Supernova gravitational waves and protoneutron star asteroseismology

Hajime Sotani (Kochi Univ.) Bernhard Mueller (Monash Univ.), Tomoya Takiwaki (NAOJ), and Hajime Togashi (Kyoto Univ.)

Kochi Universitv

Dawn of GW astronomy

- GWs from compact binary mergers have been detected.
 ✓ GWs become a new tool for extracting astronomical information.
- The next candidate must be a supernova explosion.

Next candidate of GW sources

• core-collapse supernovae

✓ compared to the binary merger, the system is almost spherically symmetric

> weak gravitational waves

> we may be able to detect only the event happened in our galaxy

 \checkmark many numerical simulations show the existence of GW signals

> SN GWs depend on the SN models, such as progenitor mass, EOS, and gravity

 \succ it may be difficult to extract physics of PNS from the GW signals.

• We adopt the perturbation approach, the so-called asteroseismology, to see the physic behind the GWs by identifying them with the specific frequency of PNS.

Supernova gravitational waves

Non-radial Oscillations in (proto)-NSs

• axial type oscillations

 \checkmark no stellar deformation, no density variation

- ➤ w-modes (spacetime) : oscillations of specetime itself ~ M/R
- \succ t-modes (torsional) : due to the elasticity ~ v_s/R
- \succ r-modes (rotational) ~ m Ω
- ➢ Alfven modes

polar type oscillations

- \checkmark with density variation & stellar deformation
- ✓ important for considering the GWs emission
 - ✓ f-mode (fundamental) ~ (M/R³)^{1/2}
 - > p-modes (pressure) : sound speed crossing ~ (M/R³)^{1/2}
 - g-modes (gravity) : thermal/composition gradients ~ BV frequency

SN2025gw@University of Warsaw

- ➤ w-modes (spacetime) : oscillations of specetime itself ~ M/R
- > i/s-modes (interface/shear) : due to the elasticity
- ➢ inertial modes (effect of rotation)
- ➢ Alfven modes

we focus on in this talk

physics

Linear analysis

- eigenmodes are identified with linear analysis
- perturbation eqs. are derived from the linearized Einstein equations.
 - \checkmark variables = background + perturbations $f = f_0 + \delta f$
 - \checkmark decompose the perturbed variables

$$\delta f(t,r,\theta,\phi) = \delta f(r)e^{i\omega t}Y_{lm}(\theta,\phi)$$

- (GW) frequencies are determined by solving the eigenvalue problem.
 ✓ appropriate boundary conditions
- if the background is spherically symmetric, the m-dependence is degenerate into m=0 $\checkmark \omega$ are eigenfrequencies of the star for each I, where f = $\omega/2\pi$
 - \checkmark subscript denotes the number of radial nodes in the eigenfunction

Asteroseismology on SN GWs

 PNS structure depends not only on the density and pressure profiles but also on the distribution of electron fraction and entropy (or temperature)

- Using the numerical data for core-collapse SNe, first one has to prepare background models, on which the linear perturbations are considered.
 - ✓ spherically symmetric background models are prepared by averaging in the angular direction
- GW frequencies are determined by solving the eigenvalue problem

Simulation and linear analysis

• Linear analysis

 \checkmark we have done in the relativistic framework on the PNSs

- Cowling approximation, neglecting the metric perturbations
- > with metric perturbations (non-Cowling)
- \succ in general, Cowling approximation overestimates the frequencies at most ~20%
- Simulations
 - ✓ effective GR (Newtonian + effective potential) by T. Takiwaki
 - $\checkmark\,\text{GR}$ with monopole gravity by B. Muellar
 - ✓ GR with non-monopole gravity by B. Muellar
- with several EOSs and progenitor masses

Avoided crossing in GW frequency

(HS, Takiwaki 20b)

 in the early phase, one can observe the phenomena of avoided crossing between the eigenmodes.

