Kumiko Kotera

Institut d'Astrophysique de Paris - CNRS - Sorbonne Université Vrije Universiteit Brussels

Warsaw GRAND Collaboration Meeting, Warsaw – 04/06/2025

Observation Strategies for UHE neutrinos

Kumiko

F. Magnard

A recent endeavor

- UHE neutrino search: ancillary science case of UHECR & HE neutrino experiments
- Recently: dedicated instruments ARIANNA, ARA, ANITA

A recent endeavor

- UHE neutrino search: ancillary science case of UHECR & HE neutrino experiments
- Recently: dedicated instruments ARIANNA, ARA, ANITA

Summary of recent progress

1. One UHE neutrino has been detected so far (?) (KM3Net event at 120 PeV)

A recent endeavor

- UHE neutrino search: ancillary science case of UHECR & HE neutrino experiments
- Recently: dedicated instruments ARIANNA, ARA, ANITA

- 1. One UHE neutrino has been detected so far (?) (KM3Net event at 120 PeV)
- 2. Auger observations of UHECRs constrain the flux of cosmogenic neutrinos towards low fluxes

A recent endeavor

- UHE neutrino search: ancillary science case of UHECR & HE neutrino experiments
- Recently: dedicated instruments ARIANNA, ARA, ANITA

- 1. One UHE neutrino has been detected so far (?) (KM3Net event at 120 Pe\/)
 - lesson from Auger: target astrophysical fluxes
- 2. Auger observations of cosmogenic neutrinos towards low fluxes

A recent endeavor

- UHE neutrino search: ancillary science case of UHECR & HE neutrino experiments
- Recently: dedicated instruments ARIANNA, ARA, ANITA

Summary of recent progress

- 1. One UHE neutrino has been detected so far (?) (KM3Net event at 120 Pe\/)
 - lesson from Auger: target astrophysical fluxes
- 2. Auger observations of offens constrain the number cosmogenic neutrinos towards low fluxes
- 3. IceCube has detected neutrinos at PeV energies. Two sources have been clearly identified after 10 years of event accumulation

A recent endeavor

- UHE neutrino search: ancillary science case of UHECR & HE neutrino experiments
- Recently: dedicated instruments ARIANNA, ARA, ANITA

- 1. One UHE neutrino has been detected so far (?) (KM3Net event at 120 Pe\/)
 - lesson from Auger: target astrophysical fluxes
- 2. Auger observations of offects constrain the number
- c lesson from IceCube: require excellent angular
- resolution to pinpoint sources amid near-isotropic 3.
- background S HAVE DECH CICALLY INCLUTED ALLEL TO YEARS OF event accumulation

A recent endeavor

- UHE neutrino search: ancillary science case of UHECR & HE neutrino experiments
- Recently: dedicated instruments ARIANNA, ARA, ANITA

- 1. One UHE neutrino has been detected so far (?) (KM3Net event at 120 Pe\/)
 - **lesson from Auger**: target astrophysical fluxes
- 2. Auger observations of offects constrain the number
- c lesson from IceCube: require excellent angular resolution to pinpoint sources amid near-isotropic
- 3. background ave been cleany identified after to years of
- e lesson from IceCube: aim for the 100 PeV range to extend and connect with IceCube observations

A recent endeavor

- UHE neutrino search: ancillary science case of UHECR & HE neutrino experiments
- Recently: dedicated instruments ARIANNA, ARA, ANITA

- 1. One UHE neutrino has been detected so far (?) (KM3Net event at 120 Pe\/)
 - **lesson from Auger**: target astrophysical fluxes
- 2. Auger observations of offects constrain the number
- c lesson from IceCube: require excellent angular resolution to pinpoint sources amid near-isotropic
- 3. background ave been cleany identified after to years of
- e lesson from IceCube: aim for the 100 PeV range to extend and connect with IceCube observations
- 4.Boom in MM + time domain astronomy: require specific strategies of observations & instrumental performances

A recent endeavor

- UHE neutrino search: ancillary science case of UHECR & HE neutrino experiments
- Recently: dedicated instruments ARIANNA, ARA, ANITA

