

PROVIDING AUSTRALIAN RESEARCHERS WITH WORLD-CLASS HIGH-END COMPUTING SERVICES

Part II: Gravitational Waves from Core-Collapse Supernovae

Australian Government

Australian Research Council

Bernhard Müller Monash University

First IGWN Symposium on Core Collapse Supernova Gravitational Wave Theory and Detection

Gravitational Waves from Core-Collapse Supernovae

Bounce Signal

Characteristic strain & frequency for different progenitors, EoS & rotation rates (Dimmelmeier et al. 2008)

Bounce signal is essentially *f*-mode (Fuller et al. '14): very regular shape, amenable to template-based searches: $f \sim 1/2\pi \sqrt{(G\rho_c)}$

Detectability limit: of order ~40kpc

for Advanced LIGO for initial core rotation periods of ~seconds (see, e.g., Logue et al. 2012, Hayama et al. 2015, Gossan et al. 2016)

Bounce Signal

Characteristic strain & frequency for different progenitors, EoS & rotation rates (Dimmelmeier et al. 2008)

Abdikamlov et al. (2014): Inferred β =T/W in progenitor from prospective signal

At ~10kpc, the initial period can be constrained to within ~20%

"Standard" Post-Bounce Gravitational Wave Emission

Waveform & spectrogram features firmly established by many groups (Oak Ridge, Princeton, Fukuoka/NAOJ/AEI/Kyoto, Monash/Garching, Stockholm/MSU, ...)

Tools: Linear Perturbation Theory

- Time-frequency analysis started to reveal distinct noise rather than broad-band noise ~10 years ago
- Rigorous approach to mode structure: linear perturbation theory (Torres-Forne et al. 2018, Morozova et al. 2018...):

$$\partial_r \eta_r + \left[\frac{2}{r} + \frac{1}{\Gamma_1} \frac{\partial_r P}{P} + 6 \frac{\partial_r \psi}{\psi}\right] \eta_r + \frac{\psi^4}{\alpha^2 c_s^2} \left(\sigma^2 - \mathcal{L}^2\right) \eta_\perp = 0,$$
(31) Torres-
Forne et al. (2018)

$$\partial_r \eta_\perp - \left(1 - \frac{\mathcal{N}^2}{\sigma^2}\right) \eta_r + \left[\partial_r \ln q - G\left(1 + \frac{1}{c_s^2}\right)\right] \eta_\perp = 0,$$
(32)

 Asymptotic theory (Mueller et al. 2013) sufficient for big picture

Linear Perturbation Theory: Limitations

- Correct outer boundary condition is not trivial
- Perturbations outside PNS are **not** adiabatic
- Rapid rotation or strong magnetic fields would require modifications
- Linear theory does not address mode excitation
- Minor: Different mode classifications exist → avoid misunderstandings

Rodriguez et al. (2023): Comparison of mode classification schemes

Phases: Early Post-Bounce Phase

Figure 7. The dimensionless integrand ψ in the quadrupole formula (1) for the matter signal (left half of figure) and the time derivative $a = \partial v_r / \partial t$ (right half) of the radial velocity field 22 ms after bounce for model G15.

Mueller et al. (2013)

- Prompt convection quickly mixes unstable region and subsides
- Kicks off "ringing" in the shock ("early SASI")
- GW emission due to acoustic weaves between PNS and shock
- Caution: Dynamics of prompt convection depends on transport
 8
 8
 8
 10
 11
 12
 12
 12
 13
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14<

Dominant High-Frequency Signal

- Turbulent motions inside and outside the PNS can excite the oscillations of the stable surface region
- Frequency roughly set by local Brunt-Väisälä frequency
- Dominant mode usually classified as f-mode or low-order g-mode
- GR treatment & monopole vs. multi-D gravity matter for frequency

Relation to PNS Parameters

- Other weak modes typically present ("p-mode forest" above dominant mode)
- Various simple scaling laws to PNS mass and radius proposed for mode frequencies (Torres-Forne et al. '19, Sotani et al. '21)
- Potential for inference of PNS parameters even if temperature is not known from neutrinos
- How "universal" are these and can we account for confounders (rotation, etc.)?

