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John Beacom, The Ohio State University

Detecting Supernova Neutrinos: Frontiers
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N << 1 : DSNBN >> 1 : Burst N ~ 1 : Mini-Burst

kpc Mpc
Gpc

Rate ~ 0.01/yr

high statistics,
all flavors

Rate ~ 1/yr

object identity,
burst variety

Rate ~ 108/yr

cosmic rate,
average emission

How Do We Find Core Collapses With Neutrinos?
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Outline

First lecture: Basics Second lecture: Frontiers
Milky Way
Nearby Galaxies
DSNB
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Milky Way
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Idealized; simple

Oak Ridge group (2015)

Realistic; complex

What Are the Mechanisms of Core Collapse?
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What Can We Learn From SN 1987A?
2023

Models generally agree with each other
Models generally disagree with data

Criticized by Fiorillo et al. (2023), 
but they use non-exploding 1d 
models that fall far below 
realistic 2d and 3d models

Li et al. (2023)
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Super-Kamiokande (32 kton water)
  ~104 inverse beta decay on free protons
  ~102 CC and NC with oxygen nuclei
  ~102 neutrino-electron elastic scattering

JUNO (20 kton mineral oil)
  ~104 inverse beta decay on free protons
  ~103 neutron-proton elastic scattering
  ~102 CC and NC with carbon nuclei
  ~102 neutrino-electron elastic scattering

IceCube (106 kton water)
  Burst is increase over background rate
  Possibility of precise timing information

Yields For a Milky Way Burst

DUNE (34 kton liquid argon)
  ~103 CC and NC with argon nuclei
 ~102 neutrino-electron elastic scattering

Best for anti-ne Best for nx

Best for ne
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How Do We Find the Supernova?
“Can a supernova be located by its 
neutrinos?” Beacom and Vogel (1999)

Yes by neutrino-electron scattering
No by triangulation timing

Al Kharusi et al. (2021)

Provides robust alerts by multi-detector
Does not provide directionality 
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Host Galaxy log L/L?

Ohio State’s “ASAS-SN” (All-Sky 
Automated Survey for SN)

Multi-messenger characterization

Adams et al., 1306.0559
Nakamura et al., 1602.03028
Etc.
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Nearby Galaxies
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Ando, Beacom, Yuksel (2005)

Basic Idea of Mini-Bursts
Super-K Milky Way burst (10 kpc)

Detect ~ 104 events
Backgrounds irrelevant
Can detect even dark bursts

How about M31 (1000 kpc)?
Detect ~ 1 event
Backgrounds large
Optical signal needed for timing

With larger detectors, could see 
further, collect multiplets, and build 
the supernova neutrino spectrum 
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15 CCSNe
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Horiuchi et al. (2013)

Neutrino bright, optically bright:
Core-collapse supernova

Neutrino bright, optically dim:
Core-collapse to black hole

Neutrino dim, optically bright:
Type Ia supernova
Supernova impostor

Neutrino dim, optically dim:
All the time!

Rates in Nearby Galaxies
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Possible Future Detectors

2011 2014

Key idea is to 
detect multiple 
PMT hits per one 
neutrino event

Greatly lowers 
backgrounds

  

vertex

= hit kept in
   phase space cut

= hit removed in
   phase space cut

time
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DSNB

See my 2010 article in Annual Reviews of Nuclear and Particle Science
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Beacom and Vagins:
 We must detect the DSNB

DSNB Goals in 2002
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Malek et al. [Super-Kamiokande] (2003); 
energy units changed in Beacom (2011)

€ 

Atm. νe +  νe€ 

Atm. νµ  +  νµ

Amazing background rejection: 
nothing but neutrinos despite 
huge ambient backgrounds

Amazing sensitivity: factor 
~100 over Kamiokande-II limit 
and first in realistic DSNB range

No terrible surprises

Challenges: Decrease backgrounds 
and energy threshold and increase 
efficiency and particle ID

Measured Spectrum — All Backgrounds
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CIPANP, New York City, 22 May 2003John Beacom, Theoretical Astrophysics Group, Fermilab

Add Gadolinium to SK?

Gadolinium
Antineutrino
Detector
Zealously
Outperforming
Old
Kamiokande,
Super!

