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Dawn of GW astronomy
• GWs from compact binary mergers have been detected.

üGWs become a new tool for extracting astronomical information.
• The next candidate must be a supernova explosion.
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Next candidate of GW sources
• core-collapse supernovae

ü compared to the binary merger, the system is almost spherically symmetric
Øweak gravitational waves
Øwe may be able to detect only the event happened in our galaxy 

ümany numerical simulations show the existence of GW signals 
Ø SN GWs depend on the SN models, such as progenitor mass, EOS, and gravity
Ø it may be difficult to extract physics of PNS from the GW signals.

• We adopt the perturbation approach, the so-called asteroseismology, to see the 
physic behind the GWs by identifying them with the specific frequency of PNS.
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Supernova gravitational waves
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2. NUMERICAL METHODS

In our full GR radiation-hydrodynamics simulations, we
solve the evolution equations of metric, hydrodynamics, and
neutrino radiation. Each of them is solved in an operator-
splitting manner, but the system evolves self-consistently as a
whole satisfying the Hamiltonian and momentum constraints
(Kuroda et al. 2012, 2014).

Regarding the metric evolution, we evolve the standard BSSN
variables g̃ij, f, Ãij, K, and G̃i (Shibata & Nakamura 1995;
Baumgarte & Shapiro 1999). The gauge is specified by the “1
+log” lapse and by the Gamma-driver-shift condition.

In the radiation-hydrodynamic part, the total stress-energy
tensor ( )

abT total is expressed as

( )( ) ( )
¯

( )å= +ab ab

n n n n
n
ab

Î

T T T , 1total fluid
, ,e e x

where ( )
abT fluid and ( )n

abT are the stress-energy tensor of fluid and
the neutrino radiation field, respectively. All radiation and
hydrodynamical variables are evolved in conservative ways.
We consider all three flavors of neutrinos ( ¯n n n, ,e e x) with nx

representing heavy-lepton neutrinos (i.e., n nm t, and their anti-
particles). To follow the 3D hydrodynamics up to 1400 ms
postbounce, we shall omit the energy dependence of the
radiation in this work (see, however, Kuroda et al. 2016).

We use three EoSs based on the relativistic-mean-field
theory with different nuclear interaction treatments, which are
DD2 and TM1 of Hempel & Schaffner-Bielich (2010) and
SFHx of Steiner et al. (2013). For SFHx, DD2, and TM14, the
maximum gravitational mass Mmax and the radius of cold NS R
in the vertical part of the mass–radius relationship are

=M 2.13max , 2.42, and 2.21 :M and ~R 12, 13, and, 14.5

km, respectively (Fischer et al. 2014). SFHx is thus softest
followed in order by DD2 and TM1. Among these three, while
DD2 is consistent with nuclear experiments, such as for its
symmetry energy (Lattimer & Lim 2013), SFHx is the best-fit
model with the observational mass–radius relationship. All
EoSs are compatible with NS mass measurement ∼2.04 :M
(Demorest et al. 2010). Our 3D-GR models are named DD2,
TM1, and SFHx, which simply reflects the EoS used.
We study a frequently used 15 Me star of Woosley &

Weaver (1995). The 3D computational domain is a cubic box
with 15,000 km width, and nested boxes with eight refinement
levels are embedded. Each box contains 1283 cells, and the
minimum grid size near the origin is D =x 458 m. In the
vicinity of the stalled shock front ~R 100 km, our resolution
achieves D ~x 1.9 km, i.e., the effective angular resolution
becomes ~ n1 .
Extraction of GWs from our simulations is done by the

conventional quadrupole formula in which the transverse and
the trace-free gravitational field hij is expressed by (Misner
et al. 1973)

( ) ( ) ( ) ( )q f
q f q f

=
++ + ´ ´h

A e A e
D

,
, ,

. 2ij

In Equation (2), ( )q f+ ´A , represents the amplitude of
orthogonally polarized wave components with emission angle
( )q f, dependence (Scheidegger et al. 2010; Kuroda
et al. 2014), + ´e denotes unit polarization tensors, and D is
the source distance where we set D=10 kpc in this Letter.

3. RESULTS

We start by describing the hydrodynamics at bounce. The
central rest mass density rc reaches r = 3.69,c 3.75 and 4.50
×1014 g cm−3 for TM1, DD2, and SFHx, which is higher, as
expected, for the softer EOS (e.g., Fischer et al. 2014).

Figure 1. In each set of panels, we plot (top) the gravitational-wave amplitude of plus mode +A [cm] and (bottom) the characteristic wave strain in the frequency-time
domain h̃ in a logarithmic scale that is overplotted by the expected peak frequency Fpeak (black line denoted by “A”). “B” indicates the low-frequency component. The
component “A” is originated from the PNS g-mode oscillation (Marek & Janka 2009; Müller et al. 2013). The component “B” is considered to be associated with the
SASI activities (see Section 3). Left and right panels are for TM1 and SFHx, respectively. We note that SFHx (left) and TM1 (right) are the softer and stiffer EoS
models, respectively.

4 The symmetry energy S at nuclear saturation density is S=28.67, 31.67,
and 36.95 MeV, respectively (e.g., Fischer et al. 2014).
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ramp-up signals
a few 100Hz to kHz

association 
with SASI

modified version [15] of the time-integrated quadrupole
formula [51]. We use two zero-metallicity progenitors of
35M⊙ and 85M⊙ (named z35 and z85), which are calcu-
lated with the stellar evolution code KEPLER [52,53].
We employ two different high-density EOS. For models

z35:CMF and z85:CMF, we use the CMFmodel with a first-
order nuclear liquid-vapor phase transition at densities ∼ρ0,
a second but weak first-order phase transition due to chiral
symmetry restoration at ∼4 × ρ0 with a critical endpoint at
TCeP ≈ 15 MeV, and a smooth transition to quark matter
at higher densities. The CMF EOS has a ground state
density (for symmetric matter) nsat ¼ 0.16 fm−3, binding
energy per baryon E0=B ¼ −15.2 MeV, asymmetry energy
S0 ¼ 31.9 MeV, incompressibility K0 ¼ 267 MeV, and a
maximum Tolman-Oppenheimer-Volkoff mass Mmax

TOV ¼
2.10M⊙ [48]. This EOS has recently been studied in the
context of neutron star merger and 1D core-collapse super-
nova simulations [54,55]. The second EOS, used for runs
z35:SFHx and z85:SFHx, is the purely hadronic relativistic
mean-field SFHx model [47]. Nuclear matter properties for
the SFHx EOS are nsat¼0.16 fm−3, E0=B ¼ −16.16 MeV,
S0 ¼ 28.67 MeV, K0 ¼ 239 MeV, and Mmax

TOV ¼ 2.13M⊙.
Results.—Dynamically, the CMF and SFHx models

exhibit similar behavior. Both z85 models undergo shock
revival followed by early black hole (BH) formation, albeit
earlier by more than 0.2 s in z85:CMF. Both z35 models
explode. The GW signals of the CMF and SFHx models
exhibit distinctive differences, however. Figure 1 shows
GW spectrograms computed using the Morlet wavelet
transform [56].
The early phase of GW emission is still similar for both

EOS. The z85 models show low-frequency emission at
∼100 Hz due to prompt convection and early standing-
accretion shock instability activity [14,15,57,58]; this is

largely absent in the z35 models. Subsequently, the PNS
surface f=g mode [15,21,28,29] appears as a prominent
emission band with frequencies that increase from ∼300 Hz
to above 1000 Hz. The f- or g-mode frequency rises slightly
faster in the CMF models.
The most striking differences are found in another emis-

sion band of decreasing frequency that branches off the
dominant f=gmode between 0.2 s and 0.35 s, except in z35:
SFHx, which shows no such signal. A linear mode analysis
(see Refs. [21,29,30,35] for the methodology) identifies this
frequency band as the decreasing branch of the 2g1mode (Zha
et al. in prep.), i.e., a quadrupolar gmodewith one node, with
an eigenfunction mostly confined to the PNS core (core g
mode). Henceforth, we refer to the decreasing branch as the
2g1 mode for short. (The dominant band with increasing
frequency follows the increasing branch of the 2g1 mode
initially and then the fmode after the avoided crossing of the
two modes. The mode classification is, e.g., sensitive to the
boundary condition in the linear analysis).
The mode frequency f2g1 is systematically lower in z85:

CMF compared to z85:SFHx. In z85:CMF, f2g1 decreases
from ∼600 Hz at 0.2 s to ∼220 Hz at 0.32 s, at which point
the model collapses to a BH. In z85:SFHx, black-hole
collapse occurs later and f2g1 evolves more slowly from a
higher frequency of∼800 Hz down to∼560 Hz at 0.58 s. In
z35:CMF, the 2g1 mode lives at similarly low frequencies as
in z85:CMF, i.e., in the range 220–600 Hz.
Such pronounced emission in the declining 2g1 mode

frequency band as in the CMFmodels (and to a lesser extent
model z85:SFHx) is not usually observed in simulations
with energy-dependent neutrino transport. These usually
show an emission gap at the avoided crossing with the f
mode [21]. The 2g1 mode has been found in simulations
with more approximate neutrino transport [59,60], or
modified Newtonian gravity [25,29,34].
To further confirm the nature of the mode, we perform a

spatially resolved Fourier analysis of the integrand of the
quadrupole formula using high-time-resolution simulation
output with sampling frequency 104 Hz. To detect quad-
rupolar motions as a function of radius and frequency, we
integrate over angle only, and obtain a radius-dependent
measure qðr; tÞ of quadrupolar perturbations,

qðr; tÞ ¼ 32π3=2Gffiffiffiffiffi
15

p
c4

Z
π

0
dθϕ6r3 sinθ

×
"
∂

∂t

#
Srð3cos2θ− 1Þ

$
þ 3

r
Sθ sinθ cosθ

%
: ð1Þ

ϕ is the conformal factor of the space-time metric, and Sr
and Sθ are the orthonormal components of the relativistic
momentum density.
We obtain spectrograms of qðr; tÞ (Fig. 2, first two

panels) using the fast Fourier transforms in a fixed time
window Δt and apply additional denoising by convolving

FIG. 1. GW spectrograms for z85 (top) and z35 (bottom) using
the CMF EOS (left) and SFHx EOS (right). The same logarithmic
color scale for the amplitude jhþj is used for all models. Models
z85:CMF, z85:SFHx, and z35:CMF exhibit a distinct second
frequency band from the 2g1 mode, which branches off the
dominant band after a few hundred milliseconds.
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Non-radial Oscillations in (proto)-NSs
• axial type oscillations

üno stellar deformation, no density variation
Øw-modes (spacetime) : oscillations of specetime itself ~ M/R 
Ø t-modes (torsional) : due to the elasticity ~ vs/R
Ø r-modes (rotational) ~ mΩ
ØAlfven modes

• polar type oscillations
üwith density variation & stellar deformation 
ü important for considering the GWs emission

Ø f-mode (fundamental) ~ (M/R3)1/2
Øp-modes (pressure) : sound speed crossing ~ (M/R3)1/2
Øg-modes (gravity) : thermal/composition gradients ~ BV frequency
Øw-modes (spacetime) : oscillations of specetime itself ~ M/R
Ø i/s-modes (interface/shear) : due to the elasticity
Ø inertial modes (effect of rotation)
ØAlfven modes
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we focus on in this talk
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specific mode
↕

physics

Neutron stars as GW sources (II)

Fluid part (oscillations) Non-axisymmetric mass 
quadrupole (“mountains”)  

Continuous emission                    



Linear analysis
• eigenmodes are identified with linear analysis
• perturbation eqs. are derived from the linearized Einstein equations.

