Roles of self-induced neutrino flavor conversions in core-collapse supernova theory Hiroki Nagakura (National Astronomical Observatory of Japan)

Multi-physics elements in CCSN theory

Scatterings

Many-body corrections

NSE at high p and T Nucleosynthesis

A kinetic framework is essential for modeling of neutrino radiation field

Figure from Janka 2017

Boltzmann neutrino transport

See also a review by

$$p^{\mu} \frac{\partial f}{\partial x^{\mu}} + \frac{dp^{i}}{d\tau} \frac{\partial f}{\partial p^{i}} = \left(\frac{\delta f}{\delta \tau}\right)_{col},$$
(Time evolution + Advection Term) (Collision Term)
6-dimensional phase space

$$dN = f(t, \boldsymbol{p}, \boldsymbol{x})d^{3}pd^{3}\boldsymbol{x}$$
Conservative form of GR Boltzmann eq.

$$\frac{1}{\sqrt{-g}} \frac{\partial(\sqrt{-g\nu^{-1}p^{a}f})}{\partial x^{a}}\Big|_{q_{(i)}} + \frac{1}{\nu^{2}} \frac{\partial}{\partial \nu}(-\nu fp^{a}p_{\beta}\nabla_{a}e^{\beta}_{(0)})$$

$$+ \frac{1}{\sin\bar{\partial}}\frac{\partial}{\partial\bar{\partial}}\left(\nu^{-2}\sin\bar{\partial}f\sum_{j=1}^{3}p^{a}p_{\beta}\nabla_{a}e^{\beta}_{(j)}\frac{\partial \ell'(j)}{\partial\bar{\partial}}\right)$$

$$+ \frac{1}{\sin^{2}\bar{\partial}}\frac{\partial}{\partial\bar{\varphi}}\left(\nu^{-2}f\sum_{j=2}^{3}p^{a}p_{\beta}\nabla_{a}e^{\beta}_{(j)}\frac{\partial \ell'(j)}{\partial\bar{\varphi}}\right) = S_{rad},$$
Subtat Nagakura, Seliguchi and Yamada (2014)

р

(Momentum Space)

Neutrino oscillation induced by self-interactions

Pantalone 1992

1. Refractions by self-interactions induce neutrino flavor conversions, which is analogy to matter effects (e.g., MSW resonance).

2. The oscillation timescale is much shorter than the global scale of CCSN/BNSM.

3. Collective neutrino oscillation induced by neutrino-self interactions commonly occurs in CCSNe environments.

Rich flavor-conversion phenomena driven by neutrino self-interactions

- Slow-mode (Duan et al. 2010)

- Energy-dependent flavor conversion occurs.
- The frequency of the flavor conversion is proportional to $\sqrt{\omega\mu}$
- Fast-mode (FFC) (Sawyer 2005)
 - Collective neutrino oscillation in the limit of $\omega \rightarrow 0$.
 - The frequency of the flavor conversion is proportional to $~\mu$
 - Anisotropy of neutrino angular distributions drives the fast flavor-conversion.

- Collisional flavor instability (CFI) (Johns 2021)

• Asymmetries of matter interactions between neutrinos and anti-neutrinos drive flavor conversion. $\Gamma = \overline{\Gamma} = \mu S$ $\Gamma = \overline{\Gamma}$

Im
$$\Omega \cong \pm \frac{\Gamma - \Gamma}{2} \frac{\mu S}{\sqrt{(\mu D)^2 + 4\omega \mu S}} - \frac{\Gamma + \Gamma}{2}$$

Γ: Matter-interaction rate

- Matter-neutrino resonance (Malkus et al. 2012)
 - The resonance potentially occur in BNSM/Collapsar environment (but not in CCSN).
 - Essentially the same mechanism as MSW resonance.

$$|\lambda+\mu|\sim |\omega|$$

See reviews by Duan 2010, Tambora + 2020, Capozzi + 2022, Richers + 2022, Volpe 2023, Fisher + 2024, John + 2024, Yamada 2024

Vacuum:
$$\omega = \frac{\Delta m^2}{2E_{\nu}},$$
Matter: $\lambda = \sqrt{2}G_F n_e,$ Self-int: $\mu = \sqrt{2}G_F n_{\nu},$

FFC and CFI in CCSNe

Quantum Kinetics neutrino transport:

(-)

Vlasenko et al. 2014, Volpe 2015, Blaschke et al. 2016, Richers et al. 2019

Global simulations: I. QKE simulation with attenuation method

- Technical Issue:

$$\ell_{n_{\nu}} \equiv c T_{n_{\nu}}$$
$$= 0.235 \text{ cm} \left(\frac{L_{\nu}}{4 \times 10^{52} \text{erg/s}}\right)^{-1}$$
$$\left(\frac{E_{\text{ave}}}{12 \text{MeV}}\right) \left(\frac{R}{50 \text{km}}\right)^2 \left(\frac{\kappa}{1/3}\right)$$

Oscillation wavelength is an order of <u>sub-centimeter</u>. Too short !!!! How can we make FFC simulations tractable???

