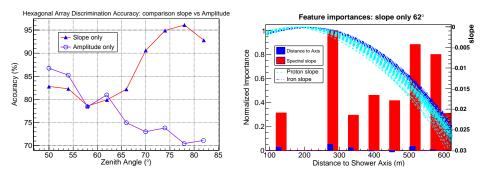
- The effect of the energy uncertainty in the slope is negligible
- Almost perfect discrimination at high zeniths!
- Accuracies tend to decrease with decreasing zenith
- Analysis of the feature importances: Most important features tend to be in regions where there is a smaller overlap between p and Fe



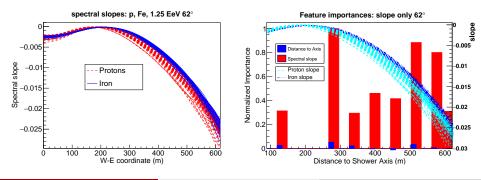
- The effect of the energy uncertainty in the slope is negligible
- Almost perfect discrimination at high zeniths!
- Accuracies tend to decrease with decreasing zenith
- Analysis of the feature importances: Most important features tend to be in regions where there is a smaller overlap between p and Fe



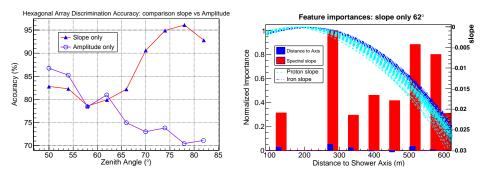
- The effect of the energy uncertainty in the slope is negligible
- Almost perfect discrimination at high zeniths!
- Accuracies tend to decrease with decreasing zenith
- Analysis of the feature importances: Most important features tend to be in regions where there is a smaller overlap between p and Fe



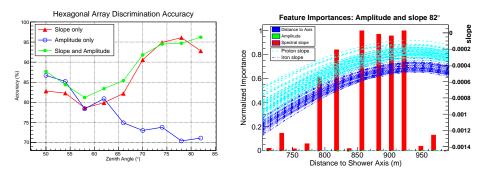
- The effect of the energy uncertainty in the slope is negligible
- Almost perfect discrimination at high zeniths!
- Accuracies tend to decrease with decreasing zenith
- Analysis of the feature importances: Most important features tend to be in regions where there is a smaller overlap between p and Fe



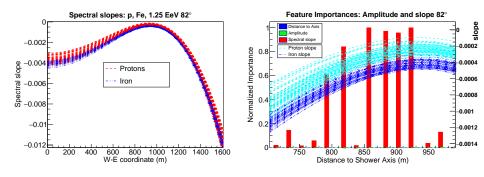
- The effect of the energy uncertainty in the slope is negligible
- Almost perfect discrimination at high zeniths!
- Accuracies tend to decrease with decreasing zenith
- Analysis of the feature importances: Most important features tend to be in regions where there is a smaller overlap between p and Fe



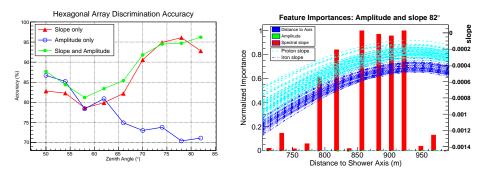
- We get the best of both worlds in all zenith regions!
- ullet Accuracies only decrease to $\sim 81\%$ around 60 $^\circ$
- Most important features tend to be:
 - High zenith: In regions where the slope overlap is smaller
 - Low zenith: In regions where the amplitude overlap is smaller



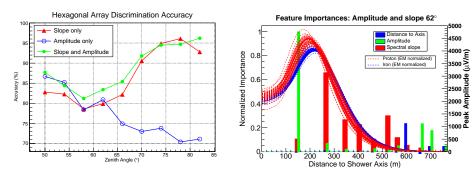
- We get the best of both worlds in all zenith regions!
- ullet Accuracies only decrease to $\sim 81\%$ around 60°
- Most important features tend to be:
 - High zenith: In regions where the slope overlap is smaller
 - Low zenith: In regions where the amplitude overlap is smaller