üvariables = background + perturbations
üdecompose the perturbed variables

• (GW) frequencies are determined by solving the eigenvalue problem.
üappropriate boundary conditions

• if the background is spherically symmetric, the m-dependence is degenerate into m=0
üω are eigenfrequencies of the star for each l, where f = ω/2π
ü subscript denotes the number of radial nodes in the eigenfunction

July 21-25 2025

f = f0 +δ f

δ f (t,r,θ ,φ) = δ f (r)eiωtYlm (θ ,φ)
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frequency
f

~ a few kHz

p1 p2 p3 …g1g2g3…fluid mode
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Asteroseismology on SN GWs
• PNS structure depends not only on the density and pressure profiles 
but also on the distribution of electron fraction and entropy (or temperature)

• Using the numerical data for core-collapse SNe, 
first one has to prepare background models, 
on which the linear perturbations are considered.
ü spherically symmetric background models are 
prepared by averaging in the angular direction

• GW frequencies are determined 
by solving the eigenvalue problem
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where α, βi, and γij are the lapse, shift vector, and
three metric, respectively. If one assumes that the hydro-
dynamical background is static and spherically symmetric,
the spacetime in the isotropic coordinates can also be
written as

ds2 ¼ −
ð1 − M

2r̂Þ
2

ð1þ M
2r̂Þ

2
dt2

þ
!
1þM

2r̂

"
4

ðdr̂2 þ r̂2dθ2 þ r̂2sin2θdϕ2Þ; ð2Þ

where r̂ and M denote the isotropic radius r̂ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and the enclosed gravitational mass,

respectively. From Eqs. (1) and (2), one can easily check
the validity of our static and spherically symmetric back-
ground assumption by comparing γr̂ r̂ and ð1þM=2r̂Þ4
(see Appendix A for detail).
Next, we perform coordinate transformation from the

isotropic, i.e., Eqs. (1) or (2), to the following spherically
symmetric spacetime,

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

where Φ and Λ are functions of only r. This metric is
similar to the Schwarzschild metric and we apply the well-
known conversion relation r ¼ r̂ð1þM=2r̂Þ2. In addition,
Λ is associated with the mass functionM in such a way that
e−2Λ ¼ 1–2M=r. With this metric form, the four-velocity
of fluid element is given by uμ ¼ ðe−Φ; 0; 0; 0Þ.

III. PERTURBATION EQUATIONS FOR
AXIAL w-MODE GRAVITATIONAL WAVES

On the PNS models mentioned in the previous section,
we examine the oscillations and their spectra with the linear
perturbation approach. In particular, when one focuses on
axial type oscillations, the metric perturbation, hμν, with the
Regge-Wheeler gauge can be decomposed as

hμν ¼
X∞

l¼2

Xl

m¼−l

0

BBBB@

0 0 −h0;lmsin−1θ∂ϕ h0;lm sin θ∂θ

% 0 −h1;lmsin−1θ∂ϕ h1;lm sin θ∂θ

% % 0 0

% % 0 0

1

CCCCA

× Ylm; ð4Þ

where Ylm is the spherical harmonics with the angular
indexes l and m, noting that h0;lm and h1;lm are functions
of t and r [22]. Additionally, the perturbation of the four-
velocity is given by

δuμ ¼
X∞

l¼2

Xl

m¼−l

!
0; 0;−

δulm
r2 sin θ

∂ϕYlm;
δulm
r2 sin θ

∂θYlm

"
;

ð5Þ

while the perturbations of pressure and energy density
should be zero for axial type oscillations.
The perturbation equation governing the axial type of

GWs on the spherically symmetric background can be
expressed as a single wave equation [57,58], such as

−
∂2Xlm

∂t2 þ∂2Xlm

∂r2%
−e2Φ

$
lðlþ1Þ

r2
−
6m
r3

þ4πðε−pÞ
%
Xlm

¼ 0; ð6Þ

where Xlm is related to the metric perturbation, h1;lm, via
rXlm ¼ eΦ−Λh1;lm, while r% is the tortoise coordinate
defined as r%¼rþ2Mlnðr=2M−1Þ. That is, ∂r¼eΛ−Φ∂r% .
The remaining variables, h0;lm and δulm, can be computed
with h1;lm from the relations ∂th0;lm¼ eΦ−ΛXlmþ r∂r%Xlm

and δulm ¼ −e−Φh0;lm. We remark that Eq. (6) outside the
star reduces to the well-known Regge-Wheeler equation.
Hereafter, we omit the index of ðl; mÞ for simplicity.
In fact, by solving this system one can obtain the specific

oscillation spectra of GWs, i.e., the so-called w modes
[44,45]. Replacing Xlm in Eq. (6) with Xlmðt; rÞ ¼
XðrÞ expðiωtÞ, one gets the perturbation equation with
respect to the eigenvalue ω,

FIG. 3. Left: Same as Fig. 2, but for the time evolution of the stellar compactness after bounce. Right: Sequences of the masses and
radii of PNSs for SFHx and TM1. Note that the points at the left (smaller PNS radius) correspond to late postbounce phase, whereas the
points at the right correspond to early phase (larger PNS radius).
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transformed into those in polar coordinates by spatially
linear interpolation at each time step. Then, the space-time
in the isotropic coordinates can be rewritten as

ds2 ¼ − α2dt2 þ γr̂ r̂ðdr̂2 þ r̂2dθ2 þ r̂2 sin2 θdϕ2Þ; ð2Þ

where r̂ denotes the isotropic radius r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
.

In the calculations of stellar oscillations, we adopt the
following spherically symmetric space-time:

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð3Þ

as a background space-time, where Φ and Λ are functions
of only r. We remark that the metric expressed by Eq. (3) is
similar to the Schwarzschild metric and is given by the
coordinate transformation from the isotropic coordinates,
i.e., Eqs. (1) or (2). Additionally, the metric function Λ is
associated with the mass function m in such a way that
e−2Λ ¼ 1–2m=r. Then, the background four-velocity of the
fluid element is given by uμ ¼ ðe−Φ; 0; 0; 0Þ. Comparing
Eqs. (2) and (3), the conversion relation is expressed as the
following:

e2Φ ¼ α2; ð4Þ

r2 ¼ γr̂ r̂r̂2; ð5Þ

and

e2Λdr2 ¼ γr̂ r̂dr̂2: ð6Þ

From these, one can deduce the following relations:

dr ¼
"
γr̂ r̂ þ

r̂
2

∂γr̂ r̂
∂r̂

#
r̂
r
dr̂; ð7Þ

m ¼
$
1 −

ðγr̂ r̂ þ r̂∂ r̂γr̂ r̂=2Þ2

γ2r̂ r̂

%
γ1=2r̂ r̂

2
r̂: ð8Þ

In this study, instead of using Eq. (8), we evaluate the
enclosed gravitational mass m within r̂ and use a simple

conversion relation r ¼ r̂ð1þm=2r̂Þ2, from isotropic to
Schwarzschild coordinates. Although this simple conver-
sion relation can originally be applied to the exterior of the
object, we employ it as it can suppress the high frequency
structural noise that appears when using Eq. (8) without
some appropriate smoothing. Since we use the spatial
derivative of Λ that is a function of m in the following
seismology analysis, spurious noise should be suppressed.
We consider that the difference between the correct,
i.e., Eq. (8), and simple evaluations is not so significant.
The highest values of exp ð2ΛÞ ¼ ð1 − 2m=rÞ−1 appear at
r̂ ∼ 1.3 × 106 cm, and they differ approximately 1%
between both evaluations.
In the present study, we especially focus on the numeri-

cal results constructed with SFHx EOS [41]. The initial
hydrodynamic profile is taken from a 15 M⊙ progenitor
model [42] in the simulation [15]. In Fig. 1, we show the
radial profiles of the rest mass density ρ, entropy per baryon
s, and electron fraction Ye at several time snapshots after
bounce. From this figure, one can observe that the profile at
248 ms is almost the same as that at 348 ms. On these
background properties, we consider the specific oscillations
in PNS at each time step. As PNS models, we consider
two different approaches, i.e., 1) as in Ref. [38], the
position, where the rest mass density is equivalent to be
ρs ¼ 5 × 109, 1010, and 1011 g cm−3, is considered as the
stellar surface of a background PNS, or 2) the domain
inside the shock radius is adopted for calculating the
frequencies of stellar oscillations as in Refs. [37,39].
Here, we define the position of the shock radius, where
the entropy per baryon becomes s ¼ 7 kB baryon−1 at the
outermost radial position with excluding obviously infal-
ling unshocked stellar mantles. In Fig. 2, we show the time
evolution of the PNS gravitational mass and radius, which
are determined with different definitions of the PNS sur-
face, as a function of the postbounce time Tpb. One can
observe that the gravitational masses after ∼150 ms are
almost independent from the definition of PNS surface,
while the PNS radius still depends on the surface density.
In the right panel of Fig. 2, we also show the shock radius,
which does not change monotonically with time due to the
vigorous SASI motion [15].

FIG. 1. (Spherically averaged) radial profiles of the rest mass density (ρ), entropy per baryon (s), and electron faction (Ye) at 48, 148,
248, and 348 ms after core bounce for a 3D-GR model of SFHx in [15].

DEPENDENCE OF THE OUTER BOUNDARY CONDITION … PHYS. REV. D 99, 123024 (2019)
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Simulation and linear analysis
• Linear analysis

üwe have done in the relativistic framework on the PNSs 
ØCowling approximation, neglecting the metric perturbations
Øwith metric perturbations (non-Cowling)
Ø in general, Cowling approximation overestimates the frequencies at most ~20%

• Simulations
üeffective GR (Newtonian + effective potential) by T. Takiwaki
üGR with monopole gravity by B. Muellar
üGR with non-monopole gravity by B. Muellar

• with several EOSs and progenitor masses

July 21-25 2025 SN2025gw@University of Warsaw 8



Avoided crossing in GW frequency
• in the early phase, one can observe the phenomena of avoided crossing
between the eigenmodes.

• even in later phase, one can still observe between gi-modes 
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ≃ 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ≃ 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + ℓ(ℓ+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)

c⃝ 0000 RAS, MNRAS 000, 000–000

Avoided crossing in GWs from PNS 5

0 0.2 0.4 0.6 0.8 1.0
10–5

10–4

10–3

10–2

10–1

1

r/RPNS

|W
(r

) /
 W

(R
PN

S)
|

 f 

 g1 

 p1 

0.25sec

0 0.2 0.4 0.6 0.8 1.0
r/RPNS

0.30 sec

 f 

g1  p1

0 0.2 0.4 0.6 0.8 1.0

r/RPNS

0.35sec

 f 

g1
 p1

2D (1e11)

Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ≃ 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ≃ 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + ℓ(ℓ+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ≃ 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ≃ 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + ℓ(ℓ+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ≃ 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ≃ 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + ℓ(ℓ+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g cm−3 obtained from 2D simulations, where W(r) denotes
the eigenfunction of the radial displacement. The left, middle, and right-hand panels correspond to the PNS models at Tpb = 0.25, 0.30, and 0.35 s, respectively,
where the solid, the dashed, and the dotted lines denote the eigenfunctions for the f-, g1- and p1-modes.

