

NUTRIG First Level Trigger

Pablo Correa

GRAND Collaboration Meeting | 4 June 2025

Pablo Correa | GRAND Collaboration Meeting | 4 June 2025

Minimum data bandwidth

The NUTRIG Project

Maximum signal selection efficiency

NUTRIG: Develop scalable radio trigger

GRAND requires autonomous radio trigger

Trigger must be scalable to GRAND10k arrays

First level trigger (FLT): this talk

Maximum purity

Minimum cost

Minimum SNR threshold

- Second level trigger (SLT): <u>Jelena's talk</u>
- Air-shower emission model: Lukas's talk @ ARENA

Trigger overview: **Olivier's talk**

GRAND Trigger Scheme

FLT-1 Database: Background

- Take GP80 data (see log)
- CD runs complemented with MD run for low SNR
- Apply offline lowpass FIR filter at 115 MHz
- See backup & source code
- Apply offline FLT-0 with relaxed T1/T2
- Trigger on X or Y (source code)

FLT-0 parameter	Relaxed (FLT-1 database)	Optimal (<u>Marion</u> & <u>SLT</u>)				
T_1 [ADC]	45	55				
T_2 [ADC]	35	40				
T _{quiet} [ns]	500	500				
T _{period} [ns]	1000	500				
T _{sepmax} [ns]	200	50				
NC _{min}	2	2				
NC _{max}	10	7				

Run	Trigger Mode	Start Date (UTC)	Duration (HH:MM:SS)				
145	MD	2025-02-04	02:57:32				
10083	CD	2025-04-26	07:46:17				
10085	CD	2025-04-30	14:58:37				
10086	CD	2025-05-07	06:44:42				

FLT-1 Database: Signal

- Take DC2.1rc2 simulations
 - Added noise (AN) from GP80 run 145
 - See /sps/grand/pcorrea/dc2/noise/gp80/README.md
- Apply offline lowpass FIR filter at 115 MH
- Apply offline FLT-0 with relaxed T1/T2
 Trigger on X or Y

FLT-0 parameter	Relaxed (FLT-1 database)	Optimal (<u>Marion</u> & <u>SLT</u>)
T_1 [ADC]	45	55
T_2 [ADC]	35	40
T _{quiet} [ns]	500	500
T _{period} [ns]	1000	500
T _{sepmax} [ns]	200	50
NC _{min}	2	2
NC _{max}	10	7

FLT-1 Database: Final Step

- Make a uniform selection in SNR
 - For a one-to-one comparison per SNR bin
 - For now target 1,000 traces per bin
- Lacking statistics for signal
 Need full set of Dc2.1rc2 simulations!
- More details about NUTRIG database:

/sps/grand/pcorrea/nutrig/database/v2/README.md

Olivier wants to call this the PECC database...

Template Library

- Take DC2.1rc2 simulations
 - No jitter/noise (NJ)
 - Select traces with max > 100 ADC
 - Apply offline lowpass FIR filter at 115 MHz
- ► Construct 5 uniform bins in $\omega/\omega_c \in [0,2]$
- Find most representative template per bin
 - Template that yields maximum average cross-correlation with other templates in bin
- Shape dominated by RF response
- Expected for air-shower pulses of ~10 ns
- ► 5 templates are very similar
- Keep 5 templates since no impact online

NEV

Template FLT-1 Method

Step 1: Compute cross correlations

- For input trace V_i at polarization i with each template T_{ij} at polarization i
- For τ in 20 ns window around FLT-0 pulse time

 $\rho_{ij}(\tau) = \int T_{ij}(t) \, V_i(t+\tau) \, \mathrm{d}t$

Step 2: Find best-fit time

 $\hat{\tau}_{ij} = \operatorname*{argmax}_{\tau} |\rho_{ij}(\tau)|$

Step 3: Find correlation of **best-fit template**

$$\rho_i = \max_j |\rho_{ij} (\tau = \hat{\tau}_{ij})|$$

Step 4: Combine polarizations to compute test statistic

 $TS \equiv \rho \equiv \max_{i} \rho_i$

Offline "Results"

- NUTRIG FLT-1 UNIFORM, POL = XY, MODE = ORSNR 3.0-4.0: background SNR 3.0-4.0: signal 12.5 SNR 4.0-5.0: background SNR 4.0-5.0: signal SNR 5.0-6.0: background 10.0 SNR 5.0-6.0: signal SNR 6.0-7.0: background SNR 6.0-7.0: signal PDF 7.5 SNR 7.0-8.0: background SNR 7.0-8.0: signal 5.0 2.5 0.0 0.2 0.4 0.6 0.8 0.0 1.0 ρ
- Input: FLT-1 database uniform in SNR
- FLT-1 logic: X or Y
- Lack of statistics for signal!
- Crude indication of separation power

Offline "Results"

- The money plot we're after!
 - We improved our ARENA results!
 - Need full DC2.1rc2 simulations to show updates at ICRC!

