Core-collapse supernova gravitational-wave physical inference in low-latency

(Feedback from the modeling community is essential, see the requests and questions within the slides)

Marek Szczepańczyk Faculty of Physics, University of Warsaw

SN2025gw, Warsaw, 21-25.07.2025

Outline

- Can LVK be scooped in case of a GW detection?
- Low-latency Physical Inference
- Warsaw Summer Projects for GW CCSN

The next Galactic CCSN is soon...

"Welcome SN 202X! Long-awaited for 2025-2026" Fukuoka Temple, 2019.10.23

2025.07.21-25

Can Modelers scoop LVK? Personal opinion. See also Extra Slides at the end

- Can the LVK be scooped for a GW burst event?
 - Not likely. For a weak burst event
 - **Maybe.** For a strong burst event
 - **Possibly for some results!** For a targeted source, especially core-collapse supernova
- Possibilities: GW energy, GW luminosity, Explosion Mechanism, Speed of sound of dense matter (if neutrino oscillations)

2025.07.21-25

While waiting for a Galactic CCSN

Low-latency Physical Inference

2025.07.21-25

CCSN GW publications

CCSN GW Literature, by Ewald Mueller:

https://wwwmpa.mpa-garching.mpg.de/rel hydro/GWlit catalog.shtml

2025.07.21-25

CCSN PE Warsaw Summer Projects

Parameter Estimation vs Physical Inference

Parameters estimated during the physical inference analysis, given the GW feature present:

- t_{prompt} beginning of the prompt convection
- ξ_{prompt} prompt convection strength
- $p_{\rm EOS}$ probability of more probable EOS (SFHx, LS etc) using HFF
- v speed of sound using SASI frequency
- R_{stall} radius of stalled shock using SASI frequency
- t_{Ledoux} beginning of Ledoux convection
- $E_{\rm GW}$ GW energy
- $P_{\rm GW}$ GW luminosity
- $(\phi_{
 m src}, \theta_{
 m src})$ source orientation

2025.07.21-25

Physical Inference, even more options

Other physical parameters that could be extracted:

- ξ compactness (Pajkos et al 2021, ADS)
- L angular momentum, using bounce signals
- β kinetic to potential energy ratio, using bounce signal
- $M_{\rm PNS}$ and $R_{\rm PNS}$ combination of PNS mass and radius
- ω_c rotation rate using bounce signal
- ι rotation axis orientation using GW polarization
- t_{fail} time of BH formation
- $\xi_{\rm NFC}$ neutrino flavor conversion strength
- ξ_{memory} what physical parameter can we learn from GW memory?

1. Prompt convection (Sophia)

- See Sophia's poster
- No method yet developed
- Thanks to Bernhard for answering our questions
- Requests/Questions to the Modelers:
 - Request: neutrino data to learn about observational initial time.
 - Request: shock radius evolution
 - Request: prompt convection start/end in your simulation
 - Given spherical asymmetry of the progenitor stars, what are the GW amplitudes we really expect?

2. and 3. High-Frequency Feature (HFF) (Alejandro, Olivia)

- See Alejandro's presentation (Monday)
- See Olivia's poster
- A lot of the attention in the literature
- Thanks to Alejandro and Pablo for helping with our questions
- Request/Questions to the Modelers:
 - How does it correlate with neutrinos?
 - When does the High-Frequency Feature starts/end?
 - Could you provide us with the data on how PNS radius and mass evolve?
 - How often HFF appear, every time?

4. SASI (Vicent, Miriam)

- See Vincent's presentation (Friday)
- Requests/Questions to the Modelers:
 - Request: neutrino light curves
 - What are the start/end of SASI in your simulation?
 - What is the frequency (peak/spread) in your simulation?
 - SASI vs convection, how to differentiate?
 - What physical properties (besides time stamps after bounce) can help us distinguish between all of the low-frequency features (< 300 Hz) sources?

2025.07.21-25

5. Ledoux convection star (Paweł)

- See Pawel's poster
- Requests/Questions to the Modelers:
 - Request: convective data mapped with GWs
 - What is the beginning of the Ledoux convection in your simulation?
 - Is this time a start of HFF?
 - How strong is prompt convection to find a minimum of peak frequencies.

2025.07.21-25

Szczepańczyk, CCSN Physical Inference

6. GW Emission Regions (Brajesh)

- See Brajesh's poster
- Thank you do Daniel Murphy for answering our questions
- Requests/Questions to the Modelers:
 - Request: data divided into regions
 - How would you divide GWs in order to distinguish emission regions?
 - How does the metallicity of the PNS models impact various observables?

2025.07.21-25

Szczepańczyk, CCSN Physical Inference

7. GW Energy (Sreeta)8. Source orientation (Pratul)

- See Pratul's poster
- Requests/Questions to the Modelers:
 - Request: PNS rotation axis evolution.
 - What does the maximum GW emission mean?
 - \circ $\;$ How does the PNS axis evolve?