Figure 4. Radial-dependent pulsation energy density, E, is shown for the f- and pi-modes in the left-hand panel and for the gi-modes in the right-hand panel,
where the top, middle, and bottom panels correspond to the PNS models at Tpb " 0.4, 0.6, and 0.8 s. In the right-hand panel, for reference the Brunt–Väisälä
frequency, fBV is also shown. The right endpoint of E corresponds to the PNS surface for the corresponding time. We note that the g1-mode frequencies at 0.4,
0.6, and 0.8 s after core bounce are, respectively, 825.0, 753.0, and 685.4 Hz.

pulsation energy density for g2 and g3-modes strongly depend on the
fBV distribution. In particular, the pulsation energy of the g2-mode
becomes more dominant in the vicinity of the PNS surface with
time due to the enhancement of fBV in the region around the PNS
surface. On the other hand, the pulsation energy of the g3-mode is
still stronger in the core region of PNS. So, we may say that the g1-
and g3-modes correspond to the core g-mode, while the g2-mode is
the surface g-mode.

Next, we consider to identify the ramp up signals of gravitational
waves in numerical data. Using the numerical data obtained via

hydrodynamical simulations, as in Murphy et al. (2009), the dimen-
sionless characteristic gravitational wave strain is given by

hchar(f , Tpb) =

√
2G

π2c3D2

dEGW

df
, (4)

where D denotes the source distance, while dEGW/df denotes the
time-integrated energy spectra of gravitational wave calculated with
a short-time Fourier transform, S̃(f , Tpb), via
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Comment on uncertainty in surface density
• in the late phase after core bounce, e.g., ~ 500ms, f-mode frequency becomes almost 
independent of the choice of surface density, ρs (Morozova+18)

• we also confirm this feature, i.e., f- & g1-modes in later phase are almost independent of 
ρs, where g1-mode decreases with time (Sotani & Takiwaki 20b).

July 21-25 2025

At the same time, the frequency of the fundamental mode in
Figure 6 is almost insensitive to the position of the outer
boundary, and the low-order g-modes depend weakly on it.

Importantly, this shows that the dominant GW frequency is not
just proportional to the Brunt–Väisälä frequency at the surface
of the PNS, as was suggested in earlier work. Indeed, Figure 4
shows that the three black lines corresponding to the different
outer boundary locations pass through very different values of
the Brunt–Väisälä frequency. The fact that the fundamental
quadrupolar eigenfrequency in Figure 6 is nearly independent
of the position of the outer boundary tells us that the dominant
frequency of the GW signal is defined by the entire structure of
the PNS, rather than by its surface characteristics alone.
The left panel of Figure 7 illustrates the time evolution of the

radial eigenfunction ηr for the l=2 modes associated with
the dominant frequency of the GW signal. The eigenfunctions
are normalized to 1 and plotted as a function of radial
coordinate from the innermost grid point up to the location of
the outer boundary. In Figure 7, they are shifted along the y-
axis according to the time after bounce at which they are
calculated (the time is indicated on the left side of the panel and
directed downward). As we already mentioned, starting from
∼400 ms after bounce and until the end of the simulation, the
main signal is represented by the f-mode, which has the largest
amplitude at the PNS boundary surface and gradually decreases
toward the center. Before that, in the time interval between
∼200 and ∼400 ms, this mode is smoothly connected to a g-
mode having two radial nodes (see also the left panel of
Figure 5). The right panel of Figure 7 shows the energy density
� defined as (Torres-Forné et al. 2018)
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for the corresponding eigenfunctions of the left panel. The
figure shows that the shape of the fundamental eigenfunction is
very similar in the case of the Cowling approximation (black
lines) and in the case when da ¹ 0 (red lines). The energy
density of the modes shows less agreement. Note that the
definition of � contains the mass density, which is larger in the
inner region than at the the surface of the PNS. Therefore, even
a barely visible disagreement between the eigenfunctions in the

Figure 5. Eigenfrequencies σ/2π of the l=2 modes compared to the GW spectrogram from model M10_SFHo. Each digit represents the number of nodes in the
corresponding mode. The left panel shows the results obtained using the Cowling approximation, while the right panel shows the solution of the full system of
Equations (8)–(11). In the right panel, the dominant feature of the spectrogram is well described by the fundamental (0 radial nodes) mode starting from ∼400 ms after
bounce.

Figure 6. Dependence of the derived eigenfrequencies on the position of the
outer boundary in our analysis. This plot demonstrates that the frequencies of
p-modes are only approximately captured by our calculations. At the same
time, the frequencies of the f-mode and the low-order g-modes are almost
insensitive to the position of the outer boundary, which demonstrates the
robustness of our main result, i.e., the association between the dominant GW
feature and the fundamental ( f ) l=2 PNS mode.
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At the same time, the frequency of the fundamental mode in
Figure 6 is almost insensitive to the position of the outer
boundary, and the low-order g-modes depend weakly on it.

Importantly, this shows that the dominant GW frequency is not
just proportional to the Brunt–Väisälä frequency at the surface
of the PNS, as was suggested in earlier work. Indeed, Figure 4
shows that the three black lines corresponding to the different
outer boundary locations pass through very different values of
the Brunt–Väisälä frequency. The fact that the fundamental
quadrupolar eigenfrequency in Figure 6 is nearly independent
of the position of the outer boundary tells us that the dominant
frequency of the GW signal is defined by the entire structure of
the PNS, rather than by its surface characteristics alone.
The left panel of Figure 7 illustrates the time evolution of the

radial eigenfunction ηr for the l=2 modes associated with
the dominant frequency of the GW signal. The eigenfunctions
are normalized to 1 and plotted as a function of radial
coordinate from the innermost grid point up to the location of
the outer boundary. In Figure 7, they are shifted along the y-
axis according to the time after bounce at which they are
calculated (the time is indicated on the left side of the panel and
directed downward). As we already mentioned, starting from
∼400 ms after bounce and until the end of the simulation, the
main signal is represented by the f-mode, which has the largest
amplitude at the PNS boundary surface and gradually decreases
toward the center. Before that, in the time interval between
∼200 and ∼400 ms, this mode is smoothly connected to a g-
mode having two radial nodes (see also the left panel of
Figure 5). The right panel of Figure 7 shows the energy density
� defined as (Torres-Forné et al. 2018)
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lines) and in the case when da ¹ 0 (red lines). The energy
density of the modes shows less agreement. Note that the
definition of � contains the mass density, which is larger in the
inner region than at the the surface of the PNS. Therefore, even
a barely visible disagreement between the eigenfunctions in the

Figure 5. Eigenfrequencies σ/2π of the l=2 modes compared to the GW spectrogram from model M10_SFHo. Each digit represents the number of nodes in the
corresponding mode. The left panel shows the results obtained using the Cowling approximation, while the right panel shows the solution of the full system of
Equations (8)–(11). In the right panel, the dominant feature of the spectrogram is well described by the fundamental (0 radial nodes) mode starting from ∼400 ms after
bounce.

Figure 6. Dependence of the derived eigenfrequencies on the position of the
outer boundary in our analysis. This plot demonstrates that the frequencies of
p-modes are only approximately captured by our calculations. At the same
time, the frequencies of the f-mode and the low-order g-modes are almost
insensitive to the position of the outer boundary, which demonstrates the
robustness of our main result, i.e., the association between the dominant GW
feature and the fundamental ( f ) l=2 PNS mode.
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Table 1. PNS models discussed in this study. For each PNS model, we list the name of PNS model, the progenitor model, EOS, the
dimension of numerical simulation, the position in text where we discuss, and the reference for the linear analysis on each PNS model.

label progenitor model EOS dimension corresponding portion linear analysis

LS220-2D 2.9M⊙a LS220d 2Dh Sec. 3 this study
LS220-1D 1Dh Appendix B this study
SFHx-3D 15M⊙b SFHxe 3Di Sec. 3 Sotani et al. (2017, 2019)
TGTF-2D 20M⊙c TGTFf 2Dj Appendix A Sotani & Takiwaki (2020)
DD2-2D 20M⊙c DD2g 2Dj Appendix A Sotani & Takiwaki (2020)

aMoriya et al. (2019), bWoosley & Weaver (1995), cWoosley & Heger (2007).
dLattimer & Swesty (1991), eSteiner, Hempel, & Fischer (2013), fTogashi et al. (2017), gTypel et al. (2010).
hTakiwaki (2020a), iKuroda, Kotake, & Takiwaki (2016), jTakiwaki (2020b).
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Figure 2. Comparing the f -, pi-, and gi-mode frequencies for i = 1 up to 5 on the PNS models with ρs = 1011 g/cm3 to those with
ρs = 1010 g/cm3, where the open marks with dotted lines correspond to the results with ρs = 1011 g/cm3, while the filled marks with
dashed lines are the results with ρs = 1010 g/cm3.

3 GRAVITATIONAL WAVE SIGNALS FROM PNS

On the PNS models obtained via 2D simulation, we make a linear analysis. For this purpose, as in Sotani & Takiwaki (2016);

Sotani et al. (2019); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020), we simply adopt the relativistic Cowling approx-

imation in this study, where the metric perturbation is neglected during the fluid oscillations. In this case, the perturbation

equations can be derived by linearizing the energy-momentum conservation law. In addition, one has to impose appropriate

boundary conditions at the stellar center and the outer boundary, i.e., the PNS surface. The concrete perturbation equations

and the boundary conditions are the same as in Sotani et al. (2019). Then, the problem to solve becomes an eigenvalue

problem with respect to the eigenvalue, ω, with which the eigenfrequency, f , is determined via f = ω/(2π). As the standard

standard asteroseismology, the eigenmodes are identified by counting the nodal numbers in the eigenfunctions, i.e., the nodal

numbers of f -, pressure (pi-), and gi-modes are 0, i, and i, respectively. With respect to some of eigenmodes (especially pi-

and gi-modes with lower i and f -mode) in early phase after core bounce, the nodal numbers become more than their definition

because the additional nodes appear in the vicinity of the stellar center. Even in such a case, the nodal numbers for the pi-

and gi-modes with higher i, e.g., i>∼ 3, are the same as the definition. So, even for the eigenmodes whose nodal numbers are

more than their definition, we simply classify them as usual by using the pi- and gi-modes with higher i.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ≃ 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ≃ 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude
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Figure 4. Radial-dependent pulsation energy density, E, is shown for the f - and pi-modes in the left panel and for the gi-modes in
the right panel, where the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. In the right
panel, for reference the Brunt-Väisälä frequency, fBV is also shown. The right endpoint of E corresponds to the PNS surface for the
corresponding time. We note that the g1-mode frequencies at 0.4, 0.6, and 0.8 sec after core bounce are respectively 825.0, 753.0, and
685.4 Hz.

of the PNS surface, where the peak at ∼ 8 km decreases and that in the vicinity of the PNS surface increases with time. The

decrease of fBV around 8 km may correspond to the decrease of the g1-mode frequency with time, i.e., the g1-mode frequencies

at ∼ 0.4, 0.6, and 0.8 sec are respectively 825.0, 753.0, and 685.4 Hz. In addition, we find that the shape of pulsation energy

density for g2 and g3-modes strongly depend on the fBV distribution. In particular, the pulsation energy of the g2-mode

becomes more dominant in the vicinity of the PNS surface with time due to the enhancement of fBV in the region around

the PNS surface. On the other hand, the pulsation energy of the g3-mode is still stronger in the core region of PNS. So, we

may say that the g1- and g3-modes correspond to the core g-mode, while the g2-mode is the surface g-mode.