GRND

Case Study: Mine Transformer

- Mine pulses selected by Nathan
- GP80_20250309_235256_RUN10070_CD_20dB_23DUs_ GP43-ChY-X2X-Y2Y-CD-10000-22.root
- Offline FLT-0 on mine pulses
- No FIR filter
- T1/T2 = 80/55 ADC, NC in [2,15]
- Selects 1168/1368 pulses
- No FIR filter for simulations & templates
 T1/T2 = 45/35 ADC, NC in [2,10] as before
- FLT-1 yields good mine discrimination
 Keep information above 115 MHz for FLT?

Case Study: Mine Transformer

Template FLT-1 example of mine event vs air-shower simulation (no FIR filter)

Air shower

Portage to FEB

Template FLT-1 method translated to C++
 See <u>GitHub project</u>

BIG THANKS to

Bohao, Xu Xing, Xishui

3000

- Successfully integrated in DAQ stream
- Algorithm ported to Petalinux CPU on FEB
- Isolated speed test of template FLT-1
- One test trace evaluated 20,000 times
- For different number of templates
- For 5 templates the FLT-1 can infer >1kHz

NEW

Online Testing: Plan

- FLT-1 results currently stored in binary data file
 - Fields: adc_sampling_frequency OND adc_sampling_resolution
- Controlled testing at LPNHE
- Use AWG to feed FLT-1 database pulses to FEB
- Reproduce offline efficiency plot
- Target: 2nd half of June (to show at ICRC...)
- Testing at GRAND@Nançay
- First test in realistic conditions
- Aim is to ensure stability
- Target: Beginning of July (to show at ICRC...)
- Testing at GRANDProto300
 - The final boss!
 - Target: September

L1 trigger frequence is 16/s			and and a		in a state of the		
Template FLT correlation (channel	1	-	X)	>>>	rho	ų	0.664758
Template FLT correlation (channel	2	H	Y)	>>>	rho	H	0.652028
CNN FLT >>> score = 0.169982							
Template FLT correlation (channel	1	i i	X)	>>>	rho		0.663264
Template FLT correlation (channel	2	T	Y)	>>>	rho	-	0.633543
CNN FLT >>> score = 0.175805							
Template FLT correlation (channel	1	п	X)	555	rho	10	0.665082
Template FLT correlation (channel	2	щ	Y)	>>>	rho	I	0.633985
CNN FLT >>> score = 0.172288							
Template FLT correlation (channel	1	H	X)	>>>	rho	J.	0.655947
Template FLT correlation (channel	2	F	Y)	>>>	rho	=	0.64601
CNN FLT >>> score = 0.16967							
Template FLT correlation (channel	1	Ŀ	X)	>>>	rho		0.665581
Template FLT correlation (channel	2	H	Y)	>>>	rho	-	0.637911
CNN FLT >>> score = 0.169329							
Template FLT correlation (channel	1	H	X)	>>>	rho	11	0.661174
Template FLT correlation (channel	2	п	Y)	>>>	rho	п	0.631423
CNN FLT >>> score = 0.172199							
			and the second second				

Conclusions and Outlook

Summary

- Updated NUTRIG-FLT database
- Need full set of DC2.r1v2 simulations!
- Offline template-FLT promising
- Preliminary results due to lack of statistics
- Separation bkg-signal per SNR looking good
- Might be very good discriminator for mine
- Online template-FLT implemented
- Ported to DAQ on Petalinux CPU of FEB
- >1kHz throughput possible for 5 templates

Outlook

- Obtain final offline results with all sims!
- Perform online tests of FLT-1 methods
 - Controlled tests at LPNHE test bench
 - Reproduce offline efficiency plot
- Tests in real conditions at GRAND prototypes
- Set the foundations for publication
- ICRC important first step
- Paper draft hopefully this year!

BACKUP

Able to accurately reproduce online lowpass filter GP80.202

Offline Lowpass Filter

GRND

GP80_20250430_171335_RUN10085_CD_20dB-GP65-OC-Y2float-CD-100000-2.root

400

Templates

CNN FLT-1: Summary

CNN FLT-1 Performance @ ARENA2024

FLT-1 ML CPU Performance

- Using old dataset of ICRC2023
 - FLT-0 = double 3σ pre-trigger [Le Coz PoS ICRC2023 224]
- TensorFlow Lite on two Cortex A53 CPUs
- Not integrated in DAQ
- Separation index defined as
 - $I = 1 \sum_{i} B_i S_i$
- Inference rate for $I \approx 0.87$:
- 300 Hz for 3 CNN layers
- 730 Hz for 2 CNN layers