Nagakura and Zaizen 2022, 2023

- Attenuation prescription:

$$p^{\mu}\frac{\partial f}{\partial x^{\mu}} + \frac{dp^{i}}{d\tau}\frac{\partial f}{\partial p^{i}} = -p^{\mu}u_{\mu}S + i\,\boldsymbol{\xi}\,p^{\mu}n_{\mu}[H,f],$$

Attenuation parameter ($0 \leq \xi \leq 1$)

- Attenuating Hamiltonian makes global QKE simulations tractable.
- V Realistic features can be extracted by a convergence study of $\xi (\rightarrow 1)$.

Radial-angular distributions for survival probability of electron-type neutrinos

Take-home messages: Potential impacts of flavor conversion on CCSNe

Shock dynamics

✓ Neutrino signal

✓ PNS cooling

Explosive nucleosynthesis

V <u>Neutron star kick</u>

V Shock dynamics

- Direct quantum kinetic neutrino transport simulation in CCSNe

Nagakura 2023 See also Xiong et al. 2024

Numerical setup:

Fluid-profiles are taken from a CCSN simulation.

General relativistic effects are taken into account.

A wide spatial region is covered.

Three-flavor framework

Neutrino-cooling is enhanced by FFCs Neutrino-heating is suppressed by FFCs

Impacts on the explodability of CCSN

Take-home messages: Potential impacts of flavor conversion on CCSNe

Shock dynamics

- Flavor conversions can both facilitate and hinder shock revival.
- ✓ Neutrino signal

✓ PNS cooling

Explosive nucleosynthesis

V <u>Neutron star kick</u>

V <u>Neutrino signal</u>

Nagakura and Zaizen 2023

Take-home messages: Potential impacts of flavor conversion on CCSNe

Shock dynamics

- Flavor conversions can both facilitate and hinder shock revival.
- ✓ Neutrino signal
 - Flavor equipartition can be achieved.
- ✓ PNS cooling

Explosive nucleosynthesis

Neutron star kick

- PNS cooling => Impact on Gravitational Wave emission

Take-home messages: Potential impacts of flavor conversion on CCSNe

Shock dynamics

- Flavor conversions can both facilitate and hinder shock revival.
- ✓ Neutrino signal
 - Flavor equipartition can be achieved.
- ✓ PNS cooling
 - Likely accelerate PNS cooling, which give impacts on GW emission.
- Explosive nucleosynthesis

Neutron star kick

Explosive nucleosynthesis

Fujimoto and Nagakura 2023

Take-home messages: Potential impacts of flavor conversion on CCSNe

Shock dynamics

- Flavor conversions can both facilitate and hinder shock revival.
- ✓ Neutrino signal
 - Flavor equipartition can be achieved.
- ✓ PNS cooling
 - Likely accelerate PNS cooling, which give impacts on GW emission.
- Explosive nucleosynthesis
 - Heavier elements than Co (Z>27) can be changed.
- V <u>Neutron star kick</u>

V Neutron star kick Nagakura and Sumiyoshi 2024

Take-home messages: Potential impacts of flavor conversion on CCSNe

Shock dynamics

- Flavor conversions can both facilitate and hinder shock revival.
- Neutrino signal
 - Flavor equipartition can be achieved.
- ✓ PNS cooling
 - Likely accelerate PNS cooling, which give impacts on GW emission.
- Explosive nucleosynthesis
 - Heavier elements than Co (Z>27) can be changed.

V <u>Neutron star kick</u>

Asymmetric neutrino flavor conversions can accelerate NS kick.

Constraining neutrino oscillation model in CCSNe by joint analysis of GW and neutrino signal _{Nagaku}

Nagakura and Vartanyan 2023

Constraining neutrino oscillation model in CCSNe by joint analysis of GW and neutrino signal Nagakura and Vartanyan 2023

Summary

- V Neutrino self-interactions induce strong flavor conversions
- **Flavor instabilities occur in CCSN core ubiquitously**
- Neutrino transport modeling needs to be replaced from classical to quantum kinetics
- V Neutrino flavor conversion can change shock dynamics, neutrino signal, PNS cooling, nucleosynthesis, and NS kick

Future prospects

- Improving subgrid models of neutrino flavor conversions
- V Developing approximate code for quantum kinetic neutrino transport
- Providing theoretical predictions of observable signals (neutrino, GW signal, etc.)