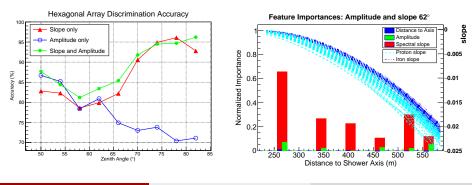
- We get the best of both worlds in all zenith regions!
- ullet Accuracies only decrease to $\sim 81\%$ around 60 $^\circ$
- Most important features tend to be:
 - High zenith: In regions where the slope overlap is smaller
 - Low zenith: In regions where the amplitude overlap is smaller



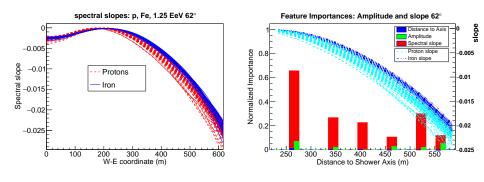
- We get the best of both worlds in all zenith regions!
- ullet Accuracies only decrease to $\sim 81\%$ around 60 $^\circ$
- Most important features tend to be:
 - High zenith: In regions where the slope overlap is smaller
 - Low zenith: In regions where the amplitude overlap is smaller



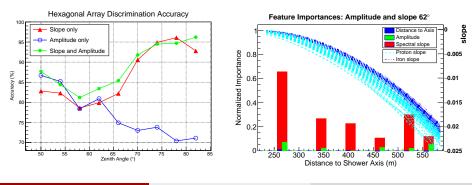
- We get the best of both worlds in all zenith regions!
- ullet Accuracies only decrease to $\sim 81\%$ around 60 $^\circ$
- Most important features tend to be:
 - High zenith: In regions where the slope overlap is smaller
 - Low zenith: In regions where the amplitude overlap is smaller



- We get the best of both worlds in all zenith regions!
- ullet Accuracies only decrease to $\sim 81\%$ around 60 $^\circ$
- Most important features tend to be:
 - High zenith: In regions where the slope overlap is smaller
 - Low zenith: In regions where the amplitude overlap is smaller



- We get the best of both worlds in all zenith regions!
- ullet Accuracies only decrease to $\sim 81\%$ around 60 $^\circ$
- Most important features tend to be:
 - High zenith: In regions where the slope overlap is smaller
 - Low zenith: In regions where the amplitude overlap is smaller



Too good to be true? Caveats: The devil's advocate

- Amazing accuracies: between 81 and 96%! But...
- Noise not included yet!
 - Slopes should be sensitive to noise
 - Could in principle degrade the slope discrimination stregth
- Quoted accuracies are for MY sample
 - Simulated 10K events per zenith, but based on only 100 "Toymodels"
 - No full shower-to-shower fluctuations (10k events but only $100
 eq X_{max}$)
 - Accuracies could vary for different sets, depending on X_{max} overlaps
 - Sensitive to hadronic model used: different X_{max} distros and overlaps
- Real showers: How well do the simulations resemble **REAL** showers?
- Huge and dense array (Infill distance) means many triggered antennas
 - What's the impact of using smaller, less dense arrays?
- Used 30-80 MHz only. Using 50-200 MHz can lead to thinning artifacts on the slopes at low zeniths
 - Can be corrected by lowering thinning on simulations
 - Or "analytically" using a "Cut&Fit" method (backup slides)

