

Calibration Studies (Galactic noise revisited)

Stavros Nonis, Antonios Leisos, George Vittakis, Kostas Papageorgiou

GRAND collaboration meeting, Warsaw, Poland, June the 5th 2025

 \geq

Galactic noise simulations

> The simulated open circuit RMS voltage square value $(V_{rms}^{oc}(f))^2$ per unit frequency [V²/Hz] (for each antenna arm) due to the galactic temperature is computed using the formula *:

$$(V_{rms}^{oc}(f))^{2} = \frac{Z_{0}K_{B}}{c^{2}}f^{2}\int_{0}^{2\pi}\int_{0}^{\pi}T_{gal}(\theta,\varphi) * \left(L_{eff}^{2}(\theta,\varphi) + L_{eff}^{2}(\theta,\varphi)\right) * sin\theta d\theta d\varphi$$
(1)
The corresponding output voltage square $V_{rms}^{out}(f)$ per unit frequency $[V^{2}/Hz]$ (after the mplementation of the RF chain) is :

$$V_{rms}^{out}(f) = rf_{chain}(f) * V_{rms}^{oc}(f)$$
(2)
Assuming Leff is correct we test rfchain

These voltages were calculated for each antenna polarization in the 25-250 MHz frequency band (1 MHz bin) and for 24 LST-bins of 1 hour. Calculations are produced using Lfmap for the galactic temperature.

* (https://forge.in2p3.fr/documents/1324)

* (<u>https://github.com/grand-mother/grand/blob/dev/grand/sim/noise/Compute_Plot_Galactic_Noise.py</u>)

GRAND Analysis December 5-6 / 2024 Extended Meeting: "Galactic Calibration, by S. Nonis*"

In this analysis we assume that cf does not depend on the frequency and we calculate it in the whole spectrum.

* https://indico.in2p3.fr/event/34166/timetable/#all.detailed

HELLENIC

UNIVERSITY

OPEN

Methodology

- We use the model for the spectrum (see previous slide)
- For each pole, produce pulses according to the spectrum and for any LST (for each LST the spectrum is different)
- Apply notch filter to the pulses (provided by Xin Xu)
- Calculate the rms of the traces
- Find the mean value of the rms for each LST hour
- Compare with corresponding data (rms vs LST)

HELLENIC

UNIVERSITY

rms_{trace} (adc)

Galactic noise simulations

7

14 12 10 8 *rms_{model}* 6 4 X-pole (NS) Simulation 2 Ο 2.5 5 7.5 17.5 22.5 Local Sidereal Time (h) rms_{trace} (adc) 16 14 cf 12 10 8 rms_{model} 6 Y-pole (EW) 4 Simulation 2 0 2.5 0 5 7.5 10 12.5 15 17.5 20 22.5 Local Sidereal Time (h)

We apply a χ^2 fit to match the data with simulation, i.e.

$$x^{2}(cf, V_{rms}^{0}) = \sum_{i=1}^{i=24} (rms_{data} - rms_{simu})^{2}$$

 $rms_{simu}(cf, V_{rms}^{0}) = cf * rms_{model} + V_{rms}^{0}$

cf stretches or shrinks the distance between maximum and minimum

 V_{rms}^0 accounts for the vertical shift (average noise)

If any other noise does not depend on LST then it contributes only to the constant shift

Data Distributions (MD)

Cf=0.58 V_{rms}^0 =11.8

Data Distributions (MD)

MD files from March 2025

Data Distributions (UD)

UD files November 2024

Position of peaks (i.e. $|V| > 5\sigma$)

Data Distributions (UD)

100

100

12

HELLENIC

UNIVERSITY

HELLENIC

UNIVERSITY

Data Distributions (UD)

UD files December 2024 rms_{trace} (adc) Not triggered events Cf=0.94 V_{rms}^0 =7.2 Simulation Cut: rms<25 data 17.5 22.5 2.5 7.5 Cf=0.84 V_{rms}^0 =8.2 1B rms_{Xfilt} 2.5 22.5 7.5 12.5 17.5 LST (h)

	Cf (X _{filt})	Cf (Y _{filt})
MD (April)	0,58	0,76
MD(March	0,88	0,82
UD (Nov)	0,84	0,84
UD (Dec)	0,72	0,78
Mean	0,755	0,8

- Simulation Pulse height prediction seems that is should be lowered by 80%.
- This may affect some gain related variables (voltages, pulse risetime, maybe polarization), but probably not SNR or trigger decision.

Correlation (RMS_x-RMS_y)

ρ (correlation coefficient)

Positive but rather low correlation (but inner noise is also present)

Thank You

HELLENIC

UNIVERSITY

Data Distributions (MD)

before 27/04/2025

MD files from April 2025

$Cf=0.56 \text{ rms}_{0}=5.6$

If we consider the maximum value (15) and 14 for the inner noise then the quadratic sum gives rms=20.5

The distribution of the rms (with mean value 20.50) has a spread approximately $\frac{20.5}{\sqrt{2N}} = \frac{20.5}{\sqrt{2048}} = 0.33$

We expect to have practically up to 20.50+5*0.33=22.15

We apply a cut to retain rms that are < 25