GADZOOKS!
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dNe

dEe
(Ee) = Np σ(Eν)

� ∞

0

�
(1 + z) ϕ[Eν(1 + z)]

� �
RSN (z)

� �����
c dt

dz

���� dz
�

Signal rate spectrum in detector in terms of measured energy

First ingredient: Neutrino spectrum
(this is now the unknown)

Second ingredient: Core-collapse 
rate (formerly very uncertain, but 
now known with good precision)

Third ingredient: Detector Capabilities
(well understood)

Cosmology?  Solved.  Oscillations?  Included.   Backgrounds?  See below.

Theoretical Framework
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Model

Core collapse releases 
~ 3x1053 erg, shared by 
six flavors of neutrinos

Spectra quasi-thermal 
with average energies of 
~ 15 MeV

Neutrino mixing surely 
important but actual 
effects unknown

Goal is to measure the 
received spectrum Yuksel, Beacom (2007)

Nonparametric reconstruction from SN 1987A data

First Ingredient: Supernova Neutrino Emission
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?
?

Experiment

SN 1987A data

Experiment

DSNB data

Theory

Supernova simulations
(initial spectra)
Several groups

   +

Neutrino flavor change
(effects of mixing)
Several groupsExperiment

SN 2025gw data

Importance of the Spectrum
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Number of massive stars unchanging due to short lifetimes

Measured from N/t 
using luminosity 
and spectrum of 
galaxies

(now high precision) 

Measured from the 
core collapse 
supernova rate

(improving rapidly)

Inferred from mismatch; 
can be measured by star 
disappearance; 
contributes to the DSNB

(frontier topic) 

Second Ingredient: Cosmic Supernova Rate
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    (see Figure 2)

Prediction from cosmic SFR

Cosmic SNR measurements

Horiuchi et al. (2011)

Measured cosmic supernova 
rate is half as big as 
expected, a greater deviation 
than allowed by 
uncertainties

Why?

There must be missing 
supernovae – are they faint, 
obscured, or truly dark?

Cosmic SFR and SNR
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ν̄e + p → e+ + n

Free proton targets only
Cross section grows as s ~ En2 
Kinematics good, Ee ~ En 
Directionality isotropic

Super-Kamiokande
Vogel, Beacom (1999); Strumia, Vissani (2003)

Super-Kamiokande has large 
enough mass AND (nearly) 
low enough backgrounds

Third Ingredient: Detector Capabilities
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ν̄e + p → e+ + n

Neutron capture on protons
Gamma-ray energy 2.2 MeV
Hard to detect in SK

Neutron capture on gadolinium
Gamma-ray energy ~ 8 MeV
Easily detectable coincidence
separated by ~ 4 cm and ~ 20 µs

SK

SK+Gd

The signal reaction produces a neutron, but most backgrounds do not

Beacom and Vagins (2003): First proposal to use dissolved gadolinium in 
large light water detectors showing it could be practical and effective 

GADZOOKS! Proposal
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GADZOOKS!

Beacom, Vagins (2004)

Solar neutrinos:
eliminated

Spallation daughter decays: 
essentially eliminated

Reactor neutrinos: 
now a visible signal

Atmospheric neutrinos:
significantly reduced

DSNB:
More signal, less background!

Benefits of Neutron Tagging for DSNB
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Bands show full uncertainty range arising from cosmic supernova rate

Predicted Flux and Event Rate Spectra
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Recent Super-Kamiokande Results

Super-Kamiokande (2024)
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Guaranteed signal:
SK has a few DSNB nuebar signal interactions per year

Super-Kamiokande upgrade:
Gadolinium has been added and is causing no problems

Supernova implications:
Direct test of the average neutrino emission per supernova

Broader context:
Possible first detections besides Sun and SN 1987A

Impact of DSNB Detection
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Supernova burst detection:
Isolation of non-nuebar signals, early and late-time detection

Solar neutrinos:
Suppression of spallation backgrounds

Reactor neutrinos:
New signal at low energies

Atmospheric neutrinos:
Separation of nu and nubar to test matter effects

Proton decay:
Reduction of backgrounds

Other Physics Enabled by Gadolinium
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Closing Message
Electromagnetic

Before During After

This is the only way to answer all the questions about supernovae

Neutrinos Gravitational Waves