Comment on uncertainty in surface density

- in the late phase after core bounce, e.g., ~ 500ms, f-mode frequency becomes almost independent of the choice of surface density, ρ_s (Morozova+18)
- we also confirm this feature, i.e., f- & g₁-modes in later phase are almost independent of ρ_s, where g₁-mode decreases with time (Sotani & Takiwaki 20b).

pulsation energy density

$$E(r) \sim \frac{\omega^2 \varepsilon}{r^4} \left[W^2 + \ell(\ell+1)r^2 V^2 \right]$$
$$f_{\rm BV} = \operatorname{sgn}(\mathcal{N}^2) \sqrt{|\mathcal{N}^2|/2\pi}$$
$$\mathcal{N}^2 = -e^{2\Phi - 2\Lambda} \frac{\Phi'}{\varepsilon + p} \left(\varepsilon' - \frac{p'}{c_s^2} \right)$$

- f- & g₁-modes are not dominant @PNS surface
 → f- & g₁-modes weakly depend on ρ_s
- $g_i\text{-modes}$ related to f_{BV}
- g₁-mode is strongly associated with BV freq. @r=8km, which decreases with time
 → decrease of g₁-mode

Comparison with GW signals in simulation

Dep. of GW signals on PNS models

0.3⁶ Universal ^{0.2} Universal ^{0.2} Universal ^{0.2} Universal ^{0.2} Universal ^{0.2} Universal ^{0.4} Universal ^{0.4}

• The g_1 - and f-mode frequencies can be well expressed as a PNS properties

Possible Causes

• Effective GR + Cowling

✓ GW signals in simulations are higher than PNS oscillations✓ With the metric perturbations, the deviation becomes more significant.

- Numerical simulations
 ✓ effective GR (Newtonian)
 ✓ monopole gravity
- Linear analysis
 ✓ GR framework

with GR simulations

- GR simulations with a monopole approximation
- PNS oscillations with Cowling approximation
 - \rightarrow GW signals in the simulations agree well with the PNS oscillations.

Universal relations

• the PNS oscillations with Cowling approximation, using the GR simulation with monopole gravity, are still on the universal relation derived with the effective GR simulations $(M_{PNS}/1.4M_{\odot})^{1/2}(R_{PNS}/10 \text{ km})^{-3/2}$

...... LS220-2.9M

·◆··· SFHo ··●···· TGLD

--- TGTF

ر 16.0 ل 16.0 ل amended Torres-Forne (2019b

 $2 \cdot 10^{-3}$

 $M_{\rm PNS}/R_{\rm PNS}^2 (M_\odot/{\rm km}^2)$

 1.10^{-3}

 $3 \cdot 10^{-3}$

 $4 \cdot 10^{-3}$

STT21

PNS oscillations with Cowling approximation

• PNS oscillation frequencies with Cowling is overestimated the GW frequencies, compared to the GW signals in the numerical simulation with non-monopole gravity.

Universal relation

 PNS oscillation frequencies are still on the universal relation

PNS oscillations with metric perturbations

• PNS oscillations frequencies with metric perturbations agree well with the GR simulations with non-monopole gravity.

Universal relations (sec)

• Universal relations should be modified.

with Cowling (GR with monopole gravity)

$(M_{\text{PNS}}/1.4M_{\odot})^{1/2}(R_{\text{PNS}}/10 \text{ km})^{3/2}$ Estimation of the GW frequencies

- We derive two different universal relations
 ✓ with monopole gravity (GR)
 ✓ with non-monopole gravity (GR)
- Using the GW frequencies calculated with monopole gravity, one can estimate the GW freq. with non-monopole gravity.

$$f_{2D}^{\text{fit}} = 1.7800 + 0.9676 \ln(f_{\text{Cow}}) - 1.8052 f_{\text{Cow}} + 1.1441 f_{\text{Cow}}^2 - 0.2236 f_{\text{Cow}}^3,$$

Conclu	th metric perturbations	
$\begin{array}{c} 0.3 \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.1$.20 0.25 0.30 0.35 .20 0.25 0.30 0.35 .20 0.25 0.30 0.35 .20 0.25 0.30 0.35 .20 0.35 0.35	With metric perturbations
GR (monopole gravity)	$f_GW \sim f_PNS$	t_GW > t_PNS
GR (non-monopole gravity)	f_GW < f_PNS	f_GW ~ f_PNS

• With the Cowling approximation

f_GW : GW frequencies in the simulations f_PNS : PNS frequencies

 $f(kHz) = -1.410 - 0.443\ln(x) + 9.337x - 6.714x^2$

• GR non-monopole gravity

 $f(kHz) = 0.0082 + 4.5908x - 2.6821x^2$

one can estimate the f_GW in GR with non-monopole gravity from f_GW in GR with monopole gravity

 $f_{2D}^{\text{fit}} = 1.7800 + 0.9676 \ln(f_{\text{Cow}}) - 1.8052 f_{\text{Cow}}$

 $+1.1441 f_{\rm Cow}^2 - 0.2236 f_{\rm Cow}^3,$