Next, we consider to identify the ramp up signals of gravitational waves in numerical data. Using the numerical data

obtained via hydrodynamical simulations, as in Murphy, Ott, & Burrows (2009), the dimensionless characteristic gravitational

wave strain is given by

hchar(f, Tpb) =

√
2G

π2c3D2

dEGW

df
, (4)

where D denotes the source distance, while dEGW/df denotes the time-integrated energy spectra of gravitational wave calcu-

lated with a short-time Fourier transform, S̃(f, Tpb), via

dEGW

df
(f, Tpb) =

3G
5c2

(2πf)2 |S̃(f, Tpb)|, (5)

mentioned. That is, the region with A < 0 (or N 2 > 0) is a stable region. So, most of the PNS region is convectively unstable for the
models discussed in Sotani et al. (2019), which may be a reason why the gi-modes could not be found in Sotani et al. (2019).

c⃝ 0000 RAS, MNRAS 000, 000–000

Avoided crossing in GWs from PNS 5

0 0.2 0.4 0.6 0.8 1.0
10–5

10–4

10–3

10–2

10–1

1

r/RPNS

|W
(r

) /
 W

(R
PN

S)
|

 f 

 g1 

 p1 

0.25sec

0 0.2 0.4 0.6 0.8 1.0
r/RPNS

0.30 sec

 f 

g1  p1

0 0.2 0.4 0.6 0.8 1.0

r/RPNS

0.35sec

 f 

g1
 p1

2D (1e11)

Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + ℓ(ℓ+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)

where N 2 is given by

N 2 = −e2Φ−2Λ Φ′

ε+ p

(
ε′ − p′

c2s

)
. (3)

In this equation, Φ and Λ are the metric function as gtt = −e2Φ and grr = e2Λ, p and cs denote the pressure and sound

velocity, and the prime denotes the partial derivative with respective to r. We remark that the region with N 2 > 0 (N 2 < 0)

is convectively stable (unstable) region 1. From this figure, one can see the peak in fBV appears at ∼ 8 km and in the vicinity

1 The statement about the stability mentioned in Sotani et al. (2019) is not correct, where the condition is opposite to what they
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ≃ 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ≃ 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + ℓ(ℓ+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)
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Figure 4. Radial-dependent pulsation energy density, E, is shown for the f - and pi-modes in the left panel and for the gi-modes in
the right panel, where the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. In the right
panel, for reference the Brunt-Väisälä frequency, fBV is also shown. The right endpoint of E corresponds to the PNS surface for the
corresponding time. We note that the g1-mode frequencies at 0.4, 0.6, and 0.8 sec after core bounce are respectively 825.0, 753.0, and
685.4 Hz.

where N 2 is given by

N 2 = −e2Φ−2Λ Φ′

ε+ p

(
ε′ − p′

c2s

)
. (3)

In this equation, Φ and Λ are the metric function as gtt = −e2Φ and grr = e2Λ, p and cs denote the pressure and sound

velocity, and the prime denotes the partial derivative with respective to r. We remark that the region with N 2 > 0 (N 2 < 0)

is convectively stable (unstable) region 2. From this figure, one can see the peak in fBV appears at ∼ 8 km and in the vicinity

of the PNS surface, where the peak at ∼ 8 km decreases and that in the vicinity of the PNS surface increases with time. The

decrease of fBV around 8 km may correspond to the decrease of the g1-mode frequency with time, i.e., the g1-mode frequencies

at ∼ 0.4, 0.6, and 0.8 sec are respectively 825.0, 753.0, and 685.4 Hz. In addition, we find that the shape of pulsation energy

density for g2 and g3-modes strongly depend on the fBV distribution. In particular, the pulsation energy of the g2-mode

becomes more dominant in the vicinity of the PNS surface with time due to the enhancement of fBV in the region around

the PNS surface. On the other hand, the pulsation energy of the g3-mode is still stronger in the core region of PNS. So, we

may say that the g1- and g3-modes correspond to the core g-mode, while the g2-mode is the surface g-mode.

2 The statement about the stability mentioned in Sotani et al. (2019) is not correct, where the condition is opposite to what they
mentioned. That is, the region with A < 0 (or N 2 > 0) is a stable region. So, most of the PNS region is convectively unstable for the
models discussed in Sotani et al. (2019), which may be a reason why the gi-modes could not be found in Sotani et al. (2019). On the
other hand, since the region, where the Brunt-Väisälä frequency becomes negative, i.e., convectively unstable, is very limited in this
study, the g-mode oscillations are stably excited. Thus, whether or not the g-mode oscillations can be excited strongly depends on the
strength of convection and the width of the convectively unstable region.

c⃝ 0000 RAS, MNRAS 000, 000–000

11HS, Takiwaki 20b SN2025gw@University of Warsaw



Comparison with GW signals in simulation 

July 21-25 2025

Avoided crossing in GWs from PNS 7

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1.0

1.5

2.0

Tpb (sec)

fr
eq

ue
nc

y 
(k

H
z)

10–24

10–23

10–22

10–21

 f 

g1

g2

 p1 p2

Figure 5. Comparison between the gravitational wave signals obtained from the numerical simulation (background contour) and several
eigenfrequencies for the PNS with ρs = 1011 g/cm3, where circles, diamonds, and squares denote the f -, pi-, and gi-modes for i = 1 or
2. The source distance is assumed to be D = 10 kpc.

S̃(f, Tpb) =
1
2

∫ Tpb+∆t

Tpb−∆t

d2I−zz

dt2

[
1 + cos

(
π(t− Tpb)

2∆t

)]
exp(−2πift)dt, (6)

where 2∆t denotes the width of the window function and I−zz is the zz-component of the reduced mass-quadrupole tensor I−jk

given by Eq. (11) in Murphy, Ott, & Burrows (2009). In Fig. 5, we show the resultant value of hchar with contour, adopting

that D = 10 kpc and ∆t = 20 ms. In this figure, one can clearly observe the ramp up signals from ∼ 500 hertz up to ∼ 1.5

kilohertz in the time interval of Tpb ≃ 0.15− 0.65 sec. On this figure, we also plot the several eigenfrequencies on PNS model

with ρs = 1011 g/cm3. From this figure, it is obviously found that the ramp up signals correspond well to the g1-mode in

the early phase and to the f -mode after the avoided crossing. But, since the g1-mode frequency depends on ρs in the early

phase as mentioned before, it is not sure whether or not the ramp up signal corresponds well to the g1-mode for different PNS

models provided with the different numerical simulations. In order to check this point, we calculate the gravitational wave

signals from the 2D numerical simulations with completely different progenitor models and EOSs as in Table 1 and compare

it with the eigenmodes calculated for the corresponding PNS with ρs = 1011 g/cm3. Then, we find that the ramp up signals

still seem to be good agreement with the g1-mode on the PNS model with 1011 g/cm3 as shown in Fig. A1 (see the details in

Appendix A).

Now, it is observationally important what one can learn from the direct observation of the gravitational wave signals after

supernova explosion, assuming that principal signals are the ramp up signals appearing in numerical simulations. That is,

since the ramp up signals partially correspond to the f - and g1-mode frequencies, it is very useful if one could connect these

frequencies to the PNS properties. In the left panel of Fig. 6, we show the f - and g1-mode frequencies for the PNS model with

ρs = 1011 g/cm3 as a function of the square root of the normalized PNS average density, (MPNS/1.4M⊙)
1/2(RPNS/10km)−3/2.

With this data, we successfully find that the f - and g1-mode frequencies, which correspond to the ramp up signals, are well

expressed as

f(kHz) = −3.250− 0.978 ln(x) + 15.984x− 15.051x2, (7)

where x is the square root of the normalized PNS average density, i.e., x = (MPNS/1.4M⊙)
1/2(RPNS/10km)−3/2. In practice,

the frequency predicted from Eq. (7) is also plotted with the thick-solid line in the left panel of Fig. 6. Thus, using Eq. (7), one

could get the evolution of the PNS average density via the observed frequency of gravitational wave after supernova explosion.

In this study, since we consider only one progenitor model and one EOS, it is difficult to say how this relation is independent

of the models. Even so, this relation seems to be independent of the models at least in the early phase, as shown in Fig. A2

in Appendix A. Anyway, additional models should be considered in the future.

The relation similar to Eq. (7) has already been proposed, as a function of x in Sotani & Sumiyoshi (2019);

f(kHz) = 0.9733− 2.7171x+ 13.7809x2, (8)

and as a function of x̄ ≡ MPNS/R
2
PNS in the unit of M⊙/km

2 in Torres-Forné et al. (2019b);

f(kHz) = 12.4× 102x̄− 378× 103x̄2 + 4.24× 107x̄3, (9)

although in Torres-Forné et al. (2019b) the ramp up signal is identified as g2-mode in their classification. Eq. (8) are derived

for the f -mode frequency after the avoided crossing with the g1-mode with the PNS models provided by the 1D numerical

simulations, which are eventually collapsed into black hole. In the left panel of Fig. 6, we also plot the thick-dotted line

c⃝ 0000 RAS, MNRAS 000, 000–000
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Universal relations
• The g1- and f-mode frequencies can be well expressed as a PNS properties
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FIG. 5: In the left panel, the f - and g1-mode frequencies for various PNS models are shown as a function of the square root of the normalized
PNS average density. The thick-solid line is the fitting formula for the g1-mode (f -mode) frequency before (after) the avoided crossing between
the f - and g1-modes, which is given by Eq. (3), while thick-dashed line denotes the empirical formula derived in Ref. [46] (Eq. (4)). On the
other hand, in the right panel the same frequencies shown in the left panel are shown as a function of the surface gravity, where the thick-solid
line denotes the fitting formula given by Eq. (5). The thick-dotted line is the universal relation derived in Ref. [25], but it is amended [69].

with the thick-dashed line. We remark that this relation is obtained for the case of the failed supernova with general rela-
tivistic simulation, i.e., the PNS considered in Ref. [46] would eventually collapse to a black hole, focusing on the region
of (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2 >