Conclusions

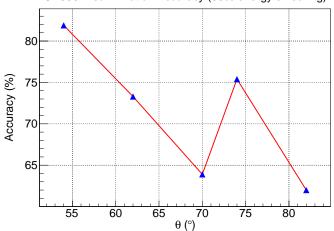
- The spectral slope LDF, just as the amplitude LDF, has a strong correlation with X_{max} and thus also primary composition
- This slope dependence on X_{max} could have the same physical origins as the amplitude dependence on X_{max}
 - Especially the loss of coherence relating to lower densities during shower development. Very clear at high zeniths
 - More study needed to fully understand the origins of this dependence
- Using spectral slopes as RF features significantly increases discrimination accuracies, especially at high zenith angles
- Very promising results
 - Using both the amplitudes and slopes leads to incredibly high discrimination accuracies of 81-96%! Even without RF optimization
- The impact of other factors, such as noise and hadronic model, still need to be addressed
 - But we are starting with such high accuracies, that I find very unprobable that including more effects will destroy the method

Questions?

Other applications of Radio...

BACKUP

Minimum accuracy around 70°: GP300 change of regime



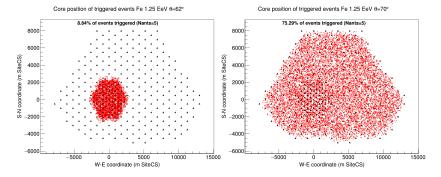
GP300 Discrimination Accuracy (30% energy smearing)

Washington Carvalho (Warsaw Univ.)

GRAND meeting, Warsaw 19/32

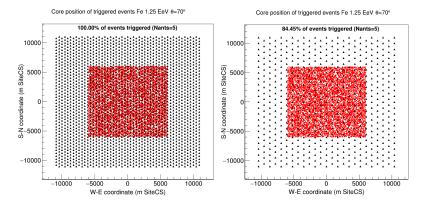
Minimum accuracy around 70°: GP300 change of regime

- 62°: Only triggers inside Infill
- 70°: Trigger over the whole array
 - "Effective" antenna distance d increases significantly $(d_{infill}
 ightarrow d_{outliers})$
 - Footprint not properly sampled at 70° (footprint too small)
 - Larger zeniths are better sampled, leading to an increase in accuracy



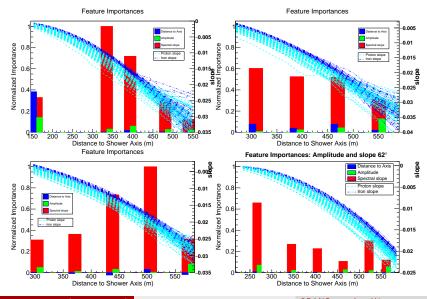
"Fake" array tests at 70°

- Infill spacing: Accuracy $\geq 69.7\%$
- GP300: Accuracy $\geq 61.3\%$
- Outlier spacing: Accuracy $\geq 59.9\%$



- N_{trees} = 200: Number of threes in the forest
- $D_{max} = 100$: Maximum Tree Depth
- $S_{min} = 10$: Minimum number of samples is a node (tested range 5-12)
- boot_{size}: Ratio between the number of events in the boostrap and the full train dataset (saves time)
- N_{Fsub} : Number of features in the random feature subset (N_{add})
- $\sigma_E = 0.1$: RMS of Gaussian energy smearing (tested 10-40% range)
- *N*remove: Number of farthest antennas removed from the features

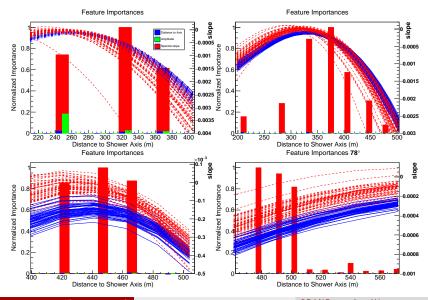
Feature importances and SLOPE LDF: 50 to 62°



Washington Carvalho (Warsaw Univ.)

ML discrimination

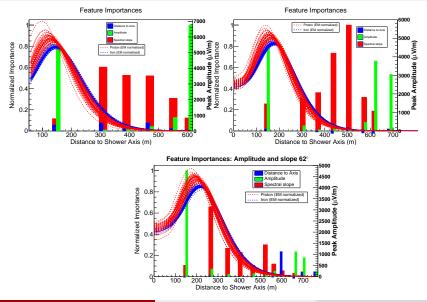
Feature importances and SLOPE LDF: 66 to 78°



Washington Carvalho (Warsaw Univ.)