Backup

Neutrino oscillations

- There are many experimental evidences that neutrinos can go through flavor conversion.
- V Neutrinos have at least three different masses.
- Flavor eigenstates are different from mass eigenstates.

Feruglio et al. 2003

$egin{aligned} & u_i angle &= \sum_lpha U^*_{lpha i} \left u_lpha ight angle,\ & ext{Mass state} & u_lpha angle &= \sum_i U_{lpha i} \left u_i angle,\ & ext{Flavor state} &i \end{aligned}$	U: Pontecorvo– Sakata matrix (-Maki–Nal PMNS mat	kagaw trix)	'a—
$U = egin{bmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \end{bmatrix}$				
$= egin{bmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{bmatrix} iggin{matrix} - & - & - & - & - & - & - & - & - & - $	$egin{array}{ccc} c_{13} & 0 & s_{13}e^{-i\delta} \ 0 & 1 & 0 \ s_{13}e^{i\delta} & 0 & c_{13} \end{array} iggin{bmatrix} c_{12} \ -s_{12} \ 0 \ \end{array}$	$egin{array}{ccc} s_{12} & 0 \ c_{12} & 0 \ 0 & 1 \end{bmatrix} egin{bmatrix} e^{ilpha_1/2} \ 0 \ 0 \ 0 \end{bmatrix}$	$e^{ilpha_2/2} onumber \ 0$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
$= egin{bmatrix} c_{12}c_{13} \ -s_{12}c_{23} - c_{12}s_{23}s_{13} \ s_{12}s_{23} - c_{12}c_{23}s_{13} \ s_{12}s_{23} - c_{12}c_{23}s_{13} \ s_{13}s_{13} \ s_{12}s_{23} - c_{12}c_{23}s_{13} \ s_{13}s_{13} \ s_{13}s_{13}s_{13} \ s_{13}s_{13}s_{13} \ s_{13}s_{13}s_{13} \ s_{13}s_{13}s_{13} \ s_{13}s_{13}s_{13}s_{13} \ s_{13}s$	$s_{12}c_{13} = s_{12}c_{23} = s_{12}s_{23}s_{13}e^{i\delta} = c_{12}s_{23} = s_{12}c_{23}s_{13}e^{i\delta}$	$egin{array}{c} s_{13}e^{-i\delta}\ s_{23}c_{13}\ c_{23}c_{13}\end{array} egin{bmatrix} e^{ilpha_1/}\ 0\ 0 \end{bmatrix}$	$egin{array}{ccc} & 0 & & \ & e^{ilpha_2/2} & \ & 0 & & \ & 0 & \end{array}$	$\begin{bmatrix} 0\\0\\1\end{bmatrix}$

V <u>Neutrino signal</u>

Akaho, Nagakura, Yamada 2025: arXiv:2506.07017 (Based on BGK subgrid model)

Neutrino oscillations

- There are many experimental evidences that neutrinos can go through flavor conversion.
- V Neutrinos have at least three different masses.
- Flavor eigenstates are different from mass eigenstates.

Feruglio et al. 2003

$egin{aligned} & u_i angle &= \sum_lpha U^*_{lpha i} \left u_lpha ight angle,\ & ext{Mass state} & u_lpha angle &= \sum_i U_{lpha i} \left u_i angle,\ & ext{Flavor state} &i \end{aligned}$	U: Pontecorvo– Sakata matrix (-Maki–Nal PMNS mat	kagaw trix)	'a—
$U = egin{bmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \end{bmatrix}$				
$= egin{bmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{bmatrix} iggin{matrix} - & - & - & - & - & - & - & - & - & - $	$egin{array}{ccc} c_{13} & 0 & s_{13}e^{-i\delta} \ 0 & 1 & 0 \ s_{13}e^{i\delta} & 0 & c_{13} \end{array} iggin{bmatrix} c_{12} \ -s_{12} \ 0 \ \end{array}$	$egin{array}{ccc} s_{12} & 0 \ c_{12} & 0 \ 0 & 1 \end{bmatrix} egin{bmatrix} e^{ilpha_1/2} \ 0 \ 0 \ 0 \end{bmatrix}$	$e^{ilpha_2/2} onumber \ 0$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
$= egin{bmatrix} c_{12}c_{13} \ -s_{12}c_{23} - c_{12}s_{23}s_{13} \ s_{12}s_{23} - c_{12}c_{23}s_{13} \ s_{12}s_{23} - c_{12}c_{23}s_{13} \ s_{13}s_{13} \ s_{12}s_{23} - c_{12}c_{23}s_{13} \ s_{13}s_{13} \ s_{13}s_{13}s_{13} \ s_{13}s_{13}s_{13} \ s_{13}s_{13}s_{13} \ s_{13}s_{13}s_{13} \ s_{13}s_{13}s_{13}s_{13} \ s_{13}s$	$s_{12}c_{13} = s_{12}c_{23} = s_{12}s_{23}s_{13}e^{i\delta} = c_{12}s_{23} = s_{12}c_{23}s_{13}e^{i\delta}$	$egin{array}{c} s_{13}e^{-i\delta}\ s_{23}c_{13}\ c_{23}c_{13}\end{array} egin{bmatrix} e^{ilpha_1/}\ 0\ 0 \end{bmatrix}$	$egin{array}{ccc} & 0 & & \ & e^{ilpha_2/2} & \ & 0 & & \ & 0 & \end{array}$	$\begin{bmatrix} 0\\0\\1\end{bmatrix}$

