

Marion Guelfand - Pauline Fritsch - Olivier Martineau Analysis Session - Warsaw collaboration meeting - 03/06/2025

with ADF

the state

Reconstruction Procedure: PWF - SWF - ADF

Based on Valentin Decoene's Thesis See presentation Analysis extended meeting December 2024

Determine the emission point:

2) Spherical wave function (SWF) to reconstruct X_{source} using trigger times (corresponding time of max amplitude of Hilbert enveloppe)

Determine a vector k which intersects emission point:

- 1) Plane wave function (PWF): quickly reduced parameter space (θ, ϕ) using trigger times (analytical, with error calc.)
- 3) Angular Distribution Function (ADF) using peak amplitudes: Fitting the signal amplitude on ground with **ADF model** (empirical and Physics informed)

The ADF (angular distribution function) model

Based on Valentin Decoene's Thesis

Phenomenological model: describe the **signal amplitude of Efield** of the EAS within the radio footprint. Adapted for 50-200 MHz frequency range

Signal amplitude of data:

-Peak amplitude computed from max of Hilbert enveloppe

4 free parameters:

- arrival direction θ, ϕ : direct reconstruction
- scaling factor A and width $\delta\omega$
- Amplitude of radio signal related to electromagnetic energy $E_{\rm em}$
- Scaling factor A to construct energy estimator

Marion Guelfand - Pauline Fritsch - Olivier Martineau - Analysis Session - Warsaw collaboration meeting - 03/06/2025 Astroparticle Physics, 2025, arXiv:2504.18257 2

Testing the ADF model on voltage

Work done with Pauline Fritsch, intern @ ICRR, Tokyo and iLance France-Japan lab

Motivation: Identify cosmic ray candidates without going through E-field deconvolution (direct information from the detector)

- Smooth variation of effective length $l_{\rm eff}$ for $heta \sim$ 70-85° Antennas in the array see source from almost same viewing angle Amplitude from voltage scales as amplitude from Efield

Testing the ADF model on voltage

Work done with Pauline Fritsch, intern @ ICRR, Tokyo and iLance France-Japan lab

Motivation: Identify cosmic ray candidates without going through E-field deconvolution (direct information from the detector) Test on 1000 ZHAireS - AN DC2-RF2 Alpha simulations: experimental noise (from the MD data of GP80) on ADC traces Trigger conditions: Amplitude threshold \geq 100 ADC and Antenna threshold \geq 5 + select $\theta \geq 60^{\circ}$

GRAND Marion Guelfand - Pauline Fritsch - Olivier Martineau - Analysis Session - Warsaw collaboration meeting - 03/06/2025

Antennas in the array see source from almost same viewing angle • Amplitude from voltage scales as amplitude from Efield

Testing the ADF model on voltage: results

Work done with Pauline Fritsch, intern @ ICRR, Tokyo and iLance France-Japan lab

Motivation: Identify cosmic ray candidates without going through E-field deconvolution (direct information from the detector) Test on ZHAireS - AN DC2-RF2 Alpha: experimental noise (from the MD data of GP80) on ADC traces Trigger conditions: Amplitude threshold \geq 100 ADC and Antenna threshold \geq 5 + select $\theta \geq 60^{\circ}$

ADF can be used on voltage for cosmic ray identification + direction reconstruction and energy estimation

GP80 cosmic ray candidates: Selection on voltage

- longer than the ADC one
- Efield reconstruction fails on some antennas (gives multiplicity < 5 for 7 events)

Refine cosmic ray candidates selection without going through E-field deconvolution (direct information from the detector) • Efield deconvolution not convincing for some cosmic ray candidates: baseline too noisy or fluctuating or Efield pulse

Selection of cosmic ray candidates with voltage

Ratio of DC2 simulations below the cut: 83% Ratio of cosmic ray candidates below the cut: 85%

Selection of cosmic ray candidates with voltage

Ratio of DC2 simulations below the cut: 83% Ratio of cosmic ray candidates below the cut: 85%

2) Test Background Hypothesis (k/l fit)

- Fit: Amplitude vs distance I to Xsource (obtained with SWF) for background model: isotropic emission (k/l fit)
- Comparison of χ^2/ndf (k/l) vs. χ^2/ndf (ADF)
- ► In most cases: χ^2 /ndf (k/l) » χ^2 /ndf (ADF)
- Idea: use fit quality (ADF vs. k/l) to tag true CR candidates

Cosmic ray candidates: some examples

GRAND

Marion Guelfand - Pauline Fritsch - Olivier Martineau - Analysis Session - Warsaw collaboration meeting - 03/06/2025

Cosmic ray candidates: some examples

GRAND

Marion Guelfand - Pauline Fritsch - Olivier Martineau - Analysis Session - Warsaw collaboration meeting - 03/06/2025

Candidate Not Passing the Selection Criteria

Marion Guelfand - Pauline Fritsch - Olivier Martineau - Analysis Session - Warsaw collaboration meeting - 03/06/2025

Identification of CR candidates with voltage: done

GRAND k x B [deg] Marion Guelfand - Pauline Fritsch - Olivier Martineau - Analysis Session - Warsaw collaboration meeting - 03/06/2025

11

ADF reconstruction applied on reconstructed Efield

Marion Guelfand - Pauline Fritsch - Olivier Martineau - Analysis Session - Warsaw collaboration meeting - 03/06/2025

GRIND

Direction and energy reconstruction

See **Guelfand**, Decoene, Martineau et al., Astroparticle Physics, 2025, arXiv:2504.18257

Warning: amplitude calibration not included in Efield deconvolution and voltage But energy distribution looks reasonable