Summary of recent progress

- 1. One UHE neutrino has been detected so far (?) (KM3Net event at 120 Pe\/)
 - **lesson from Auger**: target astrophysical fluxes
- 2. Auger observations of offects constrain the number
- c lesson from IceCube: require excellent angular resolution to pinpoint sources amid near-isotropic
- 3. background ave been cleany identified after to years of
- e lesson from IceCube: aim for the 100 PeV range to extend and connect with IceCube observations
- 4.E lesson from MM: develop follow-up tools and st integrate in a MM framework, enabling rapid response and alerts

3	Diff. sens. lim. in GeV cm ⁻² s ⁻¹ sr ⁻¹	iFoV in sky %	dFoV in sky %	ang. res.	202	1 20)25	
	4.2×10 ⁻⁸ in 30 d	6	19	$< 2.8^{\circ}$			PUFO	
	$3.6 \times 10^{-9} (2030)$	35	20	ر ت 5°		ARA		
	1×10^{-8} in 5 vr	30	35	$2^{\circ} \times 10^{\circ}$		RNO-G		
200	8×10^{-9} in 5 vr	50	> 50	$2.9 - 3.8^{\circ}$		ARIA	ANNA-20	0
T-N	3×10^{-10} in 5 yr	50	> 50	?			RET-	N
-Gen2 Radio	4×10^{-10} in 5 yr	43	43	$2^{\circ} \times 10^{\circ}$		lo	eCube-G	en2
The second s	1.2×10^{-8} in 5 yr	6	19.5	$0.3^{\circ} - 1^{\circ}$		BEA	CON	
ND10k	1×10^{-8} in 5 yr	6	80	0.1°			GRANE)10
GRAND	4×10^{-10} in 5 yr	45	100	0.1°				GF
	$[1.5 \times 10^{-8} (2019)]$	30	92.8	$<\!1^{\circ}$		Auger		
30	?	27	62	1°		0	ТАМВО)
1A Cerenkov	7×10^{-8} in 5 yr	0.6	18-36	0.4°		Р	ОЕММА	Ce
Trinity	1×10^{-10} in 5 yr	6	62	$<\!1^{\circ}$				-
Guépin, KK, Olkonomou, Nature Phys. F radio detectors particle detectors & fluorescence light water								
(cm)	mole		La Sarthand	and a second	4. ve. o	cto alla Parin		

3	Diff. sens. lim. in GeV cm ⁻² s ⁻¹ sr ⁻¹	iFoV in sky %	dFoV in sky %	ang. res.	2021	2025	
	4.2×10^{-8} in 30 d	6	19	${<}2.8^{\circ}$		PUEO	
	$3.6 \times 10^{-9} (2030)$	35	20	5°	ARA		
	1×10^{-8} in 5 yr	30	35	$2^{\circ} \times 10^{\circ}$	RNO-	G	
200	8×10^{-9} in 5 vr	50	> 50	2.9-3.8°	ļ A	- RIANNA-2	200
T-N	3×10^{-10} in 5 yr	50	> 50	?		RET	[–] -N
-Gen2 Radio	4×10^{-10} in 5 yr	43	43	$2^{\circ} \times 10^{\circ}$		IceCube-	Gen2
IN LOT OF COMPANY OF COMPANY	1.2×10^{-8} in 5 yr	6	19.5	$0.3^{\circ} - 1^{\circ}$	E	BEACON	
ND10k	1×10^{-8} in 5 yr	6	80	0.1°		GRAN	D10
GRAND	4×10^{-10} in 5 yr	45	100	0.1°			GF
	$[1.5 \times 10^{-8} (2019)]$	30	92.8	$<\!\!1^{\circ}$	Auger	-	
30	?	27	62	1°		TAMB	0
1A Cerenkov	7×10^{-8} in 5 yr	0.6	18-36	0.4°		POEMM	A Ce
Trinity	1×10^{-10} in 5 yr	6	62	$<\!\!1^{\circ}$			
Ashra-NTA							
radio detectors							
particle detectors & fluorescence light water molecules $\sim 10^{-10} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ s}^{-1}$							
The second second second second in the second se							

Diffuse UHE neutrino fluxes: readjusting our experimental perspectives

- Avoid presenting ruled out cosmogenic fluxes
- Auger constrains cosmogenic fluxes to below

 $\Phi_{\rm cosmo,max} \sim 10^{-8} \,{\rm GeV} \,{\rm cm}^{-2} \,{\rm s}^{-1} \,{\rm sr}^{-1}$, at 99% C.L.

