Detecting Supernova Neutrinos: Frontiers John Beacom, The Ohio State University

The Ohio State University's Center for Cosmology and AstroParticle Physics

How Do We Find Core Collapses With Neutrinos?

Outline

First lecture: Basics

Second lecture: Frontiers Milky Way Nearby Galaxies DSNB

John Beacom, The Ohio State University

Milky Way

John Beacom, The Ohio State University

What Are the Mechanisms of Core Collapse?

Idealized; simple

Realistic; complex

Oak Ridge group (2015)

What Can We Learn From SN 1987A?

Old Data, New Forensics: The First Second of SN 1987A Neutrino Emission Shirley Weishi Li ⁽¹⁾, ^{1,2,*} John F. Beacom ⁽²⁾, ^{3,4,5,†} Luke F. Roberts ⁽³⁾, ^{6,‡} and Francesco Capozzi ⁽³⁾, ^{7,8,§}

2023

Models *generally agree* with each other Models *generally disagree* with data

Criticized by Fiorillo et al. (2023), but they use non-exploding 1d models that fall *far below* realistic 2d and 3d models

John Beacom, The Ohio State University

Yields For a Milky Way Burst

Super-Kamiokande (32 kton water)	$\sim 10^4$ inverse beta decay on free protons
~10 ⁴ inverse beta decay on free protons	$\sim 10^3$ neutron-proton elastic scattering
~10 ² CC and NC with oxygen nuclei	$\sim 10^2$ CC and NC with carbon nuclei
~10 ² neutrino-electron elastic scattering	$\sim 10^2$ neutrino-electron elastic scattering
Best for anti-v _e	Best for v _x

IceCube (10⁶ kton water)

Burst is increase over background rate Possibility of precise timing information DUNE (34 kton liquid argon)

 $\sim 10^3$ CC and NC with argon nuclei

~10² neutrino-electron elastic scattering

Best for v_e

John Beacom, The Ohio State University

How Do We Find the Supernova?

Nearby Galaxies

John Beacom, The Ohio State University

Basic Idea of Mini-Bursts

Super-K Milky Way burst (10 kpc)

Detect ~ 10⁴ events Backgrounds irrelevant Can detect even dark bursts

How about M31 (1000 kpc)?

Detect ~ 1 event Backgrounds large Optical signal needed for timing

With larger detectors, could see further, collect multiplets, and build the supernova neutrino spectrum

Ando, Beacom, Yuksel (2005)

Rates in Nearby Galaxies

Horiuchi et al. (2013)

Neutrino bright, optically bright: Core-collapse supernova

Neutrino bright, optically dim: Core-collapse to black hole

Neutrino dim, optically bright: Type la supernova Supernova impostor

Neutrino dim, optically dim: All the time!

Possible Future Detectors

John Beacom, The Ohio State University

Detecting extra-galactic supernova neutrinos in the Antarctic ice Sebastian Böser*, Marek Kowalski, Lukas Schulte, Nora Linn Strotjohann, Markus Voge Physikalisches Institut, Universität Bonn, D-53115 Bonn, Germany

Key idea is to detect multiple PMT hits per one neutrino event

2014

Greatly lowers backgrounds

DSNB

See my 2010 article in Annual Reviews of Nuclear and Particle Science

John Beacom, The Ohio State University

DSNB Goals in 2002

Beacom and Vagins: We must detect the DSNB

John Beacom, The Ohio State University

SN 2025gw IGWN Symposium, Warsaw, Poland, July 2025

14

Measured Spectrum — All Backgrounds

Malek et al. [Super-Kamiokande] (2003); energy units changed in Beacom (2011)

Amazing background rejection: nothing but neutrinos despite huge ambient backgrounds

Amazing sensitivity: factor ~100 over Kamiokande-II limit and first in realistic DSNB range

No terrible surprises

Challenges: *Decrease* backgrounds and energy threshold and *increase* efficiency and particle ID

GADZOOKS!