- ADF reconstruction on Voltage
- ADF reconstruction on Efield

Direction and energy reconstruction

Cross check for energy with ADF voltage: Use the scaling law derived from simulations to estimate the energy from the ADF voltage fit Agreement quite good: with a root mean square deviation of only 65%

With voltage from DC2 simulations

Conclusion and outlook

- ADF model tested and validated on voltage traces using DC2 simulations (with good efficiency)
- Cosmic ray candidates selected via ADF applied to voltage
- Direction reconstruction performed with both E-field and voltage (results are consistent)
- Energy reconstruction based on E-field, with a cross-check using voltage

- Test background (k/l) fit + Test ADF fit on coincident data (CD)
- Compute χ^2 /ndf distributions and optimize identification
- Include calibration in pipeline
- Compute reconstructed Xsource position (grammage) with SWF

Backup

EventName	Run	Event	AntennasNumber_efield	ZenithRec_efield	AzimuthRec_efield	Energy_em_efield	chi2_reduced_efield	AntennasNumber_voltage	ZenithRec_voltage	AzimuthRec_voltage	Energy_em_voltage	Chi2
CR1	1735	0	6	72.1984	54.3489	1.2682235586736768e+18	19.2087	6	72.2236	54.3002	1.6366847960742216e+18	12
CR2	2560	0	5	74.9905	193.048	3.2105102891243494e+17	12.5405	5	74.8852	192.994	2.8885045095367616e+17	4.
CR3	2574	5	4					5	76.8379	195.926	5.221480004900508e+17	0.9
CR10	4442	2	5	71.4409	44.0535	1.1551498880901102e+18	21.8381	5	71.6693	43.8028	1.9345311629224343e+18	1.2
CR11	4506	2	5	71.9568	25.1197	3.236141153082982e+17	15.2058	5	71.9651	25.0992	4.2334266616285766e+17	5.7
CR14	4612	1	5	78.9021	49.9141	1.0430881753852512e+18	6.86577	5	78.9404	48.965	1.5307338279132846e+18	10
CR31	4666	0	6	69.8616	43.8437	4.052650588376044e+17	19.17815	6	69.8435	43.8186	4.5639179620773824e+17	8.8
CR18	6222	1	5	70.7786	50.1656	3.045822218388861e+17	88.162	5	70.876	49.7097	3.705429336242009e+17	8.3
CR19	6606	4	9	77.6707	48.5769	8.440872012662884e+17	5.6224	9	77.771	48.468	1.162860717836544e+18	6.4
CR32	6826	2	5	75.8414	169.492	4.4493506759343386e+17	16.7502	5	75.8646	169.478	6.209988221767203e+17	16
CR22	7177	0	10	80.0948	359.839	6.398025336500338e+17	5.488816666666666	10	79.9696	359.812	4.612393383447543e+17	1.8
CR24	7572	0	5	72.379	336.908	3.638333116741761e+17	69.5022	5	72.3773	336.903	3.888182130956347e+17	65.
CR25	7913	0	6	76.0764	2.36484	4.3874521783705126e+17	32.255	7	75.7007	1.95174	4.273614366928888e+17	13.
CR27	8372	0	5	81.6231	13.1785	4.849702459650722e+18	1.88781	7	80.8078	12.9149	4.787663773438216e+18	9.1
CR28	8419	0	5	77.7047	172.301	1.0083011689834225e+18	18.3161	5	77.5891	172.312	3.980367307366609e+17	0.6
CR34	9139	0						5	87.6108	6.66355	2.1711726399312154e+18	1.1
CR35	9386	3	5	82.9281	2.22525	1.4004868551270912e+18	2.11718	5	83.1581	2.2662	8.005261602958904e+17	0.1
CR37	9668	0	3					7	70.9669	151.13	4.3087555389934925e+17	2.6
CR38	9972	0	6	77.0229	143.156	6.594852103679282e+17	2.805785	6	77.0945	143.005	8.366734400612602e+17	0.7
CR4	2626	13	6	79.4932	34.7692	1.6710644099438098e+18	1.476615	8	79.3576	34.4779	1.1707325709725092e+18	4.5
CR7	3709	68	4					5	76.6373	26.4612	2.6255098840037e+17	8.6
CR8	3711	37	4					5	80.0015	218.689	4.705063307811188e+17	12.
CR12	4522	38	3					5	81.1061	234.447	5.452894861440626e+18	22.
CR15	5041	78	5	81.7176	127.547	1.257935040077509e+18	0.273576	5	81.7159	127.619	1.328634684171267e+18	0.9
CR16	5590	28	4					5	80.7974	178.499	5.864552788014391e+18	321
CR0	576	820	10	78.2397	137.709	6.32178417645269e+17	14.21423333333333333	10	78.2513	137.764	7.173762288183375e+17	0.9
CR17	6184	46	5	75.7335	189.208	5.064053671157804e+17	1.41199	5	75.7717	189.269	1.5141684378279914e+17	5.3
CR20	7003	16	6	77.4381	310.3	7.88418176303038e+17	3.74135	6	77.4113	310.353	5.734040369700268e+17	1.2
CR21	7137	83	5						78.758	217.086	1.2478679898803651e+17	8.0
CR26	7961	50	4					5	76.5764	21.2662	4.984012636085028e+17	11.
CR29	8602	47	4					5	83.5074	191.282	1.6805323193810842e+18	39.
CR30	8716	40	7	82.0854	315.414	2.458263225584772e+18	3.5931	7	82.1343	315.413	2.5528300789588367e+18	5.3

Backup

Reconstructed Efield tracesRun: Run:2626 Event:13

GRND Marion Guelfand - Pauline Fritsch - Olivier Martineau - Analysis Session - Warsaw collaboration meeting - 03/06/2025

Reconstructed Efield tracesRun: Run:5590 Event:28