∼ 0.1. By comparing this empirical relation to the gravitational wave frequencies
obtained in this study and the fitting formula given by Eq. (3), one can observe a significant deviation for the later phase. Un-
fortunately, we can not identify why this deviation comes from, but it may be because the dependence of the gravitational wave
frequencies on the PNS average density in a black hole formation is simply different from that for the case of successful su-
pernova, or it may comes from the treatment of the general relativistic effect in the simulation. On the other hand, it is also
suggested that the gravitational wave frequency is expressed as a function of the PNS surface gravity in Refs. [25, 52]. In a
similar way, we also show the gravitational wave frequencies for various PNS models as a function of the PNS surface gravity
in the right panel of Fig. 5, where the thick-solid line denotes the fitting formula given by

f(kHz) = −0.0752− 0.2600 ln(x̄3) + 0.7446x̄3 − 0.0600x̄2
3, (5)

where x̄3 denotes x̄/0.001 and x̄ is the PNS surface gravity defined by x̄ ≡ MPNS/R2
PNS in the unit of M⊙ km−2. For reference,

we also show the universal relation derived in Ref. [25] with the thick-dotted line, where the standard deviation of the data is
76 Hz. We note that the universal relation in Ref. [25] had a missing factor and the amended relation is plotted in this figure
[69], instead of the original relation. Since we have already shown that the relation between the PNS surface gravity and the
average density weakly depends on the PNS model, as shown in the top panel of Fig. 2, we expected that the gravitational
wave frequencies corresponding to the signals in numerical simulation could be also expressed as a function of the PNS surface
gravity almost independently of the PNS models. However, the gravitational wave frequencies seem to depend a little on the PNS
models, if they are considered as a function of the PNS surface gravity. That is, to characterize the gravitational wave frequency,
the PNS average density may be better than the surface gravity, based on the eigenfrequencies computed using the linearised
theory with the Cowling approximation. Anyway, as shown in Figs. 3 and 9, the resultant eigenfrequencies systematically
deviate from the gravitational wave signals appearing in the numerical simulation, which is the same order of magnitude as the
differences seen between modes when using surface gravity.

Furthermore, we discuss the impact on the observables due to the different treatment of non-uniform matter in EOS. That is,
as mentioned before, TGTF and TGLD are constructed with the same nuclear properties for uniform matter, but the treatment in
non-uniform matter is different from each other. This difference hardly affects the cold neutron star properties [62, 70], while we
find that it strongly affects the evolution of the PNS properties and gravitational wave frequencies in this study. The treatment of
non-uniform matter affects the nuclear composition at the PNS surface, as in Fig. 6, where the left and right panels correspond
to the models with TGTF and TGLD at Tpb = 0.07 sec. In the figure, the mass fractions of the neutron, proton, alpha particle,
and representative single nucleus for the models with TGTF are shown as Xn, Xp, Xα, and XA, while those of the neutron,
proton, deuteron, triton, helion, alpha particle, other light nuclei with Z ≤ 5, and nuclei with Z ≥ 6 for the models with TGLD
are shown as Xn, Xp, Xd, Xt, Xh, Xα, XZ≤5, and XZ≥6, respectively. From this figure, one can observe that for the models
with TGLD not only the neutron, proton, and alpha particle, but also various nuclei, deuteron, triton, and helion can appear even
inside the PNS region, which corresponds to the density region for ρ ≥ 1011 g/cm3.

The difference between the results with TGTF and TGLD may be understood as follows. The nuclear composition changes
the strength of the neutrino cooling. At the PNS surface, the absorption and scattering by nucleon are the dominant opacity

HS, Takiwaki, Togashi, 2021
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FIG. 3: Comparing the gravitational wave signals appearing in the numerical simulation (background contour) to the PNS frequencies (open-
marks) determined by solving the eigenvalue problem for the PNS model with TGLD.
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FIG. 4: The f - and g1-mode frequencies for various PNS models are shown as a function of the postbounce time.

in Ref. [19]. In this study, we focus on only the ℓ = 2 oscillation modes, because they are considered to become energetically
dominant in the gravitational wave emission.

In Fig. 3 we show the PNS oscillation frequencies determined by solving the eigenvalue problem with open marks on the
contour, which denotes the gravitational wave signals appearing in the numerical simulation, for the PNS model with TGLD
(see in appendix A for the other PNS models), focusing on only the f -, gi-, and pi-mode frequencies. Here, the gravitational
wave signals are calculated with the same procedure as in Ref. [65], using the numerical data obtained by simulations. From
this figure, as in Ref. [20], one can obviously see that the gravitational wave signals in numerical simulation is identified by the
g1-mode (f -mode) oscillation from the PNS before (after) the avoided crossing between the f - and g1-mode. In Fig. 4, we also
plot the time evolution of the f - and g1-mode frequencies for various PNS models. As in Ref. [17], one can observe that the
time evolution of the gravitational waves strongly depends on the PNSs models (see also Fig. 8).

On the other hand, in the left panel of Fig. 5, we show the f - and g1-mode frequencies as a function of the square root of the
PNS average density, x. From this figure, the f - and g1-mode frequencies according to the gravitational wave signals appearing
in the numerical simulation are well fitted, such as

f (kHz) = −1.410− 0.443 ln(x) + 9.337x− 6.714x2, (3)

independently of the PNS models. The predicted values from Eq. (3) are also plotted in the left panel of Fig. 5 with the thick-
solid line. That is, once one would detect the supernova gravitational waves, which could be the same as gravitational wave
signals appearing in the numerical simulations, one can extract the evolution of the PNS average density by using Eq. (3). In the
same figure, we also show the empirical relation for the f -mode frequency derived in Ref. [42], which is

ff (kHz) = 0.9733− 2.7171x+ 13.7809x2, (4)

with the thick-dashed line. We remark that this relation is obtained for the case of the failed supernova with general relativistic
simulation, i.e., the PNS considered in Ref. [42] would eventually collapse to a black hole. By comparing this empirical relation
to the gravitational wave frequencies obtained in this study and the fitting formula given by Eq. (3), one can observe a significant
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• GW signals correspond to g1-mode 
in early phase and f-mode after 
avoided crossing.

• PNS oscillation modes systematically 
deviates from GW signals in simulation, 
which is around 100 Hz.

HS, Takiwaki, Togashi 21



Possible Causes 
• Effective GR + Cowling

üGW signals in simulations are higher than PNS oscillations
üWith the metric perturbations, the deviation becomes more significant.

• Numerical simulations
üeffective GR (Newtonian)
ümonopole gravity

• Linear analysis
üGR framework
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with GR simulations
• GR simulations with a monopole approximation
• PNS oscillations with Cowling approximation
→ GW signals in the simulations agree well with the PNS oscillations.
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FIG. 6: The f - and g1-mode frequencies on the evolving protoneutron stars with effective GR are shown as a function of
the normalized stellar average density (left panel) and surface gravity (right panel). The open squares and open diamonds
correspond to the results with the S12 and S20 models, while the double circles denote the results shown in STT21 with the
S20 model. The thick solid lines denote the empirical formulae derived in STT21, while the dotted line in the right panel is
that derived in [23].
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Universal relations
• the PNS oscillations with Cowling approximation,
using the GR simulation with monopole gravity, are still 
on the universal relation derived with the effective GR simulations
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FIG. 5: In the left panel, the f - and g1-mode frequencies for various PNS models are shown as a function of the square root of the normalized
PNS average density. The thick-solid line is the fitting formula for the g1-mode (f -mode) frequency before (after) the avoided crossing between
the f - and g1-modes, which is given by Eq. (3), while thick-dashed line denotes the empirical formula derived in Ref. [46] (Eq. (4)). On the
other hand, in the right panel the same frequencies shown in the left panel are shown as a function of the surface gravity, where the thick-solid
line denotes the fitting formula given by Eq. (5). The thick-dotted line is the universal relation derived in Ref. [25], but it is amended [69].

with the thick-dashed line. We remark that this relation is obtained for the case of the failed supernova with general rela-
tivistic simulation, i.e., the PNS considered in Ref. [46] would eventually collapse to a black hole, focusing on the region
of (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2 >

∼ 0.1. By comparing this empirical relation to the gravitational wave frequencies
obtained in this study and the fitting formula given by Eq. (3), one can observe a significant deviation for the later phase. Un-
fortunately, we can not identify why this deviation comes from, but it may be because the dependence of the gravitational wave
frequencies on the PNS average density in a black hole formation is simply different from that for the case of successful su-
pernova, or it may comes from the treatment of the general relativistic effect in the simulation. On the other hand, it is also
suggested that the gravitational wave frequency is expressed as a function of the PNS surface gravity in Refs. [25, 52]. In a
similar way, we also show the gravitational wave frequencies for various PNS models as a function of the PNS surface gravity
in the right panel of Fig. 5, where the thick-solid line denotes the fitting formula given by

f(kHz) = −0.0752− 0.2600 ln(x̄3) + 0.7446x̄3 − 0.0600x̄2
3, (5)

where x̄3 denotes x̄/0.001 and x̄ is the PNS surface gravity defined by x̄ ≡ MPNS/R2
PNS in the unit of M⊙ km−2. For reference,

we also show the universal relation derived in Ref. [25] with the thick-dotted line, where the standard deviation of the data is
76 Hz. We note that the universal relation in Ref. [25] had a missing factor and the amended relation is plotted in this figure
[69], instead of the original relation. Since we have already shown that the relation between the PNS surface gravity and the
average density weakly depends on the PNS model, as shown in the top panel of Fig. 2, we expected that the gravitational
wave frequencies corresponding to the signals in numerical simulation could be also expressed as a function of the PNS surface
gravity almost independently of the PNS models. However, the gravitational wave frequencies seem to depend a little on the PNS
models, if they are considered as a function of the PNS surface gravity. That is, to characterize the gravitational wave frequency,
the PNS average density may be better than the surface gravity, based on the eigenfrequencies computed using the linearised
theory with the Cowling approximation. Anyway, as shown in Figs. 3 and 9, the resultant eigenfrequencies systematically
deviate from the gravitational wave signals appearing in the numerical simulation, which is the same order of magnitude as the
differences seen between modes when using surface gravity.

Furthermore, we discuss the impact on the observables due to the different treatment of non-uniform matter in EOS. That is,
as mentioned before, TGTF and TGLD are constructed with the same nuclear properties for uniform matter, but the treatment in
non-uniform matter is different from each other. This difference hardly affects the cold neutron star properties [62, 70], while we
find that it strongly affects the evolution of the PNS properties and gravitational wave frequencies in this study. The treatment of
non-uniform matter affects the nuclear composition at the PNS surface, as in Fig. 6, where the left and right panels correspond
to the models with TGTF and TGLD at Tpb = 0.07 sec. In the figure, the mass fractions of the neutron, proton, alpha particle,
and representative single nucleus for the models with TGTF are shown as Xn, Xp, Xα, and XA, while those of the neutron,
proton, deuteron, triton, helion, alpha particle, other light nuclei with Z ≤ 5, and nuclei with Z ≥ 6 for the models with TGLD
are shown as Xn, Xp, Xd, Xt, Xh, Xα, XZ≤5, and XZ≥6, respectively. From this figure, one can observe that for the models
with TGLD not only the neutron, proton, and alpha particle, but also various nuclei, deuteron, triton, and helion can appear even
inside the PNS region, which corresponds to the density region for ρ ≥ 1011 g/cm3.