John Beacom, The Ohio State University

SN 2025gw IGWN Symposium, Warsaw, Poland, July 2025

CTPANP New York City 22 May 2003

Theoretical Framework

• Signal rate spectrum in detector in terms of measured energy

$$\frac{dN_e}{dE_e}(E_e) = N_p \,\sigma(E_\nu) \,\int_0^\infty \left[(1+z) \,\varphi[E_\nu(1+z)] \right] \left[R_{SN}(z) \right] \left[\left| \frac{c \, dt}{dz} \right| dz \right]$$

Third ingredient: Detector Capabilities (well understood)

Second ingredient: Core-collapse rate (formerly very uncertain, but now known with good precision)

First ingredient: Neutrino spectrum (this is now the unknown)

Cosmology? Solved. Oscillations? Included. Backgrounds? See below.

John Beacom, The Ohio State University

First Ingredient: Supernova Neutrino Emission

Core collapse releases ~ 3x10⁵³ erg, shared by six flavors of neutrinos

Spectra quasi-thermal with average energies of ~ 15 MeV

Neutrino mixing surely important but actual effects unknown

Goal is to measure the received spectrum

John Beacom, The Ohio State University

Nonparametric reconstruction from SN 1987A data

Importance of the Spectrum

Second Ingredient: Cosmic Supernova Rate

Cosmic SFR and SNR

Measured cosmic supernova rate is half as big as expected, a greater deviation than allowed by uncertainties

Why?

There must be missing supernovae – are they faint, obscured, or truly dark?

John Beacom, The Ohio State University

Third Ingredient: Detector Capabilities

Super-Kamiokande has large enough mass AND (nearly) low enough backgrounds

$$\bar{\nu}_e + p \to e^+ + n$$

Free proton targets only Cross section grows as $\sigma \sim E_v^{-2}$ Kinematics good, $E_e \sim E_v$ Directionality isotropic

Vogel, Beacom (1999); Strumia, Vissani (2003)

Super-Kamiokande

GADZOOKS! Proposal

The signal reaction produces a neutron, but most backgrounds do not

Beacom and Vagins (2003): First proposal to use dissolved gadolinium in large light water detectors showing it could be practical and effective

SK

SK+Gd

$$\bar{\nu}_e + p \to e^+ + n$$

Neutron capture on protons Gamma-ray energy 2.2 MeV Hard to detect in SK

Neutron capture on gadolinium Gamma-ray energy ~ 8 MeV Easily detectable coincidence separated by ~ 4 cm and ~ 20 μs

Benefits of Neutron Tagging for DSNB

Solar neutrinos: eliminated

Spallation daughter decays: essentially eliminated

Reactor neutrinos: now a visible signal

Atmospheric neutrinos: significantly reduced

DSNB: More signal, less background!

Predicted Flux and Event Rate Spectra

Horiuchi, Beacom, Dwek (2009)

Bands show full uncertainty range arising from cosmic supernova rate

John Beacom, The Ohio State University

Recent Super-Kamiokande Results

Super-Kamiokande (2024)

SN 2025gw IGWN Symposium, Warsaw, Poland, July 2025

John Beacom, The Ohio State University

26

Impact of DSNB Detection

Guaranteed signal:

SK has a few DSNB nuebar signal interactions per year

Super-Kamiokande upgrade:

Gadolinium has been added and is causing no problems

Supernova implications:

Direct test of the average neutrino emission per supernova

Broader context:

Possible first detections besides Sun and SN 1987A

27

Other Physics Enabled by Gadolinium

Supernova burst detection:

Isolation of non-nuebar signals, early and late-time detection

Solar neutrinos:

Suppression of spallation backgrounds

Reactor neutrinos:

New signal at low energies

Atmospheric neutrinos:

Separation of nu and nubar to test matter effects

Proton decay: Reduction of backgrounds

John Beacom, The Ohio State University

Closing Message

This is the only way to answer all the questions about supernovae

John Beacom, The Ohio State University