Sources of GW Emission

- Drivers of mode excitation difficult to establish: Convection in gain region, PNS convection, SASI?
- Various means to establish causality:
 - Temporal correlations of forcing phenomenon and oscillation mode
 - Regional analysis
 - Theoretical considerations on energetics and coupling efficiency (e.g. frequency overlap)
 - Attribution of drivers is important: What does the observed GW power constrain?

Regional Analysis

- Integral in quadrupole formula can be split into radial shells (Andresen et al. '17, Mezzacappa et al. '23, Murphy et al. '25)
- Split must be done carefully (Zha et al. '25) and interpretation remains difficult) interference terms
- Regional analysis tends to suggest at least some role for PNS convection for highfrequency emission (Andresen et al. '17, Mezzacappa et al. '23, Murphy et al. '25)

Regional Analysis

- Integral in quadrupole formula can be split into radial shells (Andresen et al. '17, Mezzacappa et al. '23, Murphy et al. '25)
- Split must be done carefully (Zha et al. '25) and interpretation remains difficult) interference terms
- Regional analysis tends to suggest at least some role for PNS convection for highfrequency emission (Andresen et al. '17, Mezzacappa et al. '23, Murphy et al. '25)

Refinement of Regional Analysis

For sufficiently well-resolved simulation and with short output intervals, a space-time-frequency analysis is possible to directly identify modes present in simulations (Jakobus et al 14 '23) and connect to linear theory

Energetics of Mode Excitation

• G-mode excitation by convection roughly determined by convective luminosity, Mach number and time scale τ :

 $E_g \sim \alpha \operatorname{Ma} L_{\operatorname{conv}} \tau \sim \alpha \operatorname{Ma} (E_{\operatorname{conv}} / \tau) \tau \sim \alpha \operatorname{Ma} E_{\operatorname{conv}}$

• Total GW energy due to excitation by convection in gain region expected to scale as (Powell & Mueller '19):

$$E_{\rm GW} \sim \frac{4\pi G (f\tau {\rm Ma} L_{\rm conv} T)^2}{c^5} = \frac{4\pi G f^2 \tau^2 {\rm Ma}^2 E_{\rm turb}^2}{c^5}$$
$$= 4.2 \times 10^{43} \, {\rm erg} \left(\frac{f}{1000 \, {\rm Hz}}\right)^2 \left(\frac{\tau}{20 \, {\rm ms}}\right)^2 \left(\frac{{\rm Ma}^2}{0.3}\right) \left(\frac{E_{\rm turb}}{10^{50} \, {\rm erg}}\right)^2$$

- Radice et al. (2019) diagnose such a correlation with the turbulent energy flux in the gain region in their models
- Issue: Similar GW energy predicted for excitation by PNS convection (higher turbulent energy, lower Mach number)

Energetics of Mode Excitation

Temporal Correlations

- Emission tends to peak around onset of explosion when the turbulent kinetic energy in the gain region is high
- Emission proceeds when convection in the gain region becomes weak after explosion
- Suggests definite role for PNS convection after explosion & contribution from both gain region and PNS convection earlier
- Attribution remains non-trivial

GW as Probes of High-Density Nuclear Physics

Jakobus et al. (2023)

- Influence of nuclear EoS on dominant band is indirect (neutron star radius)
- GW signal may provide more direct clues to high-density physics
- Strong high-frequency signal may occur after first-order phase transition to quark matter and second collapse and bounce (Zha et al. 2020)
- Core g-mode probes thermodynamic derivatives at the core mantle interface (mass coordinate ~0.6M_☉):

$$\tilde{\omega}_{\rm BV}^{\rm approx, fix} \approx 0.55 \times \sqrt{\frac{1}{\pi} G M_{\rm mode} \alpha_{\rm approx}^5 \frac{1}{c_{\rm s}^2} \left(\frac{\partial P}{\partial s}\right)_{\rho, Y_{\rm e}}} \times 11.93 \ k_{\rm B}/{\rm M}_{\odot}, \qquad$$
Jakobus et al. (2025)