• Promising astrophysical fluxes exist

Diffuse UHE neutrino fluxes: readjusting our experimental perspectives

- Avoid presenting ruled out cosmogenic fluxes
- Auger constrains cosmogenic fluxes to below

 $\Phi_{\rm cosmo,max} \sim 10^{-8} \,{\rm GeV} \,{\rm cm}^{-2} \,{\rm s}^{-1} \,{\rm sr}^{-1}$, at 99% C.L.

• Promising astrophysical fluxes exist

Diffuse UHE neutrino fluxes: readjusting our experimental perspectives

- Avoid presenting ruled out cosmogenic fluxes
- Auger constrains cosmogenic fluxes to below

 $\Phi_{\rm cosmo,max} \sim 10^{-8} \,{\rm GeV} \,{\rm cm}^{-2} \,{\rm s}^{-1} \,{\rm sr}^{-1}$, at 99% C.L.

- Promising astrophysical fluxes exist
- Which new "Waxman-Bahcall flux" to aim for at UHE?

IceCube extrapolation

 $E_{\nu}^2 \Phi_{\nu} \sim 10^{-8} \, (E_{\nu}/10^{16} \,\mathrm{eV})^{-2.37} \,\mathrm{GeV \, cm^{-2} \, s^{-1} \, sr^{-1}}$

Murase-Beacom (2010)

 $E_{\nu}^2 \Phi_{\nu} \lesssim 8.4 \times 10^{-10} f_z (A/56)^{-0.21} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

effective (energy-loss) photodisintegration optical depth < 1 here: source evolution factor $f_z = 3$

Detector reaching these limits in 10¹⁷⁻¹⁹ eV can strongly constrain source models.

Whether they can do UHE neutrino astronomy requires to assess additional performances.

What astrophysical sources to aim for in the MM era?

Short bursts: stay in the instantaneous field of view (FoV) of the instrument (~30 min - 1 day) *Compare source fluences with instantaneous fluence sensitivities* KK, Mukhopadhyay, Alves Batista, Fox, Martineau-Huynh, Murase, Wissel, Zeolla, subm. Ie MM era?

> **Long bursts**: any longer transients *Compare source fluences with daily averaged fluence sensitivities*

What astrophysical sources to aim for in the MM era?

Short bursts: stay in the instantaneous field of view (FoV) of the instrument (~30 min - 1 day) *Compare source fluences with instantaneous fluence sensitivities*

Detectable: Bright rare (distant) sources

KK, Mukhopadhyay, Alves Batista, Fox, Martineau-Huynh, Murase, Wissel, Zeolla, subm. Ie MM era?

> **Long bursts**: any longer transients *Compare source fluences with daily averaged fluence sensitivities*

What astrophysical sources to aim for in the MM era?

Short bursts: stay in the instantaneous field of view (FoV) of the instrument (~30 min - 1 day) *Compare source fluences with instantaneous fluence sensitivities*

Detectable: Bright rare (distant) sources

KK, Mukhopadhyay, Alves Batista, Fox, Martineau-Huynh, Murase, Wissel, Zeolla, subm. Ie MM era?

> Long bursts: any longer transients Compare source fluences with daily averaged fluence sensitivities

Detectable: Local Group & nearby galaxies

KK, Mukhopadhyay, Alves Batista, Fox, Martineau-Huynh, Murase, Wissel, Zeolla, subm.

Astronomical observation strategies: Wide & Shallow vs. Deep & Narrow

Volume (depth) —> dist³ Surface (FoV) —> dist²

Deep & Narrow observatories more powerful for UHE neutrino discovery of known targeted sources Wide & Shallow: better suited for serendipitous all-sky searches

KK, Mukhopadhyay, Alves Batista, Fox, Martineau-Huynh, Murase, Wissel, Zeolla, subm.

