Core-Collapse Supernova Waveform Generation Using Machine Learning

Surojit Saha

PhD Candidate ••••

Institute of Astronomy, National Tsing Hua University, Taiwan

Collaborators Li-Ting Ma, Kuo-Chuan Pan & Albert Kong

SN2025gw: First IGWN Symposium on Core Collapse Supernova Gravitational Wave Theory and Detection

Faculty of Physics, University of Warsaw

25th July 2025

Introduction

Excellent Talks Covering Fundamentals of CCSN !!!

Motivation

- CCSN simulations are computationally expensive.
- Looking for an alternate method to quickly generate the waveforms across EOS and other physical parameter.
- Potential application in parameter estimation.
- An approach to combine the current CCSN models for further application.

Workflow

- Prepare a CCSN GW data.
- Choose the required physical parameter space.
- Built the neural network.
- Perform training, test and validation.
- Generate waveforms with the neural network.
- Verify the results with measured values.

Data

Data has been adopted from Richers et al. 2017 https://zenodo.org/records/201145

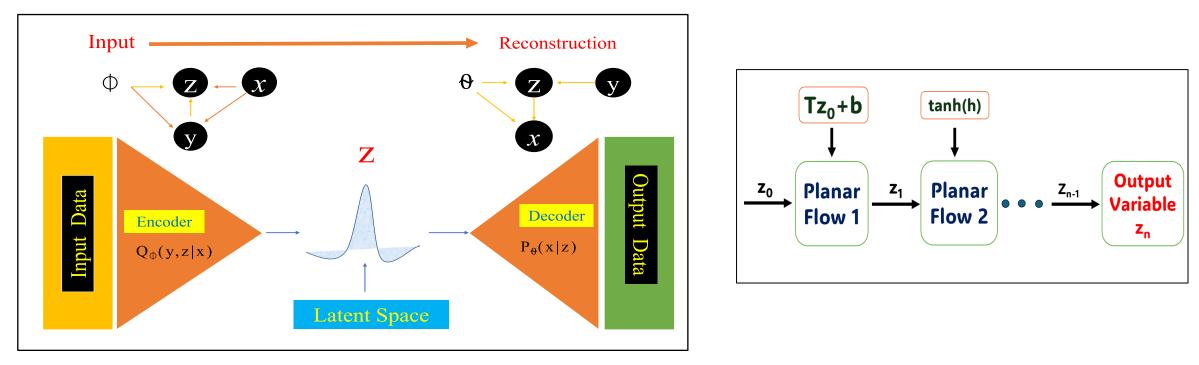
- 2D GR Hydrodynamic Simulation.
- 12-M₀ progenitor model.
- 18 different EOS
- 98 different rotational profile with differential rotation and maximum rotation.

Selected Data

- EOS Considered: HDSS2, SFHo, GShenNL3, BHBLP, HSTMA, LS220, LS180, LS375, HSTMA, HSNL3, GShenFSU1.7, SFHx, SFHo_ecapture_0.1, SFHo_ecapture_1.0, SFHo_ecapture_10
- Differential Rotation A : 300, 467, 634, 1268 and 10000 (km)
- **Maximum Rotation** Ω_0 : 0.5-15.5 rad/s
- 98 combinations of physical parameter sets with A, Ω_0 for each EOS.
- Thus 98 waveforms for each EOS.

