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Bounce Signal

Bounce signal is essentially f-mode 
(Fuller et al. ‘14): very regular 
shape, amenable to template-based 
searches: f~1/2π √(Gρc)

Characteristic strain & frequency for 
different progenitors, EoS & rotation 
rates (Dimmelmeier et al. 2008)

Detectability limit: of order ~40kpc 
for Advanced LIGO for initial core 

rotation periods of ~seconds (see, e.g., 
Logue et al. 2012, Hayama et al. 2015, 

Gossan et al. 2016)
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Characteristic strain & frequency for 
different progenitors, EoS & rotation 
rates (Dimmelmeier et al. 2008)

10kpc
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Abdikamlov et al. (2014): Inferred
=T/W in progenitor from 
prospective signal

At ~10kpc, the initial period can be 
constrained to within ~20%

Bounce Signal
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“Standard” Post-Bounce Gravitational 
Wave Emission

Waveform & spectrogram features firmly established by many groups (Oak Ridge, Princeton, 
Fukuoka/NAOJ/AEI/Kyoto, Monash/Garching, Stockholm/MSU, ...)
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Tools: Linear Perturbation Theory

Torres-
Forne et 
al. (2018)

● Time-frequency analysis started to reveal distinct noise rather 
than broad-band noise ~10 years ago 

● Rigorous approach to mode structure: linear perturbation 
theory  (Torres-Forne et al. 2018, Morozova et al. 2018...):

● Asymptotic theory (Mueller et al. 2013) sufficient for big 
picture
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Linear Perturbation Theory: 
Limitations

● Correct outer boundary 
condition is not trivial

● Perturbations outside PNS 
are not adiabatic

● Rapid rotation or strong 
magnetic fields would 
require modifications

● Linear theory does not 
address mode excitation

● Minor: Different mode 
classifications exist → 
avoid misunderstandings

Rodriguez et al. (2023): Comparison 
of mode classification schemes
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● Kicks off “ringing” in the shock (“early SASI”)

● GW emission due to acoustic weaves between PNS and shock

● Caution: Dynamics of prompt convection depends on transport 
treatment (breakout burst), seed asymmetries, numerical dissipation...

Phases: Early Post-Bounce Phase
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Dominant High-Frequency Signal
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● Turbulent motions inside and outside the PNS can excite the oscillations 
of the stable surface region

● Frequency roughly set by local Brunt-Väisälä frequency
● Dominant mode usually classified as f-mode or low-order g-mode
● GR treatment & monopole vs. multi-D gravity matter for frequency
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Relation to PNS 
Parameters

● Other weak modes typically 
present (“p-mode forest” above 
dominant mode)

● Various simple scaling laws to 
PNS mass and radius 
proposed for mode frequencies 
(Torres-Forne et al. ‘19, Sotani 
et al. ‘21)

● Potential for inference of PNS 
parameters even if 
temperature is not known from 
neutrinos

● How “universal” are these – 
and can we account for 
confounders (rotation, etc.)? Torres-Forrne et al. ‘19



11

Sources of GW Emission

● Drivers of mode excitation difficult to establish: 
Convection in gain region, PNS convection, 
SASI?

● Various means to establish causality:
● Temporal correlations of forcing phenomenon and 

oscillation mode
● Regional analysis
● Theoretical considerations on energetics and coupling 

efficiency (e.g. frequency overlap)
● Attribution of drivers is important: What does the 

observed  GW power constrain?
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Regional Analysis
● Integral in quadrupole formula 

can be split into radial shells 
(Andresen et al. ‘17, Mezzacappa 
et al. ‘23, Murphy et al. ‘25)

● Split must be done carefully (Zha 
et al. ‘25) and interpretation 
remains difficult) interference 
terms

● Regional analysis tends to 
suggest at least some role for 
PNS convection for high-
frequency emission (Andresen et 
al. ‘17, Mezzacappa et al. ‘23, 
Murphy et al. ‘25)

Mezzacappa et al. ‘23
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For sufficiently well-resolved simulation and with short output 
intervals, a space-time-frequency analysis is possible to 
directly identify modes present in simulations (Jakobus et al 
‘23) and connect to linear theory

Refinement of Regional Analysis
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Energetics of Mode Excitation
● G-mode excitation by convection roughly determined by 

convective luminosity, Mach number and time scale τ:

