Towards solving the muon problem in air showers : A global approach from Heavy Ions to Cosmic Rays

Tanguy Pierog

Karlsruhe Institute of Technology, Institute for Astroparticle Physics, Karlsruhe, Germany

With K.Werner, SUBATECH, Nantes, France

GRAND collaboration meeting, Warsaw, Poland June the 2nd 2025

Outline

Introduction

A global approach to do hadronic interactions

Impact of Hadronic Rescattering (HS)

- Predictions for air showers (EAS)
 - $\clubsuit X_{_{max}}$ and μ
- Muon puzzle
 - Why collective effects impact muon production ?

Recent LHC data provide new constraints on models changing X_{max} and the muon production if a global approach is used.

Sensitivity to Hadronic Interactions

- Air shower development dominated by few parameters
 - mass and energy of primary CR
 - cross-sections (p-Air and (π-K)-Air)
 - (in)elasticity
 - multiplicity
 - <u>charge ratio</u> and baryon production
- Change of primary = change of hadronic interaction parameters
 - cross-section, elasticity, mult. ...
- Model tuned to accelerator data

Theory AND data are important to constrain the hadronic model parameters.

From R. Ulrich (KIT)

Introduction

What means global approach?

Global approach is the key !

- Tuning models neglecting some physics process lead to wrong parameters !
- Proper tune possible to do only if everything taken into account

All collective effects considered for the first time !

- Either with a direct impact on the shower development (new elasticity)
- Or no direct impact on the shower development but change model parameters... leading to different shower properties.

Introduction

String Fragmentation

- Common hadronization in all the models
- Parameters fixed on e+-e- only in EPOS
 - Other CR models tuned on p-p data
 - "Contamination" by beam remnant
- Very important for forward particle production (EAS)

Annihilation at high energy

Used for beam remnant hadronization

Used in dilute systems = CORONA

Core-Corona (co-co)

- Core hadronization = thermal hadronization of Quark Gluon Plasma
 Mixing of core and corona hadronization needed to achieve detailed description of p-p data (ref K.Werner)
 - Evolution of particle ratios from pp to PbPb
 - Particle correlations (ridge, Bose Einstein correlations)
 - Pt evolution, …
- Both hadronizations are universal but the fraction of each change with particle density

Hadronic Rescattering (HS)

Missing effect in all CR models until now !

- Re-interaction of hadrons after parton hadronization (space-time evolution)
- "traditionally" used only for heavy ion collisions (until recently NOT in p-p)
- No direct impact on EAS development since forward particles escape
- But significant to large impact at midrapidity in heavy ion collisions !

Applied to all system (from e+-e- to PbPb) !

Introduction

Global approach

Example with Lambda particle in p-p and Pb-Pb @ LHC

Example with Lambda particle in π -Air @ all energies

Other improvements in EPOS.LHC-R

Number of limitations identified and solved compared in EPOS LHC

- Problem with nuclear fragments solved
 - Fluctuations of X_{max} for iron similar to others
- No more artificial symmetry neutron and proton
- Pion exchange and real Pomeron exchange
 - LHCf data
- Charm production
 - IceCube
- Lower cross-sections
- Indirect impact of core-corona (multiplicity) and hadronic rescattering (shape in pseudorapidity)
 - Higher elasticity due to smaller light cone momenta

Global changes

Taking into account new data, new EPOS shifted by +20g/cm² (+/- 5g/cm²)

max

QGSJETIII-01 shifted by +15g/cm² (=EPOS LHC)

x 10⁴

Global changes

- Consequence of retuning, now EPOS shifted by +20 to 30 g/cm²
- ➡ Increase of the total number of muons by about 10% (+/- 5%) for EPOS.LHC-R

N_μ

 $z = \frac{\ln N_{\mu}^{\text{det}} - \ln N_{\mu,p}^{\text{det}}}{\ln N_{\mu,Fo}^{\text{det}} - \ln N_{\mu,p}^{\text{det}}}$

Muon Puzzle Solved ?

EPOS.LHC-R, first model producing a deeper X_{max} and more muons and being compatible with all measured accelerator data :

- \blacksquare Deeper X_{max} give larger <InA> reducing the gap with measured muon content
- Increase of muons further decrease the gap to reach Auger systematics
- No big change for QGSJETIII

KASCADE/LHAASO

Correlation between N_{e} and N_{μ}

- Deeper shower development = larger Ne \rightarrow compensate larger N_µ
- Very similar correlation compared to previous model
- But probably lower energy scale and larger predicted mass !

Why?

Collective effects are important to tune properly the models !