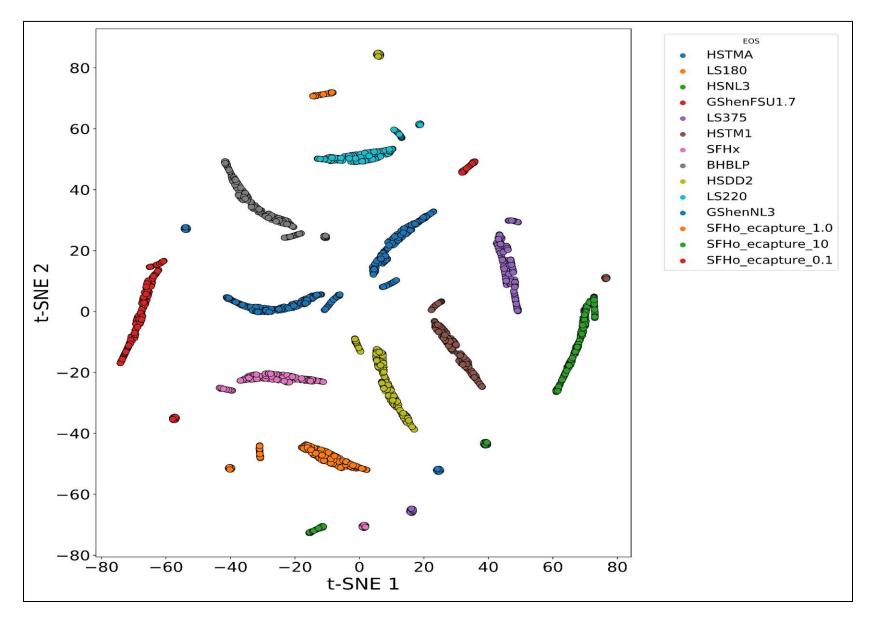
Training Methodology

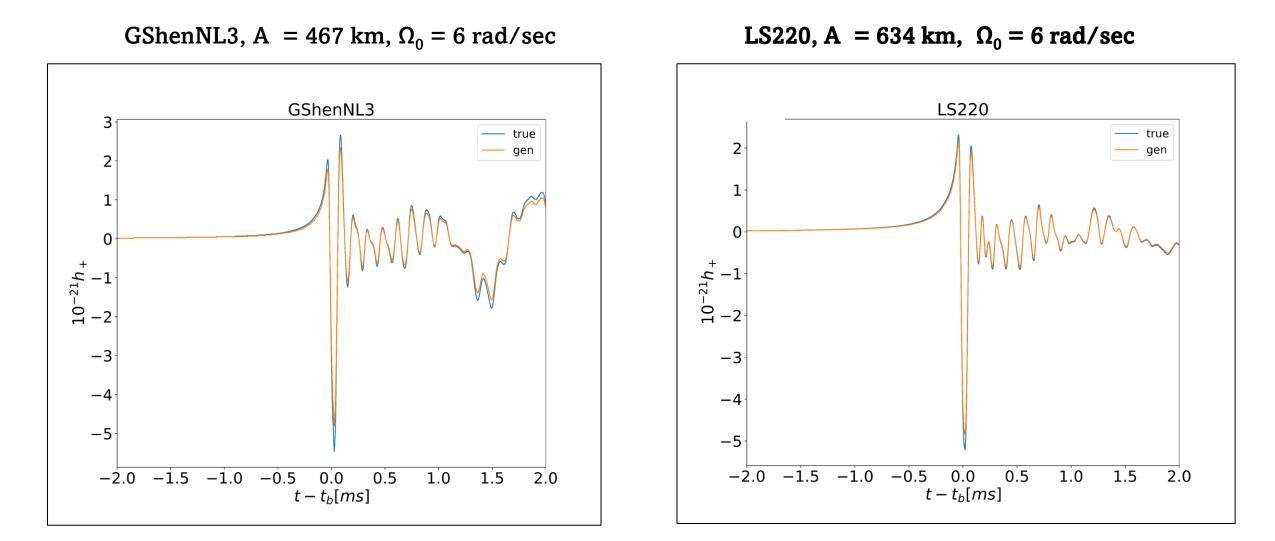
Conditional Variational Autoencoder + Planar Normalizing Flow (Generative Models)



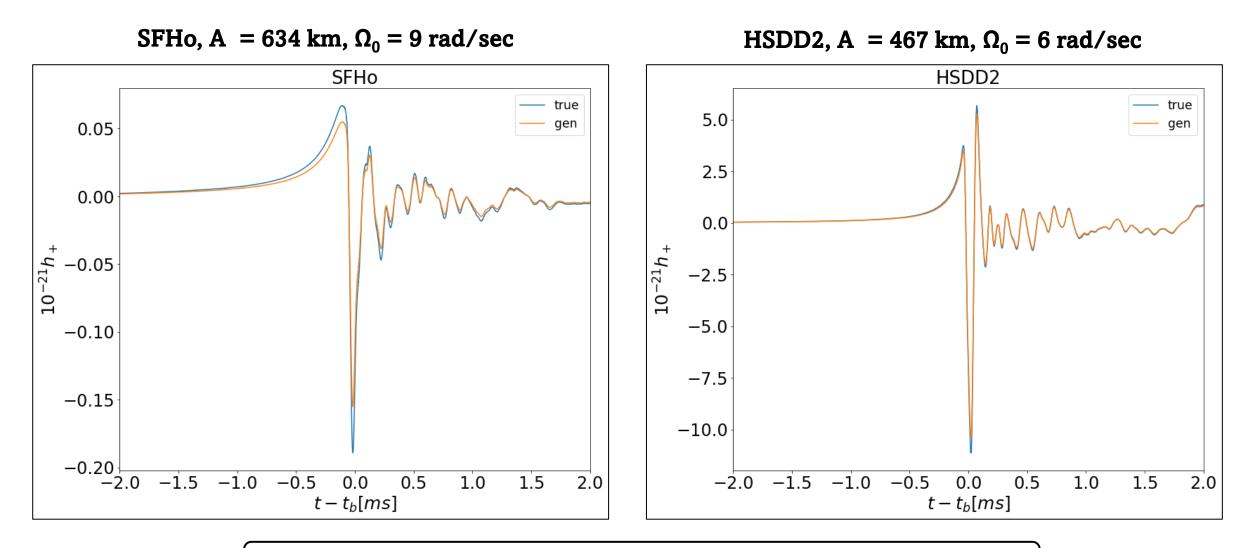
(Saha et al. 2024)

- Train the waveforms being conditioned on EOS, A and Ω_0
- Generate 1000 GW waveforms for selected parameter set.
- Compare the true and generated waveforms visually and with other metrics.





Extent of overlap between the true and generated waveforms



Extent of overlap between the true and generated waveforms

Calculated values of mean squared error and MAPE between the true and generated waveform across EOS

EOS	Range of MSE [1e-41]	Range of MAPE (%)
HSDD2	0.0083~0.0088	1.5~2
GShenNL3	0.0077~0.0080	0.8-1.2
BHBLP	0.007~0.0073	0.9~1.25
SFHo	0.008~0.009	1.32~1.75
HSTMA	0.0065~0.0072	0.7~1.1
LS220	0.0092~0.0097	1.12~1.5
LS180	0.006~0.0065	1.09~1.45

Summary

- Currently, training takes ~2 hrs.
- Generation of waveforms take ~milliseconds.
- MSE and MAPE provide evidence for accurate generation.

Future Works

- Include CCSN waveforms from other models.
- Generate waveforms across other models based on EOS.

Thank You For Your Attention