ML discrimination

Feature importances and amplitude LDF: 50 to 62°

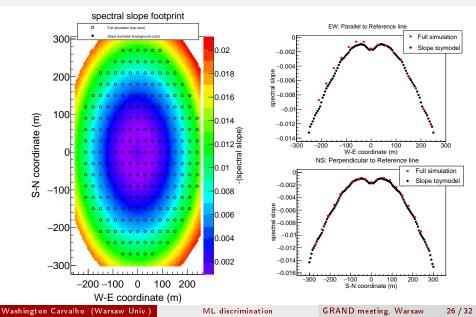


Washington Carvalho (Warsaw Univ.)

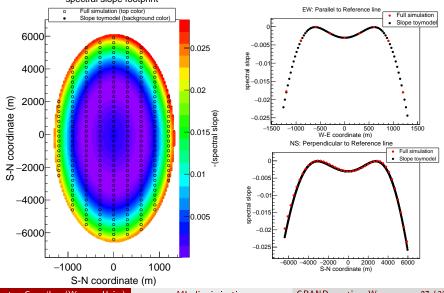
ML discrimination

GRAND meeting, Warsaw 25 / 32

Toymodel p1.25EeV 30°: Slope comparison to full simulation



Toymodel p1.25EeV 78°: Slope comparison to full simulation

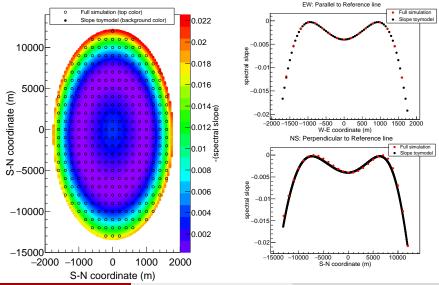


spectral slope footprint

Washington Carvalho (Warsaw Univ.)

ML discrimination

Toymodel p1.25EeV 82°: Slope comparison to full simulation



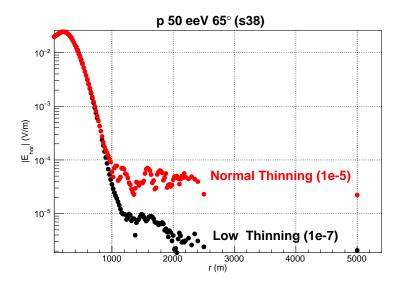
spectral slope footprint

Washington Carvalho (Warsaw Univ.)

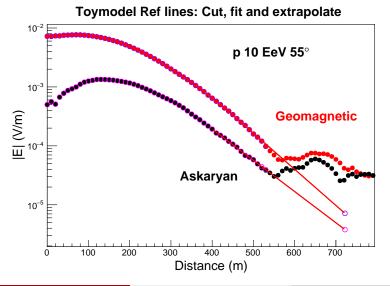
ML discrimination

GRAND meeting, Warsaw 28 / 32

Thinnning artifacts: amplitude (Very relevant for deep ν 's!)



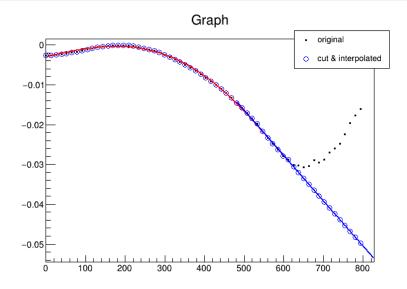
Fixing thinnning artifacts: amplitude Cut&Fit



Washington Carvalho (Warsaw Univ.)

GRAND meeting, Warsaw 30 / 32

Fixing thinnning artifacts: slope Cut&Fit



Hadronic model dependence?

