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Determining the end of prompt
convection:
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Single detector search for Core Collapse Supernova using Machine Learning

Andy Chen?, chia-Jui Chou?, Kuo-Chuan Pan?, Yi Yang?, Shih-Chieh Hsu®, Albert Kong?
1. National Yang Ming Chiao Tung University, Taiwan 2. National Tsing Hua University, Taiwan 3.University of Washington, USA

CCSNet workflow: We built a ML classifier that can search for CCSN
events in scenarios where coherence-based approaches
are not applicable, namely single detector search. We 5
compare the performance between dual and single o :
detector setup, and performance a range of robustness r:.j BN | O Srey
test including longevity, glitch resilience, and waveform 8 | @ rswen
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Probing sensitivity
from the test result
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Our goal was to develop a method to
find the time when strong gravitational
waves are emitted. We developed two
different approaches of finding this

time.
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First one is called dynamic
threshold method which
searches for steep rise in
strains, by calculating the
envelopes of the signal and
searching for a value that
exceeds 30.

This method coincides with
significant energy release and
marks the beginning of high
frequency feature of PNS
oscillations and SASI.
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The second one tracks the time evolution of peak
frequencies in time-frequency domain and searches for the
global minimum of the fitted polynomial.
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But for reconstructed signals we do not see the prompt
convection feature and this method fails. We fit square root
and linear function to the HFF and interpolate to 300Hz.
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Extracting PNS Parameters from the High Frequency Feature

Olivia Korensky', Marek Szczepanczyk? Alejandro Casallas-Lagos®
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In this project, we investigate two questions: e, L - \=% N / . (tusr =0 8)
\ . ¢ mode g5 mode
1.How is our ability to accurately measure the HFF slope
affected by LIGO noise?

» Weinject 5 CCSN simulations into hundreds of samples of LIGO -
noise and extract detectable pixels using CWh. ' -

 We use modified x* linear regression to calculate the HFF slopes el
per sample per model. ey

e Real LIGO Noise N Ehataon Sl B . 2.Can we usethe g-mode contributions to the HFF
; " slope in LIGO noise to test the validity of Universal _ _
. I B8 Relations? -~ = B 3
3 - With data on M - R evolution provided by CCSN
J B . G ¥ : *. modelers, these derived M /M - R/R relations
e Using linear perturbation derivations by Alejandro vie / I?'KR
, . offer a promising way to test Universal
Casalla-Lagos, we assume the locations of the g*, and ) X
e b : Relations and track g-mode evolution.
g, modes to be in the PNS surface and center 8 ol :
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| using the Universal Relations proportionalities.
O HEF Sloge Dermcon eIl . o We plot these relations assumingthe HFF is dominated

U and @ .E-‘ =109 Hz's

by either mode for varieus models (above right)/times
elapsed from HFF beginning (below right).
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Overlapping_ermr bounds and low A/Ac values for 4/5 models for the
HFF slopes with and without LIGO noise imply that LIGO noise does not
_significantly inhibit the accuracy of HFF slope calculation.
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In use already:
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What we want to implement:
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Distributional Methods for Detecting Gravitational

Waves from Core-Collapse Supernovae

Kya Schluterman, Alani Miyoko, Michele

Zanolin
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The Monte Carlo
procedure modifies
the injections to
vary in size and
strength

Extreme emission

Sine-gaussian waveforms over:
Tau = 1-1000ms
Freq = 55-2000Hz
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Rapidly rotating

$15fr -15 Mo Rapidly rotating model

from Andresen_2019.
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Slowly rotating

D15 - 15 Mo ZAMS mass exploding
model from Oak-Ridge D-series run.
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Sample Size: 30

Test Results for RO = 18
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