Astronomical observation strategies: Wide & Shallow vs. Deep & Narrow

Volume (depth) —> dist³ Surface (FoV) —> dist²

Deep & Narrow observatories more powerful for UHE neutrino discovery of known targeted sources **Wide & Shallow:** better suited for serendipitous all-sky searches

~2 orders of magnitude discrepancy found for instantaneous fluence sensitivity

Strategy for "long" bursts: increase daily field of view

30° Leo IV	60° Leo A	• Leo A 60°	A A A B A B A B B B B C B C B C B C B C	Andromeda Ma * Pegasus M333(
-30°	* NGC 3	Leo IV 109 F NGC 31	WLM ornax Phoe	AquarRis IC161 nix
	-60°	LMC	SMC *	
Distanc	e [kpc]	R	ight Asc	onsign [°]
Andromeda M31	765			
M33	970	Dai	ily FoV 1	tor HERON
LMC	50	(GR/	AND-BEA	CON hybrid)
NGC 3109	1333			
WLM	930	Dista	nce [kpc]	
SMC	620	NGC 6822	500	
Pisces	769	Pegasus	920	
IC1613	730	Fornax	143	
Phoenix	440	Canes Venatici II	522	
Leo A	790	Leo IV	154	Allekotte
Aquarius	980	Leo T	420	Martine

A necessary angular resolution

Can we identify a point-source out of a diffuse neutrino sky? Yes, if we can collect ~100 events with sub-degree angular resolution...

Significance in standard deviations

Can we identify a point-source out of a diffuse neutrino s_{xy}^{FT} Yes, if we can collect ~100 events with sub-degree angu

- development of MM-networks, EM instruments —> $fa_{SE}^{-\frac{9}{2}} = M_{AS}^{VLA}$ s_{SE}^{VLA} s_{SE}^{VL
- skim interesting events + narrow down search area —> requires angular resolution

	0	Energy range
ASO		100 GeV - 1 PeV
	СТА	20 GeV - 300 TeV
٧C		100 GeV - 100 TeV
S.S.		30 GeV - 100 TeV
G HE		50 GeV-50 TeV
		85 GeV - 30 TeV
	Т	20 MeV-300 GeV
	ВМ	10 keV - 25 MeV
ERA	l IBIS	15 keV - 10 MeV
D.	SPI-ACS	100 keV - 2 MeV
rd		
vitti Vew	/ton	0.2-12 keV
nC	Athena-W	(FI $0.1-15 \text{ keV}$
ta	Ŧ	
tΩ Β/	↓ > ↓	15 - 150 keV
		0.2 - 10 keV
e O		$0.16 - 0.62 \ \mu m$
	M ECLAIRs	4-150 keV
<u>G</u>		0.2 - 10 keV
E.	VI	$0.4 - 1 \ \mu m$
S=SN		380-555 nm
AS		420-975 nm
STAR	RS	400 - 900 nm
• • • •		400-650 nm
Vera	Rubin Obs. (LSST	$0.3-1 \ \mu m$
STER-	ll(VWF)	400 – 800 nm
OT		350-980 nm
1INI (((MOS)	$0.36 - 1.03 \ \mu m. \text{ spec}$
S (OSI	RIS)	$0.365 - 1.05 \ \mu m. \text{ spec}$
(LRI	5)	$0.32-1 \ \mu m. \text{ spec}$
	recolutio	$0.3-2.4 \ \mu m. \text{ spec}$
		1-50 GHz

202	21	2025	>2	030	FoV	ang. res.	Diff
	LHA	ASO			2 sr	0.3°	5 x 1(
		СТА			$10-20^{\circ}$	< 0.15°	3×10
	HAWC			2 sr	0.1°	6 X 1(
	HESS			5°	0.1°	3×10	
Ja	MAC	MAGIC			3.5°	0.07°	9×10
h	VER	VERITAS			3.5°	0.1°	5×10
ga	Ferm	ni LAT			2.4 sr	0.15°	5×10
		GBM			$9 \mathrm{sr}$	10°	2
	INTE	EGRAL IB	SIS		$64~{ m deg^2}$	0.2°	.2×1
		SF	PI-ACS		4π	_	-3 p
							-
$\mathbf{\mathbf{x}}$	XMN	/I-Newton			0.5°	6"	10-
	Athena <mark>-WFI</mark>			$0.4~\mathrm{deg^2}$	< 5"	3×10	
	C:£				1.4 am	0.49	3×10
	SWII	. DAI VDT			1.4 sr	10"	5×10
.					0.1 deg^2	18	9×10
nu		SVOM			0.1 deg^{-1}	2.3	່ ' າ∨1
		300101			$\frac{2}{1} der^2$	12"	$\cdot 2 \land 1$
					1 deg	1.0	1~10
			VI		0.2 deg		
	ASA	S-SN			$72 \mathrm{deg^2}$	7.8"	-
	ATL	AS			$29~{ m deg^2}$	2"	
>	Pan-	STARRS			$14 \ \mathrm{deg^2}$	1.0-1.3"	
\sqrt{U}	ZTF				$47 \ \mathrm{deg^2}$	2"	
cal		Vera Rubi	n Obs. (LS	ST)	$9.6 \ \mathrm{deg^2}$	0.7"	
pti	MASTER-II(VWF)			$8(400) \ deg^2$	1.9"(22")	19(
R/c	TAROT			$4 \ \mathrm{deg^2}$	3.5"		
—	GEMINI (GMOS)			$30.23'^2$	$0.07"/{ m pix}$		
	GTC (OSIRIS)			$0.02~{ m deg^2}$	$0.127"/\mathrm{pix}$		
	Keck (LRIS)			46.8'2	$0.135"/\mathrm{pix}$		
	VLT	(X-shooter)		$2.2'^{2}$	$0.173"/{ m pix}$	2
						0.40"	
.0	VLA	. :			0.16 deg^2	0.12"	
rad	IVI VV				010 deg^2	0.9	
		SKA1(2)-	VID		$1(10) \text{ deg}^2$	0.04° -0.7 °	
					.		