The difference between the results with TGTF and TGLD may be understood as follows. The nuclear composition changes
the strength of the neutrino cooling. At the PNS surface, the absorption and scattering by nucleon are the dominant opacity

STT21

(see Fig. 8 in [32]). The scatter from the formula is
evaluated in Ref. [30]. On the other hand, the fitting
formula with the average density has not been extensively
compared to oscillation frequencies of protoneutron stars
obtained from other supernova models yet, except for
Ref. [31]. Although the horizontal axis of the bottom panel
of Fig. 7 in Ref. [31] seems to contain some error, their
protoneutron star frequencies deviate from our fitting
formula with the average density, where the simulation
has been done in GR1D using the progenitor model with
9.6M⊙ and zero-initial metallicity. This deviation may
come from the light progenitor mass, the simulation in
one dimension, and/or the long-simulation time, i.e.,
20 seconds postbounce. So, it may be important to verify
our conclusion in this study, using various models
[e.g., [20,22,30,32,84]]. In addition, we showed that the

universal relation discussed here is independent of the
EOSs at least for the EOSs we adopted here, i.e., DD2,
SFHo, Togashi, and LS220. But, to confirm the EOS
independence of our relation, one may additionally have
to check the protoneutron star models with other EOSs.
Finally, we have comments on the mode classification.

We simply identify the oscillation modes by counting the
nodal number of the eigenfunctions in this study, as in our
previous studies, e.g., Fig. 3 in Ref. [25], while one may
also identify the modes by checking the behavior of the
eigenfunctions in phase diagram [26,33]. That is, if one
plots the displacement in the radial direction,W, and in the
angular direction, V, as the radial coordinate, r, increases,
the trajectory rotates counterclockwise for a gravity wave
(or g-modelike oscillations) and clockwise for a sound
wave (or p-modelike oscillations). We note that, since the

FIG. 10. Same as Fig. 7, but we also add the results with GR. The filled squares and diamonds correspond to the results with the S12
and S20 models with GR.

FIG. 11. Phase diagram for the g1- and g2-modes in the top panels, while p1- and p2-modes in the bottom panels for the protoneutron
stars at Tpb ∼ 0.5 sec. The left and right panels correspond to the results with effective GR and GR, respectively.
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PNS oscillations with Cowling approximation
• PNS oscillation frequencies with Cowling is overestimated the GW frequencies, compared to 
the GW signals in the numerical simulation with non-monopole gravity.
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FIG. 2: Comparison between the gravitational wave signals in the numerical simulation (background contour) and the pro-
toneutron star oscillation frequencies derived with the Cowling approximation (open marks) for the models with the 15M!
(left panel) and 20M! progenitor (right panel) and SFHo EOS. The circles, squares, and diamonds correspond to the f -, gi-,
and pi-modes with i = 1 and 2.

the fluid oscillations are considered with the fixed background metric and also without the Cowling approximation,
i.e., including the metric perturbations. By taking into account the metric perturbations, the eigenfrequencies become
complex frequencies, where the real and imaginary parts correspond to the oscillation frequency and damping rate
of the gravitational waves. However, the damping rate of the gravitational waves induced by the fluid oscillations is
generally much smaller than the oscillation frequency, we simply neglect the damping rate (or the imaginary part of
the complex frequency) and just consider the real frequency. Even with such an assumption, the frequencies are well
determined at least on cold neutron stars, as in Ref. [73]. The perturbation equations and boundary conditions are
the same as shown in Ref. [24] with the Cowling approximation and in Ref. [61] without the Cowling approximation.

First, as in the previous study, we consider the protoneutron star oscillations with the Cowling approximation. In
Fig. 2, we compare the gravitational wave signals in the simulation (background contour) to the protoneutron star
oscillations (open marks), where the left and right panels correspond to the results with 15M! and 20M! progenitor
models. From this figure, we find that the frequencies of the protoneurton stars with the Cowling approximation are
systematically larger than the gravitational wave signals in the simulations. Considering that the gravitational wave
signals appearing in the simulations with monopole approximation agree well with the protoneutron star oscillation
frequencies determined with the Cowling approximation [34], the effect of nonmonopole gravitational potential breaks
this agreement.

Nevertheless, we find that the protoneutron star oscillaiton frequencies determined with the Cowling approximation
on the background models constructed with the simulation with nonmonopole potential are well expressed using the
universal relations, derived in [29] as

f(kHz) = −1.410− 0.443 ln(x) + 9.337x− 6.714x2, (2)

where x is the normalized protoneutron star average density defined with the protoneutron star mass, MPNS, and
radius, RPNS, by

x ≡
(

MPNS

1.4M!

)1/2 ( RPNS

10 km

)−3/2

. (3)

In Fig. 3, we show the frequencies expected with this universal relation with the thick solid line and the protoneutron
star frequencies of the f - and g1-modes determined with the Cowling approximation with the open marks with solid
lines, i.e., circles for S15 GR2D and diamonds for S20 GR2D, as a function of the square root of the protoneutron
star average density. For reference, we also show the protoneutron star frequencies determined with the Cowling
approximation, adopting the background models constructed from the simulations with monopole approximation,
with the filled marks with dotted lines, i.e., squares for S12 GRm and diamonds for S20 GRm. As shown in Ref. [34],
the universal relation given by Eq. (2) works well for the protoneutron star oscillation frequencies determined with
the Cowling approximation independently of the treatment of gravity whether the effective GR or relativistic frame-
work in the numerical simulations and also independently of the interpolation in the simulations. In addition to this



Universal relation
• PNS oscillation frequencies are still
on the universal relation
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FIG. 3: The f - and g1-mode frequencies determined via the eigenvalue problem with the Cowling approximation are compared
with the empirical relation (thick solid line) given by Eq. (2), which is originally derived in [29]. The open marks denote
the results obtained in this study with 15M! and 20M! progenitor models, while the frequencies obtained in the previous
studies [34] with 12M! and 20M! progenitor models, adopting the monopole approximation in gravitational potential, are also
shown with the filled marks for reference.

universality, from this study, we find that the protoneutron star oscillation frequencies determined with the Cowling
approximation are well expressed with this relation even on the background models from the simulations with non-
monople potential, although the frequencies given by this universal relation sometimes deviate from the gravitational
wave signals in the simulations, depending on the set up of the simulations.

Next, to try to recover the discrepancy between the gravitational wave signals in the simulations with nonmonopole
potential and the protoneutron star oscillation frequencies, we examine the protoneutron star oscillation frequencies
without the Cowling approximation, i.e., including the metric perturbations, adopting the zero-damping approxima-
tion. In Fig. 5, we show the results without the Cowling approximation with the filled marks with the solid lines,
where the background contour denotes the gravitational wave signals appearing in the simulations, which are the
same as the background contour shown in Fig. 2. From this figure, it is obvious that the gravitational wave signals in
the simulations with nonmonopole potential agree well with the protoneutron star oscillation frequencies determined
without the Cowling approximation. Furthermore, we find that the f - and pi- modes without the Cowling approx-
imation significantly deviate from the results with the Cowling approximation, while the deviation of the gi-modes
seems to be relatively small. Considering that the deviation exists even in the gi-modes with the effective GR [61],
whether or not the deviation in the gi-modes exists may also depend on the treatment of the gravity. Anyway, since
the protoneutron star oscillation frequencies without the Cowling approximation deviate from those with the Cowling
approximation, we have to check the universality as a function of the protoneutron star average density.

In Fig. 5, we plot the f - and g1-mode frequencies determined with the metric perturbations as a function of the
protoneutron star average density, where the circles and diamonds denote the results with S15 GR2D and S20 GR2D.
The thick dotted line is the frequencies calculated with the universal relation obtained with the Cowling approximation
given by Eq. (2), while the thick solid line is the fitting using the data of the frequencies with metric perturbation
given as

f(kHz) = 0.0082 + 4.5908x− 2.6821x2, (4)

where x is given by Eq. (3). The frequencies of the protoneutron stars with metric perturbations significantly
deviate from the universal relation derived with the Cowling approximation, while we find that the f - and g1-mode
frequencies corresponding to the gravitational wave signals in the simulation can be well fitted with the new fitting
formula given by Eq. (4). In this study, we confirm that the gravitational wave signals in the relativistic simulations
with the nonmonopole gravitational potential agree with the f - (and g1-) mode frequencies determined with metric
perturbations, and the corresponding frequencies of the protoneutron star oscillations can be well fitted as a function
of the protoneutron star average density independently of the progenitor mass, even if the explosion time is completely
different. However, to verify the universality of the relation given by Eq. (4), we have to check it with additional
supernova parameters, such as different progenitor mass and EOS for dense matter, which will be done somewhere in
the future.



PNS oscillations with metric perturbations
• PNS oscillations frequencies with metric perturbations agree well with the GR simulations 
with non-monopole gravity. 
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FIG. 4: Same as Fig. 2, but also add the frequencies obtained with the metric perturbations (without the Cowling approxima-
tion) using the filled marks.
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FIG. 5: Same as Fig. 2, but also add the frequencies obtained without the Colwing approximation with the filled marks. The
dotted line denotes the empirical relation given by Eq. (2), while the solid line denotes the empirical relation given by Eq. (4).

IV. CONCLUSION

Core-collapse supernovae are a promising gravitational wave source next to the merger of the compact binary. In
the previous study, we have shown that the gravitational wave signals appearing in the numerical simulations with
monopole approximation in the gravity agree with the f - (and g1-) mode frequencies of protoneutron stars determined
with the Cowling approximation. However, in a realistic situation, the gravitational wave signals should be discussed
with the numerical simulation with nonmonopole gravitational potential. To discuss the supernova gravitational
waves obtained in such a situation, we have newly performed the two-dimensional relativistic numerical simulations
with nonmonopole (two-dimensional) gravitational potential, adopting the 15M! and 20M! progenitor models with
the SFHo EOS for the dense matter. Then, we compare the gravitational wave signals in the simulations with the
frequencies of protoneutron stars determined with and without the Cowling approximation. As a result, we find that
the frequencies of the protoneutron star oscillations with the Cowling approximation overestimate the gravitational
wave frequencies compared to the signals in the simulations, while those frequencies with the Cowling approximation
are still well expressed in the universal relations obtained with the Cowling approximation, which is independent
of the treatment of gravity whether the effective GR or relativistic framework in the simulations, the numerical
interpolation, and whether the monopole or nonmonopole gravitational potential. On the other hand, we find that
the gravitational wave signals in the simulations with nonmonompole potential agree well with the frequencies of
the protoneutron stars with the metric perturbations, while the resultant frequencies significantly deviate from the
universal relation obtained with the Cowling approximation. Using the data we obtained in this study, we also derive



Universal relations
• Universal relations should be modified.
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tion) using the filled marks.
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FIG. 5: Same as Fig. 2, but also add the frequencies obtained without the Colwing approximation with the filled marks. The
dotted line denotes the empirical relation given by Eq. (2), while the solid line denotes the empirical relation given by Eq. (4).