Phenomenology: Progenitor Dependence

- More massive progenitors (bigger cores) tend to emit more GW energy in 3D (Radice et al. '19)
- Similar trend as in 2D (Mueller et al. '13), but lower amplitudes

Radice et al. (2019)

19

Impact of Strong Rotation & Magnetic Fields

- Qualitatively similar structure for magnetorotational explosions
- But GW amplitudes may be boosted
- Frequency bands can deviate significantly from "universal relations"
- Modification of buoyancy frequency by angular momentum gradients:

$$N^2 = N_{\rm BV}^2 + \frac{1}{\varpi^3} \frac{\partial j^2}{\partial \varpi} \sin \theta$$

Rotation After Bounce: More Spectacular Signals

- Possibility of triaxial low |T|/W-instability for **fast rotation** around bounce (Scheidegger et al. '10)
- Strong & sustained signal from low triaxial instability also seen after bounce (Kuroda et al. 2016, Shibagaki et al. 2020)
- Progenitor rotation remains big caveat

Low-Frequency Emission: SASI

- SASI can contribute signal in the 100-300Hz region
- Signal often short & intermittent
- Some cases with stable SASI signal reported, e.g. in non-exploding models (Kuroda et al. '16) and very massive progenitors
- Frequency structure needs to be better understood, may involve doubling over base frequency

 $T_{\rm SASI} = 19 \,{\rm ms} \left(\frac{r_{\rm sh}}{100 \,{\rm km}}\right)^{3/2} \ln \left(\frac{r_{\rm sh}}{r_{\rm PNS}}\right)$ (Mueller & Janka '14)

Very Low-frequency Emission

- Signal components <10 Hz may become relevant for some future detectors
- Two phenomena contribute to very slowly varying amplitudes:
 - Anisotropic neutrino emission (Epstein 1978)

$$h_{ij}^{\text{TT}}(\mathbf{X},t) = \frac{4G}{c^4 R} \int_{-\infty}^{t-R/c} dt' \int_{4\pi} d\Omega' \frac{(n_i n_j)^{\text{TT}}}{1-\cos\theta} \cdot \frac{dL_{\nu}(\mathbf{\Omega'},t')}{d\Omega'}$$

Asymmetric shock propagation (likely subdominant)

second-long simulations) ← Extrapolation/cut-off problem

Late-time GW Emission from Proto-Neutron Star Convection

Raynaud, Cerdá-Durán & Guilet ('22)

Raynaud et al. ('20): anelastic long-time MHD simulations of PNS convection

- Strongly enhanced GW emission for rapid rotation (Rossby number < 1)
- Low-frequency excess as "smoking gun" of strong dynamo
- Interpreted as magnetically modified inertial mode

Lots of Potential – One Caveat

- The predicted gravitational wave signal is a very sensitive probe of the simulated dynamics of a supernova.
- It can be contaminated by numerical instabilities and analysis artefacts.
- (New) practitioners need to be aware of these risks.

Numerical Issues with GW Extraction

• GWs extracted using quadrupole formula (either stress formula or time-integrated quadrupole formula):

$$h_{ij}D = \frac{2G}{c^4} \operatorname{STF} \int \rho v_i v_j - x_i \partial_j \Phi \, \mathrm{d} \, V \quad \text{or} \quad h_{ij}D = \frac{2G}{c^4} \frac{\partial}{\partial t} \operatorname{STF} \int x_i \rho v_j \, \mathrm{d} \, V$$

- This involves a projection onto I=2 tensor spherical harmonics.
- For a radial flow field, the amplitude should be zero because STF $\int x_i x_j d\Omega = 0$ (no overlap between I=0 and I=2)
- However, for a discrete grid, one generally has

$$\text{STF}\sum_{\text{sphere}} x_i x_j \Delta \, \Omega \neq 0$$

- Thus the I=0 component of the flow can pollute the GW signal.
- This can be a serious problem at low resolution (> 3°).
- On spherical polar grids, one can project out the I=0 component/ before applying the quadrupole formula.

Outlook: Inference of Physical Parameters

Thank you for your attention!