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Why Machine Learning ?

▶ Work directly from data-like inputs

▶ Fast and reliable data analysis : Direction and Energy reconstruction

▶ Background event rejection

But, need for labelized data =⇒ Training on simulations = complications :

▶ How to make sure the reconstruction will work on real data ?

▶ How to properly simulate the measurement noise ?

▶ What level of confidence to give to the predictions ?

Developing reliable AI with uncertainty quantification.
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Simulation set

1. DC2 ADC simulations

2. Low galactic noise + 5ns jitter

3. Extract time and amplitude of maximum

4. Trigger condition : Signal ≥ 30ADC (5σ)
for more than 5 antennas.

Antenna layout
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Simulation set

1. DC2 ADC simulations

2. Low galactic noise + 5ns jitter

3. Extract time and amplitude of maximum

4. Trigger condition : Signal ≥ 30ADC (5σ)
for more than 5 antennas.

Trace example
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Event examples

Wide variety of events:

Varying footprint size,

shape, antenna multiplicity

Constraint on the

possible NN architecture
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GNN explanation
Key Steps in a GNN Layer: [Scarselli et al.]

▶ Message Passing: Each node aggregates information from its neighbors.

▶ Aggregation: Information is combined using a function (e.g., sum, mean, max).

▶ Update: Node embeddings are updated using a neural network (e.g., MLP).

Mathematical Formulation:

h
(l+1)
i = σ

(
AGGj∈N (i)

(
fωl

[h
(l)
i , h

(l)
j ]

))
,

where:

▶ h
(l)
i : Node embedding at layer l .

▶ N (i): Neighbors of node i .

▶ fωl
: Is a function with trainable parameters

(MLP).

▶ σ: Non-linear activation (e.g., ReLU).

Visualization:
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Architecture of Graph Neural Networks

Input Graph
[n, 5]

NormaliseLayer
[n, 5]

EdgeConv Layer
4 layers
[n, 256]

Mean Pool
[1, 256]

Max Pool
[1, 256]

+
[512]

MLP
 [3] k

n = number of antennas

Architecture of graph neural networks:
780k parameters (can be reduced to 60k)

EdgeConv Layer [Abbasi et al.] :
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Training procedure
Direction reconstruction

Reconstructing θ, ϕ : No direct reconstruction.
Better in cartesian coordinates: k

▶ Loss function L(ω) = E[||kpred − ksim||2]
▶ 5 input features: 3 antenna coordinates, arrival time,

signal amplitude (normalised)
▶ Training set: 4937 events, Validation set: 928 events
▶ 10 models or more trained with different

initialization/Train dataset order

Ensemble methods:
With the N models, 1 ”meta model”.

kpred =
1

N

N∑
i=1

kpred ,i

φ

θ

x⇔Ngeomag

y⇔W

z⇔Up k

Parameters convention
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Performance
Direction reconstruction

Single model predictions
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Training set size

Influence of training set size

Evolution of the error when increasing the
training set size.

Extrapolation is no reason yet :
Suggests that larger training set => Better
performances.

To avoid using more simulations : Feed
physical knowledge to network.
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Physical knowledge
What is PWF ?
Assume the wavefront is planar:

Linear relation between timings T, position P and propagation

vector k:

Planar wavefront

Solution :

k = argmin(T− Pk)T(T− Pk) s.t. ∥k∥ = c
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Github repository
[Ferriere et al. 2025]
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https://github.com/arsenefer/PWF_reconstruction
https://www.sciencedirect.com/science/article/pii/S0168900224011045


New Architecture of Graph Neural Networks : pGNN

Input Graph
[n, 5]

NormaliseLayer
[n, 5]

EdgeConv Layer
4 layers
[n, 256]

Mean Pool
[1, 256]

Max Pool
[1, 256]

+
[512]

MLP
 [3] k

n = number of antennas
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New Architecture of Graph Neural Networks : pGNN

Input Graph
[n, 5]

NormaliseLayer
[n, 5]

EdgeConv Layer
 1 to 4

[n, 256]

Mean Pool
[1, 256]

Max Pool
[1, 256]

+
[515]

MLP
 [3] k

PWF
 [3]

n = number of antennas
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Performance
Direction reconstruction

Single model predictions
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Correction of the PWF bias

PWF is known to be biased when asymmetries in the antenna footprint.
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Training procedure and performances
Energy reconstruction - Work in progress

Reconstructing E ? No : Uneven distribution. Better log E .

▶ Loss function L(ω) = E[log
(

Epred

Etarget

)2
]

▶ 5 input features: 3 antenna coordinates, arrival time,
signal amplitude (normalised)

▶ Training set: 4937 events, Validation set: 928 events
▶ 10 models or more trained with different

initialization/Train dataset order
▶ Secondary input : PWF + polynomial fit of energy

from (average amplitude, maximum amplitude, number
of antennas, PWF zenith angle)
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Energy resolution
Energy reconstruction - Work in progress

1.0 0.5 0.0 0.5
log10(E / EeV)

1.5

1.0

0.5

0.0

0.5

lo
g 1

0(
E p

re
d/E

eV
)

Proton
Iron

Total energy resolution : 19.5%
For primary energy!
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On more realistic simulation
Direction reconstruction

On sims with the new RF chain and effective length: mult ≥ 5, trigger at 85 ADC:

Distribution of triggered events
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On more realistic simulation
Direction reconstruction

Difficult training as much lower SNR =⇒ less dus per event

Performance vs antenna multiplicity (mult ≥ 6 : 91% of events)
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On more realistic simulation
Direction reconstruction

Difficult training as much lower SNR =⇒ less dus per event

Performance vs incoming angles (mult ≥ 6 : 91% of events)
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Uncertainty estimation
Direction reconstruction

Under Gaussian assumption : θ ∼ N (µθ, σ
2
θ) and ϕ ∼ N (µϕ, σ

2
ϕ). With µθ the mean

of our 30 predictions of θ and σθ their std’s.

PP plot for our uncertainty estimator. We
slightly overestimate our uncertainties for θ
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Uncertainty estimation
Direction reconstruction

Example of reconstruction
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Energy resolution
Energy reconstruction - Work in progress

Total energy resolution : 21.7%
For primary energy!
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Left to do
Direction reconstruction

1. Improve energy reconstruction on the new set of simulation

2. More robust testing on triggering effects/smearing effects

3. Add features (spectral slope, polarization)
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On real Data
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Conclusion

Results - Direction on data-like simulation

▶ With GNN and ensemble methods, high direction reconstruction precision : 0.17°
precision for nants >= 6.

▶ Slightly overconfident uncertainty estimation.

Results - Energy on simulation

▶ Energy resolution : 21.6%

▶ Uncertainty estimation not yet calibrated.
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Backup slides : joint trigger distribution

Joint trigger distribution joint trigger ratio
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Training set size and graph structure
Direction reconstruction

Influence of graph structure
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▶ if Nneighbors = 3: graph depth = 8.18
▶ if Nneighbors = 8: graph depth = 3.9
▶ if Nneighbors = 100: graph depth = 1.14
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Ensemble size

We have a net improvement of the performances of the direction reconstruction with
the same training size.

Evolution of the precision with the number of models
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