IV. CONCLUSION

Core-collapse supernovae are a promising gravitational wave source next to the merger of the compact binary. In
the previous study, we have shown that the gravitational wave signals appearing in the numerical simulations with
monopole approximation in the gravity agree with the f - (and g1-) mode frequencies of protoneutron stars determined
with the Cowling approximation. However, in a realistic situation, the gravitational wave signals should be discussed
with the numerical simulation with nonmonopole gravitational potential. To discuss the supernova gravitational
waves obtained in such a situation, we have newly performed the two-dimensional relativistic numerical simulations
with nonmonopole (two-dimensional) gravitational potential, adopting the 15M! and 20M! progenitor models with
the SFHo EOS for the dense matter. Then, we compare the gravitational wave signals in the simulations with the
frequencies of protoneutron stars determined with and without the Cowling approximation. As a result, we find that
the frequencies of the protoneutron star oscillations with the Cowling approximation overestimate the gravitational
wave frequencies compared to the signals in the simulations, while those frequencies with the Cowling approximation
are still well expressed in the universal relations obtained with the Cowling approximation, which is independent
of the treatment of gravity whether the effective GR or relativistic framework in the simulations, the numerical
interpolation, and whether the monopole or nonmonopole gravitational potential. On the other hand, we find that
the gravitational wave signals in the simulations with nonmonompole potential agree well with the frequencies of
the protoneutron stars with the metric perturbations, while the resultant frequencies significantly deviate from the
universal relation obtained with the Cowling approximation. Using the data we obtained in this study, we also derive
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FIG. 3: The f - and g1-mode frequencies determined via the eigenvalue problem with the Cowling approximation are compared
with the empirical relation (thick solid line) given by Eq. (2), which is originally derived in [29]. The open marks denote
the results obtained in this study with 15M! and 20M! progenitor models, while the frequencies obtained in the previous
studies [34] with 12M! and 20M! progenitor models, adopting the monopole approximation in gravitational potential, are also
shown with the filled marks for reference.

universality, from this study, we find that the protoneutron star oscillation frequencies determined with the Cowling
approximation are well expressed with this relation even on the background models from the simulations with non-
monople potential, although the frequencies given by this universal relation sometimes deviate from the gravitational
wave signals in the simulations, depending on the set up of the simulations.

Next, to try to recover the discrepancy between the gravitational wave signals in the simulations with nonmonopole
potential and the protoneutron star oscillation frequencies, we examine the protoneutron star oscillation frequencies
without the Cowling approximation, i.e., including the metric perturbations, adopting the zero-damping approxima-
tion. In Fig. 5, we show the results without the Cowling approximation with the filled marks with the solid lines,
where the background contour denotes the gravitational wave signals appearing in the simulations, which are the
same as the background contour shown in Fig. 2. From this figure, it is obvious that the gravitational wave signals in
the simulations with nonmonopole potential agree well with the protoneutron star oscillation frequencies determined
without the Cowling approximation. Furthermore, we find that the f - and pi- modes without the Cowling approx-
imation significantly deviate from the results with the Cowling approximation, while the deviation of the gi-modes
seems to be relatively small. Considering that the deviation exists even in the gi-modes with the effective GR [61],
whether or not the deviation in the gi-modes exists may also depend on the treatment of the gravity. Anyway, since
the protoneutron star oscillation frequencies without the Cowling approximation deviate from those with the Cowling
approximation, we have to check the universality as a function of the protoneutron star average density.

In Fig. 5, we plot the f - and g1-mode frequencies determined with the metric perturbations as a function of the
protoneutron star average density, where the circles and diamonds denote the results with S15 GR2D and S20 GR2D.
The thick dotted line is the frequencies calculated with the universal relation obtained with the Cowling approximation
given by Eq. (2), while the thick solid line is the fitting using the data of the frequencies with metric perturbation
given as

f(kHz) = 0.0082 + 4.5908x− 2.6821x2, (4)

where x is given by Eq. (3). The frequencies of the protoneutron stars with metric perturbations significantly
deviate from the universal relation derived with the Cowling approximation, while we find that the f - and g1-mode
frequencies corresponding to the gravitational wave signals in the simulation can be well fitted with the new fitting
formula given by Eq. (4). In this study, we confirm that the gravitational wave signals in the relativistic simulations
with the nonmonopole gravitational potential agree with the f - (and g1-) mode frequencies determined with metric
perturbations, and the corresponding frequencies of the protoneutron star oscillations can be well fitted as a function
of the protoneutron star average density independently of the progenitor mass, even if the explosion time is completely
different. However, to verify the universality of the relation given by Eq. (4), we have to check it with additional
supernova parameters, such as different progenitor mass and EOS for dense matter, which will be done somewhere in
the future.
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FIG. 2: Comparison between the gravitational wave signals in the numerical simulation (background contour) and the pro-
toneutron star oscillation frequencies derived with the Cowling approximation (open marks) for the models with the 15M!
(left panel) and 20M! progenitor (right panel) and SFHo EOS. The circles, squares, and diamonds correspond to the f -, gi-,
and pi-modes with i = 1 and 2.

the fluid oscillations are considered with the fixed background metric and also without the Cowling approximation,
i.e., including the metric perturbations. By taking into account the metric perturbations, the eigenfrequencies become
complex frequencies, where the real and imaginary parts correspond to the oscillation frequency and damping rate
of the gravitational waves. However, the damping rate of the gravitational waves induced by the fluid oscillations is
generally much smaller than the oscillation frequency, we simply neglect the damping rate (or the imaginary part of
the complex frequency) and just consider the real frequency. Even with such an assumption, the frequencies are well
determined at least on cold neutron stars, as in Ref. [73]. The perturbation equations and boundary conditions are
the same as shown in Ref. [24] with the Cowling approximation and in Ref. [61] without the Cowling approximation.

First, as in the previous study, we consider the protoneutron star oscillations with the Cowling approximation. In
Fig. 2, we compare the gravitational wave signals in the simulation (background contour) to the protoneutron star
oscillations (open marks), where the left and right panels correspond to the results with 15M! and 20M! progenitor
models. From this figure, we find that the frequencies of the protoneurton stars with the Cowling approximation are
systematically larger than the gravitational wave signals in the simulations. Considering that the gravitational wave
signals appearing in the simulations with monopole approximation agree well with the protoneutron star oscillation
frequencies determined with the Cowling approximation [34], the effect of nonmonopole gravitational potential breaks
this agreement.

Nevertheless, we find that the protoneutron star oscillaiton frequencies determined with the Cowling approximation
on the background models constructed with the simulation with nonmonopole potential are well expressed using the
universal relations, derived in [29] as

f(kHz) = −1.410− 0.443 ln(x) + 9.337x− 6.714x2, (2)

where x is the normalized protoneutron star average density defined with the protoneutron star mass, MPNS, and
radius, RPNS, by

x ≡
(

MPNS

1.4M!

)1/2 ( RPNS

10 km

)−3/2

. (3)

In Fig. 3, we show the frequencies expected with this universal relation with the thick solid line and the protoneutron
star frequencies of the f - and g1-modes determined with the Cowling approximation with the open marks with solid
lines, i.e., circles for S15 GR2D and diamonds for S20 GR2D, as a function of the square root of the protoneutron
star average density. For reference, we also show the protoneutron star frequencies determined with the Cowling
approximation, adopting the background models constructed from the simulations with monopole approximation,
with the filled marks with dotted lines, i.e., squares for S12 GRm and diamonds for S20 GRm. As shown in Ref. [34],
the universal relation given by Eq. (2) works well for the protoneutron star oscillation frequencies determined with
the Cowling approximation independently of the treatment of gravity whether the effective GR or relativistic frame-
work in the numerical simulations and also independently of the interpolation in the simulations. In addition to this

with Cowling (GR with monopole gravity)

with metric perturbations 
(GR with non-monopole gravity)



Estimation of the GW frequencies
• We derive two different universal relations

üwith monopole gravity (GR)
üwith non-monopole gravity (GR)

• Using the GW frequencies calculated with monopole gravity,
one can estimate the GW freq. with non-monopole gravity.
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which corresponds to x = 0.07 → 0.35. The dotted line denotes the
fitting formula given by Eq. (4). In the bottom panel, the relative de-
viation from this fitting, defined by Eq. (5), is shown.

nals appearing in the numerical simulations with monopole
approximation in the gravity agree with the f - (and g1-) mode
frequencies of proto-neutron stars determined with the Cowl-
ing approximation [SMT24]. However, in a realistic situa-
tion, the gravitational wave signals should be discussed with a
numerical simulation with a nonmonopole gravitational po-
tential. To discuss the supernova gravitational waves ob-

FIG. 8: Summary of our argument. The oscillation frequency of
proto-neutron star (PNS) with metric perturbations in GR2D agrees
with gravitational wave (GW) frequency (see Fig. 4). The PNS
frequency with Cowling approximation overestimates the GW fre-
quency (see Figs. 2 and 5).

tained in such a situation, we have newly performed the
two-dimensional relativistic numerical simulations with non-
monopole (two-dimensional) gravitational potential, adopting
the 15M→ and 20M→ progenitor models with the SFHo EOS
for the dense matter.

Then, we compare the gravitational wave signals in the
simulations with the frequencies of proto-neutron stars deter-
mined with and without the Cowling approximation. As a
result, we find that the frequencies of the proto-neutron star
oscillations with the Cowling approximation overestimate the
gravitational wave frequencies compared to the signals in the
simulations, while those frequencies with the Cowling ap-
proximation are still well expressed in the universal relations
obtained with the Cowling approximation, which is indepen-
dent of the treatment of gravity whether the effective GR or
relativistic framework in the simulations, the numerical inter-
polation, and whether the monopole or nonmonopole gravi-
tational potential. On the other hand, we find that the grav-
itational wave signals in the simulations with nonmonopole
potential agree well with the frequencies of the proto-neutron
stars with the metric perturbations, while the resultant fre-
quencies significantly deviate from the universal relation ob-
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FIG. 4: Same as Fig. 2, but also add the frequencies obtained with the metric perturbations (without the Cowling approximation) using the
filled marks.
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FIG. 5: Same as Fig. 3, but also add the frequencies obtained without
the Cowling approximation with the filled marks. The dotted line
denotes the empirical relation given by Eq. (1), while the solid line
denotes the empirical relation given by Eq. (3).

and f2D, which can be fitted as a function of fCow given by

ffit
2D =1.7800 + 0.9676 ln(fCow)→ 1.8052fCow

+ 1.1441f2
Cow → 0.2236f3

Cow, (4)

as shown in the dotted line. The relative deviation defined as

! =
|ffit

2D → f2D|
f2D

(5)

is also shown in the bottom panel of Fig. 7, i.e., one can esti-
mate f2D less than ↑ 1% accuracy.