Neutrino oscillation with a plane-wave picture

reasonable approximation.

- Global simulations:

General-relativistic quantum-kinetic neutrino transport (GRQKNT)

Nagakura 2022

$$p^{\mu}\frac{\partial \overset{(-)}{f}}{\partial x^{\mu}} + \frac{dp^{i}}{d\tau}\frac{\partial \overset{(-)}{f}}{\partial p^{i}} = -p^{\mu}u_{\mu}\overset{(-)}{S}_{\rm col} + ip^{\mu}n_{\mu}[\overset{(-)}{H}, \overset{(-)}{f}],$$

- V Fully general relativistic (3+1 formalism) neutrino transport
- V Multi-Dimension (6-dimensional phase space)
- V Neutrino matter interactions (emission, absorption, and scatterings)
- V Neutrino Hamiltonian potential of vacuum, matter, and self-interaction
- ✓ 3 flavors + their anti-neutrinos
- ✓ Solving the equation with Sn method (explicit evolution: WENO-5th order)
- ↓ Hybrid OpenMP/MPI parallelization

Multi-dimensional core-collapse supernova simulations (Neutrino-radiation-hydrodynamic simulations) 2014~

Full Boltzmann neutrino transport

Nagakura et al. ApJL 2019

Two-moment neutrino transport

Today's topic:

"Quantum kinetics of neutrinos in dense astrophysical environments"

Neutrino transport with neutrino oscillation (flavor conversion)

Core collapse supernova (CCSN) Binary neutron star merger (BNSM)

- FFC in CCSN Nagakura PRL 2023

Average energy

Energy flux

Instability criterion of FFC (ELN angular crossing)

Neutrinos' flight direction (momentum space)

Neutrino-heating mechanism for CCSN explosions

Gravitational Waves from CCSNe

Radice et al. 2019

Rich progenitor dependence

Most of GW energy is > 100Hz

Detectability: under debate

Any correlations to others ? Yes, neutrinos!

GWs from long-term 3D CCSN simulations

Strong <u>correlation</u> between GWs and Proto-neutron star mass

Vartanyan et al. 2023

Nagakura and Vartanyan 2023

Proto-neutron star mass can be estimated from GWs

Neutrino signals

Some new features emerge in 3D explosion models

1. Explosion models have low neutrino
 luminosity than those with non-explosions
 (due to weak mass accretion)

2. The average energy of electro-type neutrinos and their anti-partners are lower in 3D than 1D.

3. Neutrino luminosity of heavy-leptonic neutrinos are higher in 3D than 1D.(due to PNS convection)

Useful formula:

$$\frac{L_{\nu 3D}}{L_{\nu 1D}} \sim \frac{\mathrm{T}_{\nu 3D}^{4} \mathrm{R}_{\nu 3D}^{2}}{\mathrm{T}_{\nu 1D}^{4} \mathrm{R}_{\nu 1D}^{2}}$$

Correlation between TONE (E $_{\nu}$) and N $_{\text{cum}}$ in neutrino detector

Nagakura et al. 2021

$$[SK - IBDp - NORMAL]$$

$$N_{Cum} = (220 E_{52} + 5 E_{52}^2 - 0.074 E_{52}^3 + 0.0003 E_{52}^4)$$

$$\left(\frac{V}{32.5 \text{ ktons}}\right) \left(\frac{d}{10 \text{ kpc}}\right)^{-2},$$

 E_v can be estimated from N_{cum}

Neutrino detection counts depend on total neutrino emitted energy and neutrino oscillation.

The relation is universal (less progenitor dependent)

E_v has a strong correlation to M_{PNS}

Nagakura and Vartanyan 2022

