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Outline

1. Motivation.
2. Core Bounce Signal Analytical Model (CBS).
3. Parameter Estimation (PE) with Gaussian colored Noise.
4. PE with O3 noise.
5. Prior sensitivity with Gaussian colored Noise.
6. Relative probability a variation in the number of parameters in 

the Analytical Model.
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Motivation

Richers Catalog Abylkairov Catalog

In this study we use a 
phenomenological analytical 
model to perform parameter 
estimation for the parameter:

According to (Richers, 2017) and (Abylkairov, 2025) the Core Bounce phase of the GW 
produced by a RR CCSN can be templatable.

126 selected signals 
and with a lowpass filter.

452 Numerical Relativity 
Signals without filter
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Core-Bounce Model
This model was proposed  in (Villegas, 2024)  with a matched filtering 
frequentist approach for PE, and keeping parameter 's' fixed.
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Bayesian Inference with Markov Chain-Monte Carlo

Posterior Probability density 
Functions (PDF)

Likelihood Function (Assuming Gaussianity)

Prior Distribution

Marginalized Evidence of the 
observation

Data time series  = signal + noise



Evaluation Metrics
Bayes Factor Model complexity (Occam Factor)

Fitting Factor
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Relative probability of occurrence between two 
hypothesis (models) that explain data. 

Ratio of the spanned volume of priors and 
posterior PDF (Mackay, 2003).

Standard deviation for 
posterior PDF.

Standard deviation for 
prior PDF.



PE Richers Catalog in LIGO Gaussian Colored Noise (LGCL)

Random realization at 30 
kpc for the signal with 
name A300w5.0_SFHx 7



Results PE Richers Catalog LGCN

68.3% Of the reconstructed signals with MC-MC showed a 
fitting factor greater that the ones reported in the Model 
(FF).

Model complexity is below one, so it suggests model 
overfitting
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Fitting Factors Frequentist Matched Filtering
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Results PE O3 noise
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Whitened O3 noise at 5kpc for highly rotating signal and 10 kpc for 
medium and slow regimes.

For slowly and medium rotating signals there is 
overestimation and higher uncertainties.



Prior Sensitivity in LGCN

37 injections at 10 kpc. 
And individual cases for 
different values of beta.
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Priors in

Overestimation for 10 kpc (left) and high uncertainty in beta squared for 1 kpc (right). Using 
Gaussian colored noise based on LIGO PSD.
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Model Comparison

Log base 10 of Bayes Factors for models which 
differ in number of parameters 'x' :

Natural Log of Marginalized Evidence. 
Shows that 4-parametric model and 1-
parameter model stand out in LGCN.

Core Bounce Signal (CBSx).   
CBS1 → Beta 
CBS2 → Beta, tau 
CBS3 → Beta, tau, alpha 
CBS4 → Beta, tau, alpha, s

12

According to Jeffreys scale (Jeffreys, 1998), the 
analytical model with 1 free parameter and 4 free 
parameters are preferred.



Fitting Factors for a 4-parameter model
Using O3 noise at 10 kpc

625 points (beta,tau,alpha,s) were taken with an 
average fitting factor of 87.21% and median of 
87.8%

126 values for beta were taken with an average 
fitting factor of 23.30% and median of 16.18%
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Conclusions

• Bayesian Evidence and Fitting Factors suggests that a 1 parameter 
and 4-parameter model are more likely to explain data.

• Bayesian inference allows to refine the analytical model to find a 
better fit to numerical simulations.

• It seems to be a prior sensitivity introducing some bias and 
uncertainty in beta squared.

• Using real O3 noise requires further data pre-processing to 
enhance PE results for larger distances.
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Prospects

• Perform PE and Fitting Factor calculation in Abylkairov Catalog.
• Use O3 noise and a network of detectors, including two 

polarizations of the metric perturbation.
• Improve the analytical model with physics-informed parameters.
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