2025.07.21-25

Szczepańczyk, CCSN Physical Inference

9. CCSN GW Sounds (Jan) 10. GW Data Representation (Stasiek)

- What formalism is preferred?
- Quadrupole approximation:

$$\mathbf{h}_{ij}^{TT}(t, \mathbf{x}) = \frac{1}{D} \ddot{Q}_{ij}(t - D/c, \mathbf{x})$$

• Newman-Pearson notation (why is M=1.41, does it change between simulations?)

$$h_{+} + ih_{\times} = \frac{M}{r} \sum_{l=2}^{\infty} \sum_{m=-l}^{l} H_{lm}(t)^{-2} Y_{lm}(\theta, \phi)$$

• We are building tools to go between these two data representations.

- We are building a webpage with the GW sounds from SN simulations.
 - Request: feel free to send us your beautiful pictures and movies of your simulations

2025.07.21-25

Summary

- A global CCSN Physical Inference is challenging
- Having waveforms is not enough
 - Feedback from the Modelers community is essential

Extra Slides

Other Notes

- What is the global effort to probe the parameter space?
- How to systematically explore GW features, is it possible to isolate them?
- How would you probe the physical parameter space?

Challenge, the models may be very different the waveforms, not. Example for SNR=80

2025.07.21-25

Can Modelers scoop LVK?

O4 public information for bursts - notes Marek Szczepańczyk

- O3 lesson learned: S200114f was weak and did not bring much attention.
- O3 public information: duration, peak frequency and hrss.
- 04: a weak burst event might not bring much attention.
- Can the LVK be scooped?
 - Not likely. For a weak burst event
 - **Maybe.** For a strong burst event
 - **Possible for some results!** For a targeted source, especially core-collapse supernova
- Core-collapse supernova:
 - High-profile physical properties can be estimated from a few publicly released information. It's not guaranteed, but very possible. Even if they are conservative, they are novel. Results published later by LVK will be rather corrections.
- **Possible solution** for burst public alerts, a condition:
 - No EM and/or neutrino counterpart: duration, peak frequency, hrss
 - EM and/or neutrino counterpart: none, or just peak frequency?

2025.07.21-25

Core-collapse supernova

- How can the LVK be scooped?
- Examples of what people outside the LVK can assume:
 - GW signals of low-SNR events are typically reconstructed first around the peak frequency.
 - LVK papers provide energy limit estimates as a function of peak frequency.
- EM observations:
 - GWs and EM are not correlated but EM can teach us a lot about a CCSN https://arxiv.org/abs/2104.06462
 - What can be estimated:sky location, source distance, progenitor star, rotation, supernova type etc.
- Neutrino:
 - \circ GWs and neutrino are correlated
 - Neutrino like curves will be available to many observers (not public data)

2025.07.21-25

Core-collapse supernova

- Examples of physical properties that can be estimated quickly from currently released publicly information:
 - **Source energy**, it can be estimates from the hrss. Current constraint is 10^-3 Msun, publicly released hrss can provide consevative estimate that is a few orders of magnitude lower.
 - **Source power** = energy/duration. This quantity provides the dynamics of a CCSN source, important for CCSN modelling.
 - **Explosion mechanism**, it can be roughly estimated. Neutrino-driven explosions are typically weaker.
 - Dominant emission process, peak frequency plays an important role: SASI/convection dominated (low-frequency, below 300 Hz) or protoneutron star oscillation dominated (higher frequency)
 - **Oscillations of the shock or speed of sound** from GW peak frequency and neutrino light curve oscillations.
 - Etc.

Core-collapse supernova

- Table below shows examples of the CCSN models and basic properties of the waveforms
- The public information can be matched with the models, and model-dependent quantities can be further explored.

-								
Waveform	Numerical	GW	Waveform	$M_{ m star}$	Ω_c	f_{peak}	$E_{\rm GW}$	Duration
Family	Method	Features	Identifier	$[{ m M}_{\odot}]$	[rad/s]	[Hz]	$[M_\odot c^2]$	[ms]
Abdikamalov et al. 2014, 2D [76]	LS220, Shen CoCoNuT	bounce prompt-conv.	A1O01.0	12	1.0	819	9.4×10^{-9}	50*
			A2O01.0	12	1.0	854	1.7×10^{-8}	50^*
			A3O01.0	12	1.0	867	$7.0 imes 10^{-9}$	50^*
			A4O01.0	12	1.0	873	4.2×10^{-9}	50^*
Andresen et al. 2017, 3D [51]	LS220 CoCoNuT PROMETHEUS	g-modes SASI (spiral) convection	s11	11.2	-	642	1.1×10^{-10}	350^{*}
			s20	20	-	687	7.4×10^{-10}	430^{*}
			s20s	20	-	693	1.4×10^{-9}	530^{*}
			s27	27	-	753	4.4×10^{-10}	570^{*}
Andresen et al. 2019, 3D [77]	LS220 PROMETHEUS	SASI (spiral) g-modes	m15 fr	15	0.5	689	2.7×10^{-10}	460^{*}
			m15nr	15	-	820	1.5×10^{-10}	350^{*}
			m15r	15	0.2	801	7.1×10^{-11}	380^{*}
Cerdá-Durán et al.	LS220	BH formation	fiducial	35	2.0	922	3.3×10^{-7}	1620
2013, 2D [59]	CoCoNuT	g-modes, SASI/conv.	slow	35	1.0	987	9.4×10^{-7}	1050
						L	9	004

https://arxiv.org/abs/2104.06462

2025.07.21-25