Exposure calculation for GP300 Sei Kato, Clément Prévotat & Rafael Alves Batista

of events = Flux (cm⁻² s⁻¹ sr⁻¹) × Exposure (cm² s sr)

of events dN detected from a fixed sky region in d Ω during a period of dt:

 $dN = Flux \times d\Omega \times A_{geo} \cos\theta \times R(\theta, \phi) \times dt$

 A_{geo} : Geometrical area of the array $R(\theta, \phi)$: Response function of the array

(Including the effect of the atmosphere, non-uniformity of the array sensitivity over the sky)

Integration over Ω and t gives the total # of events from the whole sky during the DAQ period T

$$\int d\mathbf{N} = \mathbf{N} = \mathrm{Flux} \, \mathbf{A}_{\mathrm{geo}} \int_{\Omega} \mathbf{R}(\theta, \phi) \, \cos\theta \, \mathrm{d}\Omega \, \int_{\mathsf{T}} \mathrm{d}t$$

Exposure =
$$A_{geo} \int_{\Omega} R(\theta, \phi) \cos \theta d\Omega \int_{T} dt$$

DC2 Simulation

- GP300 array configuration
- ✓ Geometrical area: 168 km²
- ✓ 289 radio detector units (DUs) (12DUs of GP13 for crosscheck)
 ✓ Infill array (250m interval)
- ✓ Outer array (1km interval)
- Site details
- ✓ Xiaodushan, Dunhuang (40.99°N, 93.94°E)
- ✓ 1264 m a.s.l.
- $\checkmark B_{geo} = 56.5 \,\mu T$
- ✓ Inclination angle: 61.6°
- ✓ Declination angle 0.13°

DC2 Simulation

- ✓ Dataset directory: /sps/grand/DC2Training/ZHAireS/.
- ✓ EAS simulation code: ZHAireS 1.0.30a
- ✓ Hadronic interaction model: Sibyll 2.3d
- ✓ Total # of events: 1.3×10⁴

For each event,

- $\checkmark~$ Shower is simulated until its maximal development: X_{max}
- Random generation of core locations are repeated until # of DUs inside the Cherenkov cone is >= 3
 We get tested core positions & the final core position
- \checkmark Finally, a full simulation is performed (time trace of DUs)

Formula to Calculate Exposure

Exposure =
$$S_{\text{geo}} \Delta \Omega T_{\text{obs}} \frac{\sum_{i} w_{E_i} w_{\theta_i} \cos \theta_i}{\sum_{j} w_{E_j} w_{\theta_j} N_{\text{draw},j}}$$

Summation runs over Numerator: Triggered events Denominator: All simulation events

 S_{geo} : Area assumed in the simulation (= GP300 geometrical area, 168km²) ΔΩ: Solid angle of the sky T_{obs} : Observation time $N_{\text{draw},j}$: # of tested core positions + 1 for the j-th event \uparrow Coming from the j-th event itself

Trigger Conditions

- DC2 ZHAireS L1 simulation (simulated Galactic noise + gps & amplitude jitters)
- Time trace filtered in the 50-200 MHz frequency range
- Peak Electric-field amplitude computed from Hilbert envelope (Epx, Epy & Epz)
- Trigger condition:

Amplitude threshold: sqrt(Epx² + Epy² + Epz²) > 110μ V/m (= 5σ)

Events left after the cut: 4680 events

Event Weighting

log₁₀(Energy [eV])

Trigger Efficiency

Fraction of triggered events inside the geometrical area of GP300

One-Day Exposure & # of Events / Day a.f.o. Energy

Error bar: Mainly coming from the stat. uncertainty of # of triggered events

of CR events/day: 463 ± 35 (MC stat.) ± 32 (syst.)* events/day

*Binning effect, different integration method, etc.

The result is crosschecked w/ Clément Prévotat

One-Day Exposure & # of Events / Day a.f.o. Energy

For Pure Proton & Pure Iron Cases

* Horizontal axis of the blue curve (iron) is systematically shifted for easy visibility

Pure proton: 528 ± 53 (MC stat.) events/day Pure iron: 377 ± 46 (MC stat.) events/day

One-Day Exposure & # of Events / Day a.f.o. $\cos \theta$

Error bar: Mainly coming from the stat. uncertainty of # of triggered events

The result is crosschecked w/ Clément Prévotat

Structures of the Exposure a.f.o. $\cos \theta$

Exposure (m² s sr)

Structures of the Exposure a.f.o. $\cos \theta$

Increase toward the large zenith-angle range due to the increase of the physical size of the Cherenkov cone on the ground

Structures of the Exposure a.f.o. $\cos \theta$

One-Day Exposure & # of Events / Day a.f.o. $\cos \theta$

For Pure Proton & Pure Iron Cases

Proton showers' footprint is too small

Prediction for the Future: All-Particle CR Energy Spectrum

16

Prediction for the Future: X_{max}

~10 times smaller stat. unc. than LOFAR \rightarrow

~ 7 times smaller \rightarrow

- ~ 5 times smaller \rightarrow
- ~ 2 times smaller stat. unc. than Auger RD \rightarrow

24 lg (E/eV) 17.00 to 17.25 21 $\mu = 651.6 \text{ g/cm}^2$ 18 $\hat{\sigma} = 61.2 \text{ g/cm}^2$ showers 15 N=91 12 arXiv:2103.12549v2 # $<X_{max}> = mean(\mu)$ Error = std(σ)/ \sqrt{N} 3 X_{max} [g/cm²]

Statistical uncertainty in the X_{max} measurement in GP300 observation (assuming $\sigma = 60$ g/cm²)

log ₁₀ (Energy [eV])	Stat. unc. of <x<sub>max></x<sub>
17.00	0.5 g/cm ²
17.50	0.7
18.00	2.0
18.50	6.5

Systematic uncertainty will be dominant in the GP300 obs.

Summary

- \checkmark Exposure of GP300 is calculated using the DC2 Simulation data
- ✓ GP300 exposure as a function of energy (one-day obs.):
 - $\sim 10^{12} \text{ m}^2 \text{ sr s} @ 10^{17} \text{ eV}$
 - $\sim 5 \times 10^{12} \text{ m}^2 \text{ sr s} @ 10^{18} \text{ eV}$
- ✓ <u># of triggered CR events / day ~ 460 events</u>
- \checkmark Morphology of the exposure as a function of $\cos\theta$ is analyzed
- ✓ <u>The above results are crosschecked with Clément</u>
- ✓ All particle CR spectrum will be measured @ 10^{16.6} eV < E < 10¹⁹ eV in one-year obs.
- ✓ Stat. unc. in the X_{max} measurement will be much smaller than the previous radio-array experiments (syst. unc. dominant)

Backup Slides

Weighting Scheme

of events are conserved before & after weighting

Radial Distribution of Triggered Events

Events are NOT weighted. The sum of the bin values is normalized to 1 in both plots