● Total GW energy due to excitation by convection in gain 
region expected to scale as (Powell & Mueller ‘19):

● Radice et al. (2019) diagnose such a correlation with the 
turbulent energy flux in the gain region in their models

● Issue: Similar GW energy predicted for excitation by PNS 
convection (higher turbulent energy, lower Mach number)
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Energetics of Mode Excitation

Radice et al. (2019) 
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Temporal Correlations

● Emission tends to peak around 
onset of explosion when the 
turbulent kinetic energy in the 
gain region is high

● Emission proceeds when 
convection in the gain region 
becomes weak after explosion

● Suggests definite role for PNS 
convection after explosion & 
contribution from both gain 
region and PNS convection 
earlier

● Attribution remains non-trivial



 

● Influence of nuclear EoS on dominant band is indirect (neutron star radius)
● GW signal may provide more direct clues to high-density physics
● Strong high-frequency signal may occur after first-order phase transition to 

quark matter and second collapse and bounce (Zha et al. 2020)
● Core g-mode probes thermodynamic derivatives at the core mantle 

interface (mass coordinate ~0.6M⊙):

Jakobus et al. (2023)
Zha et al. (2020)

GW as Probes of High-Density 
Nuclear Physics
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Radice et 
al. (2019)

Phenomenology: Progenitor Dependence

● More massive 
progenitors (bigger 
cores) tend to emit 
more GW energy in 3D 
(Radice et al. ‘19)

● Similar trend as in 2D 
(Mueller et al. ‘13), but 
lower amplitudes
 



 

Impact of Strong Rotation & Magnetic Fields

● Qualitatively similar structure for 
magnetorotational explosions

● But GW amplitudes may be boosted
● Frequency bands can deviate 

significantly from “universal 
relations”

● Modification of buoyancy frequency 

Mueller et 
al. ‘13

Torres-Forne 
et al. ‘18



  

Rotation After Bounce: More 
Spectacular Signals

● Possibility of triaxial low |T|/W-instability for fast rotation 
around bounce (Scheidegger et al. ‘10)

● Strong & sustained signal from low triaxial instability also 
seen after bounce (Kuroda et al. 2016, Shibagaki et al. 
2020)

● Progenitor rotation remains big caveat

Shibagaki et al. (2020)

Scheidegger et al. 
(2010)



 
(Mueller & 
Janka ‘14)

● Frequency structure needs to be 
better understood, may involve 
doubling over base frequency 



  

Very Low-frequency Emission

● Signal components <10 Hz may become 
relevant for some future detectors

● Two phenomena contribute to very slowly 
varying amplitudes:
● Anisotropic neutrino emission (Epstein 1978)

●

Pre-shock 
density

Compression 
ratio

Monopole and quadrupole 
coefficients of shock radius



  

Powell & Mueller (2024)

Very low-frequency component requires further investigation (using 
second-long simulations) ← Extrapolation/cut-off problem



Late-time GW Emission from Proto-
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Lots of Potential – One Caveat

● The predicted gravitational wave signal is a 
very sensitive probe of the simulated dynamics 
of a supernova.

● It can be contaminated by numerical instabilities 
and analysis artefacts.

● (New) practitioners need to be aware of these 
risks. 
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Numerical Issues with GW Extraction

● GWs extracted using quadrupole formula (either stress formula 
or time-integrated quadrupole formula): 

● This involves a projection onto l=2 tensor spherical harmonics.

● For a radial flow field, the amplitude should be zero because

● However, for a discrete grid, one generally has

● Thus the l=0 component of the flow can pollute the GW signal.

● This can be a serious problem at low resolution (>3°).

● On spherical polar grids, one can project out the l=0 component 
before applying the quadrupole formula.

hijD=
2G

c4 STF∫ vi v j−x i∂ j dV   or  hij D=
2G

c4
∂
∂ t

STF∫ x i v j dV

STF∫ xi x jd=0
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Outlook: Inference of Physical 
Parameters

Time (s)
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Signal Noisy signal Reconstruction

f/g-mode frequency 
at peak emission

Inference of GW waveform, explosion, and 
neutron star parameters with Bilby

Effective “surface 
gravity”

Powell & Mueller (2022)
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Thank you for your attention!
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