Guépin, KK, Oikonomou, Nature Phys. Rev. 2022 8

Astrophysically motivated search for UHE neutrinos

Short rare & bright transients

- follow-up searches of EM / GW + stacking
- deep instruments with sub-degree angular res.

Nearby serendipitous sources

- long transients, well-identified
- both deep & narrow + wide & shallow instruments

KK, Mukhopadhyay, Alves Batista, Fox, Martineau-Huynh, Murase, Wissel, Zeolla, subm.

What can we do to improve UHE neutrino detectability and the associated scientific output?

- 1. Improve the instantaneous sensitivity even at the cost of reduced instantaneous FoV (deep & narrow)
- 2. Improve the angular resolution down to sub-degree.
- 3. Build a catalog of sources in the Local Universe that instruments should have in their day-averaged FoV.
- 4. Follow-up these catalogued sources. For most UHE instruments that do not point and track source positions in the sky naturally, this requires to develop a designated data-taking/observation mode.
- 5. For narrow instruments: Widen the instantaneous FoV along right ascension, to increase sensitivity for long bursts.
- 6. Coordinate and optimize the location of detectors on the globe for best collective daily sky coverage.

- Radio antennas: cheap, robust, scalable
- 100% duty cycle
- benchmarked technique in-ice & in-air for specific configurations

Performances in-ice in-air

nstantaneous sensitivity	daily aver. sensitivity	iFoV	dFoV	angu resolu
+ wide & shallow	++	+++ wide & shallow	++ no gain by Earth rotation if South Pole	+ reconstru polarizatio
+++	++	+	+++	++-
deep & narrow	equivalent as	deep & narrow		large foo
	experiments tuned to diffuse flux			

BALLOON NEUTRINOS UHE DETECTION OF **IN-AIR** 00 RAC **ICE** Ζ

Kumiko Kotera – Warsaw – 04/06/2025 11

Figure 1. Significance of detection of point sources of UHE neutrinos by experiments with various angular resolutions and numbers of detected events. The color coding corresponds to the confidence level to reject an isotropic background using the statistical method from Ref. [65]. We assume that all of the sources have the same luminosity, and that the sources follow a uniform distribution with a number density 10^{-5} Mpc⁻³ up to 2 Gpc (case I). With this source number density, ~ 1000 events and ~ 0.1° angular resolution are needed to reach a 5σ detection of point sources. In the above calculation, $f_{\rm cov} = 1$ is used; fewer events are required *in the field of view* if $f_{\rm cov}$ is smaller.

Fang, KK, Miller, Murase, Oikonomou 2016

: of Events Number 10 10^{0} 10^{-1} Angular Resolution [deg] $n_s = 10^{-7} {\rm Mpc}^{-3} {\rm SFR}$ 3000 Number of Events 100 10^{-1} 10^{0} Angular Resolution [deg] $n_s = 10^{-9} {\rm Mpc}^{-3} {\rm SFR}$ 500 Events 100 Number 10^{0} 10^{-1} Angular Resolution [deg]

 $n_s = 10^{-7} \text{ Mpc}^{-3}$ uniform

>6

c b c c standard deviations

Significance in

565standard deviation

Significance in

indard deviation

Significance

500