- Change ratio between π and ρ in string fragmentation depending on phase-space
 - Forward particle production not the same than at mid-rapidity
- If the effect is not taken into account
 - Either overestimate production compared to data ("bad tune")

✤ Sibyll*

If ρ^0 or underestimate forward production of ρ^0 to get it right for mid-rapidity data

Source of differences

Changes with new tune taking into account collective effects (LHC)

- Increase the number of muons by ... 10 to 20% (different slope) !
 - Impact of core-corona on baryon/strangeness prod. AND change in multiplicity/elasticity to accommodate hydrodynamical evolution (flow)
 - Impact of tune based on full LEP data with hs instead of just p-p/p-A
- Change in muon energy spectrum !

Outlook

- Updated results of cross-sections, multiplicity and diffraction using a global approach in EPOS LHC-R
 - ➡ Large impact on X_{max}
 - Larger <InA> (heavier primary mass → reduce "muon puzzle")
 - Details of hadronization matters
 - Important role of resonances

 $rightarrow \rho^0$ impacted by hadronic rescattering, important to take it into account

- Evolution of strangeness with multiplicity
 - Different type of hadronization in core = more muons

Combination of the 3 effects may solve the muon puzzle (to be confirmed) !

- Source of muon puzzle probably due to the fact that hadron rescattering was always neglected
 - Hadronic rescattering change the correlation between forward and mid-rapidity !

EPOS.LHC-R and QGSJETIII-01 available in the latest CORSIKA release

Recent LHC data provide new constraints on models, changing X_{max} and the muon production if a global approach is used.

Providing a possible solution to the "muon puzzle" !

Thank you !

Possible updates since EPOS LHC

- First LHC data lead to reduced differences between models
 But a number of new data since model release could be use to further improve the models :
 - Update of the p-p cross sections (ALFA)
 - Data at 13 TeV (CMS, ATLAS, LHCf)
 - More detailed p-Pb measurements (fluctuations) CMS
 - Particle yields as a function of multiplicity (ALICE, LHCb)
 - Very important to understand the mechanism behind particle production
- Update of EPOS LHC \rightarrow EPOS LHC-R
 - New EPOS 4 available for heavy ion physics but not usable for air showers (yet)
 - Modify EPOS LHC to take into account new data and new knowledge accumulated with (and code from) EPOS 4
 - Almost final result (but still preliminary) including all <u>collective effects</u> !

Generic "EPOS"

First attempt using theoretical constraints

Impose isospin symmetry (u=d) for pions, ρs and nucleons BEFORE decay

- Fix ρ^0 and multiplicity

Generic CR tuning

CR models usually tuned on hadronic interactions (not LEP)

- Impose isospin symmetry (u=d) for pions, ρs and nucleons BEFORE decay
- Produce only most common particles π , ρ and η and tuned to pp data

Example with protons in p-p and Pb-Pb @ LHC

Example with protons in p-p and Pb-Pb @ LHC

 X_{max} and μ

Retune basic parameters with HS and LEP

■ Increase contribution of ps to compensate the effect of HS

Retune basic parameters with HS and LEP

EPOS.LHC-R uses experimental constraints from LEP

- Produce η' and f_0 in addition to η : change asymmetry for ρ (and π)

Effect on muon production in air showers !

Check ALICE data

x 10 ⁴

First simulations with full collective effect implementation:

- Simulations without core-corona but ρ asymmetry already have more muons

Parallel shift changing all muon energies

- Pion-Air multiplicity impact muon energy between 10 and 100 GeV
- Better tune of kaons (indirect impact of core-corona)

Increase >100 GeV muons (Ice-Top/Ice-Cube)

Eμ

First simulations with full collective effect implementation:

- Simulations without core-corona but ρ asymmetry already have more muons

Parallel shift changing all muon energies

- Pion-Air multiplicity impact muon energy between 10 and 100 GeV
- Better tune of kaons (indirect impact of core-corona)
- Very high energy muons from charm ! (background for neutrino analysis)

Cross-Section Reduced

- Probability for the particle to interact : directly related to X_{max}
- After TOTEM (CMS), new measurements by ALFA (ATLAS) with higher precision
 - p-p cross-section slightly too high in all models
 - Change by up to -10% at the highest energy

√s (GeV)

Pseudorapidity

- Angular distribution of newly produced particles
- New data at 13 TeV in p-p
 - Test extrapolation with different triggers
 - Sibyll has a clear difference with other models (and data) : too narrow !
- Detailed data at 5 TeV for p-Pb
 - Wrong multiplicity distributions in all models (before retune)

Kaons and Baryons

Only EPOS properly reproduce NA61 data (and many others)

QGSJETIII not flexible enough !

Improvements in EPOS LHC-R

- Number of limitations identified in EPOS LHC
- Problem with nuclear fragments
 - Double counting for single nucleons
 - Missing multifragment production
 - Now similar to other models
 - Significant impact on X_{max} fluctuations for nuclei
- Simplified high mass diffraction and pion o exchange replaced by real emission (IP or π)

Global approach

Interaction with Air