At the end, we graphically summarize our methodology
and key findings in Fig. 8. Specifically, we examine five
distinct approaches for estimating the gravitational wave fre-
quency from the two classes of simulations: those employ-
ing a monopole gravitational potential (denoted GRm) and

those incorporating a two-dimensional (non-monopole) gravi-
tational treatment (denoted GR2D). In each case, gravitational
wave spectra are extracted using the quadrupole formula. In-
dependently, we perform asteroseismological analyses on the
proto-neutron star by solving for its eigenfrequencies, utiliz-
ing the radial profiles from the simulations. These oscillation
frequencies are determined either under the Cowling approx-
imation or by including full metric perturbations. The most
significant finding is that, in GR2D models, the gravitational
wave frequencies obtained via the quadrupole formula are
in excellent agreement with the proto-neutron star oscillation
frequencies derived with full metric perturbations (see Fig. 4).
In contrast, the Cowling approximation systematically overes-
timates the gravitational wave frequencies in GR2D models,
as shown in Figs. 2 and 5. In GRm models, the gravitational
wave frequencies via the quadrupole formula and the proto-
neutron star oscillaiton frequencies with the Cowling approxi-
mation are roughly consistent (see Fig. 8 in SMT24). Interest-
ingly, the universal relation with the Cowling approximation,
using the GRm results, is still held even for the protonetron
star frequencies with the Cowling approximation, using the
GR2D results (see Fig. 3). Caveat that the Cowling approx-
imation in GR2D cannot capture the true gravitational wave
frequency obtained by the quadrupole formula. The agree-
ment of the empirical relation under the Cowling approxima-
tion suggests that the radial profiles of GRm and GR2D mod-
els are similar when the proto-neutron star’s mass and radius
are fixed. To obtain frequencies that reflect full metric pertur-
bations, we recommend using Eq. (3), with the proto-neutron
star’s mass and radius directly extracted from the simulation
data.

IV. CONCLUSION

Core-collapse supernovae are a promising gravitational
wave source next to the compact binary mergers. In the pre-
vious study, we have shown that the gravitational wave sig-



Conclusion

• With the Cowling approximation

• GR non-monopole gravity 

• one can estimate the f_GW in GR with non-monopole gravity from f_GW in GR with monopole 
gravity
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simulations Cowling approximation With metric perturbations
Effective GR (monopole gravity) f_GW > f_PNS f_GW > f_PNS

GR (monopole gravity) f_GW ~ f_PNS
GR (non-monopole gravity) f_GW < f_PNS f_GW ~ f_PNS
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FIG. 2: Comparison between the gravitational wave signals in the numerical simulation (background contour) and the pro-
toneutron star oscillation frequencies derived with the Cowling approximation (open marks) for the models with the 15M!
(left panel) and 20M! progenitor (right panel) and SFHo EOS. The circles, squares, and diamonds correspond to the f -, gi-,
and pi-modes with i = 1 and 2.

the fluid oscillations are considered with the fixed background metric and also without the Cowling approximation,
i.e., including the metric perturbations. By taking into account the metric perturbations, the eigenfrequencies become
complex frequencies, where the real and imaginary parts correspond to the oscillation frequency and damping rate
of the gravitational waves. However, the damping rate of the gravitational waves induced by the fluid oscillations is
generally much smaller than the oscillation frequency, we simply neglect the damping rate (or the imaginary part of
the complex frequency) and just consider the real frequency. Even with such an assumption, the frequencies are well
determined at least on cold neutron stars, as in Ref. [73]. The perturbation equations and boundary conditions are
the same as shown in Ref. [24] with the Cowling approximation and in Ref. [61] without the Cowling approximation.

First, as in the previous study, we consider the protoneutron star oscillations with the Cowling approximation. In
Fig. 2, we compare the gravitational wave signals in the simulation (background contour) to the protoneutron star
oscillations (open marks), where the left and right panels correspond to the results with 15M! and 20M! progenitor
models. From this figure, we find that the frequencies of the protoneurton stars with the Cowling approximation are
systematically larger than the gravitational wave signals in the simulations. Considering that the gravitational wave
signals appearing in the simulations with monopole approximation agree well with the protoneutron star oscillation
frequencies determined with the Cowling approximation [34], the effect of nonmonopole gravitational potential breaks
this agreement.

Nevertheless, we find that the protoneutron star oscillaiton frequencies determined with the Cowling approximation
on the background models constructed with the simulation with nonmonopole potential are well expressed using the
universal relations, derived in [29] as

f(kHz) = −1.410− 0.443 ln(x) + 9.337x− 6.714x2, (2)

where x is the normalized protoneutron star average density defined with the protoneutron star mass, MPNS, and
radius, RPNS, by

x ≡
(

MPNS

1.4M!

)1/2 ( RPNS

10 km

)−3/2

. (3)

In Fig. 3, we show the frequencies expected with this universal relation with the thick solid line and the protoneutron
star frequencies of the f - and g1-modes determined with the Cowling approximation with the open marks with solid
lines, i.e., circles for S15 GR2D and diamonds for S20 GR2D, as a function of the square root of the protoneutron
star average density. For reference, we also show the protoneutron star frequencies determined with the Cowling
approximation, adopting the background models constructed from the simulations with monopole approximation,
with the filled marks with dotted lines, i.e., squares for S12 GRm and diamonds for S20 GRm. As shown in Ref. [34],
the universal relation given by Eq. (2) works well for the protoneutron star oscillation frequencies determined with
the Cowling approximation independently of the treatment of gravity whether the effective GR or relativistic frame-
work in the numerical simulations and also independently of the interpolation in the simulations. In addition to this
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FIG. 3: The f - and g1-mode frequencies determined via the eigenvalue problem with the Cowling approximation are compared
with the empirical relation (thick solid line) given by Eq. (2), which is originally derived in [29]. The open marks denote
the results obtained in this study with 15M! and 20M! progenitor models, while the frequencies obtained in the previous
studies [34] with 12M! and 20M! progenitor models, adopting the monopole approximation in gravitational potential, are also
shown with the filled marks for reference.

universality, from this study, we find that the protoneutron star oscillation frequencies determined with the Cowling
approximation are well expressed with this relation even on the background models from the simulations with non-
monople potential, although the frequencies given by this universal relation sometimes deviate from the gravitational
wave signals in the simulations, depending on the set up of the simulations.

Next, to try to recover the discrepancy between the gravitational wave signals in the simulations with nonmonopole
potential and the protoneutron star oscillation frequencies, we examine the protoneutron star oscillation frequencies
without the Cowling approximation, i.e., including the metric perturbations, adopting the zero-damping approxima-
tion. In Fig. 5, we show the results without the Cowling approximation with the filled marks with the solid lines,
where the background contour denotes the gravitational wave signals appearing in the simulations, which are the
same as the background contour shown in Fig. 2. From this figure, it is obvious that the gravitational wave signals in
the simulations with nonmonopole potential agree well with the protoneutron star oscillation frequencies determined
without the Cowling approximation. Furthermore, we find that the f - and pi- modes without the Cowling approx-
imation significantly deviate from the results with the Cowling approximation, while the deviation of the gi-modes
seems to be relatively small. Considering that the deviation exists even in the gi-modes with the effective GR [61],
whether or not the deviation in the gi-modes exists may also depend on the treatment of the gravity. Anyway, since
the protoneutron star oscillation frequencies without the Cowling approximation deviate from those with the Cowling
approximation, we have to check the universality as a function of the protoneutron star average density.

In Fig. 5, we plot the f - and g1-mode frequencies determined with the metric perturbations as a function of the
protoneutron star average density, where the circles and diamonds denote the results with S15 GR2D and S20 GR2D.
The thick dotted line is the frequencies calculated with the universal relation obtained with the Cowling approximation
given by Eq. (2), while the thick solid line is the fitting using the data of the frequencies with metric perturbation
given as

f(kHz) = 0.0082 + 4.5908x− 2.6821x2, (4)

where x is given by Eq. (3). The frequencies of the protoneutron stars with metric perturbations significantly
deviate from the universal relation derived with the Cowling approximation, while we find that the f - and g1-mode
frequencies corresponding to the gravitational wave signals in the simulation can be well fitted with the new fitting
formula given by Eq. (4). In this study, we confirm that the gravitational wave signals in the relativistic simulations
with the nonmonopole gravitational potential agree with the f - (and g1-) mode frequencies determined with metric
perturbations, and the corresponding frequencies of the protoneutron star oscillations can be well fitted as a function
of the protoneutron star average density independently of the progenitor mass, even if the explosion time is completely
different. However, to verify the universality of the relation given by Eq. (4), we have to check it with additional
supernova parameters, such as different progenitor mass and EOS for dense matter, which will be done somewhere in
the future.

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1.0

1.5

2.0

Tpb (sec)

f (
kH

z)

S15 GR2D
f

g1

g2

p1p2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Tpb (sec)

10–23

10–22

10–21

10–20

f

p1

g1

S20 GR2D p2

g2

FIG. 4: Same as Fig. 2, but also add the frequencies obtained with the metric perturbations (without the Cowling approximation) using the
filled marks.
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FIG. 5: Same as Fig. 3, but also add the frequencies obtained without
the Cowling approximation with the filled marks. The dotted line
denotes the empirical relation given by Eq. (1), while the solid line
denotes the empirical relation given by Eq. (3).

and f2D, which can be fitted as a function of fCow given by

ffit
2D =1.7800 + 0.9676 ln(fCow)→ 1.8052fCow

+ 1.1441f2
Cow → 0.2236f3

Cow, (4)

as shown in the dotted line. The relative deviation defined as

! =
|ffit

2D → f2D|
f2D

(5)

is also shown in the bottom panel of Fig. 7, i.e., one can esti-
mate f2D less than ↑ 1% accuracy.

At the end, we graphically summarize our methodology
and key findings in Fig. 8. Specifically, we examine five
distinct approaches for estimating the gravitational wave fre-
quency from the two classes of simulations: those employ-
ing a monopole gravitational potential (denoted GRm) and

those incorporating a two-dimensional (non-monopole) gravi-
tational treatment (denoted GR2D). In each case, gravitational
wave spectra are extracted using the quadrupole formula. In-
dependently, we perform asteroseismological analyses on the
proto-neutron star by solving for its eigenfrequencies, utiliz-
ing the radial profiles from the simulations. These oscillation
frequencies are determined either under the Cowling approx-
imation or by including full metric perturbations. The most
significant finding is that, in GR2D models, the gravitational
wave frequencies obtained via the quadrupole formula are
in excellent agreement with the proto-neutron star oscillation
frequencies derived with full metric perturbations (see Fig. 4).
In contrast, the Cowling approximation systematically overes-
timates the gravitational wave frequencies in GR2D models,
as shown in Figs. 2 and 5. In GRm models, the gravitational
wave frequencies via the quadrupole formula and the proto-
neutron star oscillaiton frequencies with the Cowling approxi-
mation are roughly consistent (see Fig. 8 in SMT24). Interest-
ingly, the universal relation with the Cowling approximation,
using the GRm results, is still held even for the protonetron
star frequencies with the Cowling approximation, using the
GR2D results (see Fig. 3). Caveat that the Cowling approx-
imation in GR2D cannot capture the true gravitational wave
frequency obtained by the quadrupole formula. The agree-
ment of the empirical relation under the Cowling approxima-
tion suggests that the radial profiles of GRm and GR2D mod-
els are similar when the proto-neutron star’s mass and radius
are fixed. To obtain frequencies that reflect full metric pertur-
bations, we recommend using Eq. (3), with the proto-neutron
star’s mass and radius directly extracted from the simulation
data.

IV. CONCLUSION

Core-collapse supernovae are a promising gravitational
wave source next to the compact binary mergers. In the pre-
vious study, we have shown that the gravitational wave sig-

f_GW : GW frequencies in the simulations
f_PNS : PNS frequencies


