Multi-Messenger Signals from Magnetorotational Stellar Core Collapse

Shota Shibagaki (University of Wroclaw)

Collaborators: Takami Kuroda (AEI) Kei Kotake (Fukuoka U.) Tomoya Takiwaki (NAOJ) Tobias Fischer (PWr)

Energetic supernova

Nomoto et al. 2005

3D MHD Jet SN

Moesta et al. 2014

GW from Aspherical Explosion

Murphy et al. 2009

Rapidly rotating core collapse

Previous 3D simulations:

- Ott et al. 2005 Newtonian+no neutrino, 2007 full GR+Ye prescription
- Scheidegger et al. 2008, 2010 effective GR+leakage
- Kuroda et al. 2014 full GR+M1 (grey), 2025 full GR+M1
- Takiwaki et al. 2016, 2018 Newtonian+IDSA, 2021 effective GR+IDSA
- Pan et al. 2021, Hsieh et al. 2024 effective GR+IDSA
- Longo Micchi et al. 2023 full GR+M1 (grey)

Full GR + M1 v radiation simulations

Method

- Fully general relativistic neutrino radiation hydrodynamics code (Kuroda et al. 2016)
 - BSSN formalism for general relativity
 - Multi-energy neutrino transport with M1 scheme
 - Lattimer & Swesty EOS (K = 220 MeV)
 - 70 M_{sun} zero-metallicity star (Takahashi et al. 2014)
 - initial central rotation rate: $\Omega_0 = 2$, 1, 0 rad/sec c.f.) non rot. sim. showed BH formation at $t_{pb} \sim 230$ ms

Shibagaki, Kuroda, Kotake, Takiwaki, MNRAS (2020, 2021)

Matter Distribution

 $\Omega_0 = 2 \text{ rad/sec}$

Pressure

Density

Ω_0 =2rad/sec

Density Distribution

SN2025gw: First IGWN Symposium on Core Collapse Supernova Gravitational Wave Theory and Detection

S. Shibagaki

SN2025gw: First IGWN Symposium on Core Collapse Supernova Gravitational Wave Theory and Detection

11

Oscillation in event rate found for equatorial observer

Correlation between GW and neutrino!!

m=1 spiral arm ($50 < t_{pb} < 100 \text{ ms}$): $f_v \sim f_{GW}/2$ m=2 spiral arm ($120 < t_{pb} < 270 \text{ ms}$): $f_v \sim f_{GW}$

S. Shibagaki

SN2025gw: First IGWN Symposium on Core Collapse Supernova Gravitational Wave Theory and Detection

Correlation between GW and neutrino!!

m=1 spiral arm ($50 < t_{pb} < 100 \text{ ms}$): $f_v \sim f_{GW} / 2 \sim f_{rot}$ m=2 spiral arm ($120 < t_{pb} < 270 \text{ ms}$): $f_v \sim f_{GW} \sim 2f_{rot}$

Setup

- Progenitor: s20 (Woosley & Heger2007)
- full GR RMHD code (Kuroda et al. 2020, 2021)
- neutrino transport: M1 scheme (Shibata et al. 2011)
- nuclear EOS: SFHo (Steiner et al. 2013)
- cylindrical rotation
- dipole magnetic field

Model	$\Omega_0 [rad s^{-1}]$	$\frac{B_0}{\sqrt{4\pi}}$ [10 ¹² G]
R05B12	0.5	1
R10B12	1.0	1
R10B13	1.0	10
R20B12	2.0	1

Shibagaki, Kuroda, Kotake, Takiwaki, Fischer, MNRAS (2024)

Entropy

Model	$\Omega_0 [rad s^{-1}]$	$\frac{B_0}{\sqrt{4\pi}}$ [10 ¹² G]
R10B12	1.0	1
R20B12	2.0	1

Shibagaki, Kuroda, Kotake, Takiwaki, Fischer, MNRAS (2024)

S. Shibagaki

PNS evolution

Model	$\Omega_0 [rad s^{-1}]$	$\frac{B_0}{\sqrt{4\pi}}$ [10 ¹² G]
R20B12	2.0	1

Shibagaki, Kuroda, Kotake, Takiwaki, Fischer, MNRAS (2024)

S. Shibagaki

SN2025gw: First IGWN Symposium on Core Collapse Supernova Gravitational Wave Theory and Detection

GW Spectrogram

R20B12 polar observer@10kpc

matter

neutrino

The amplitudes of GWs from matter and neutrinos are comparable.

Shibagaki, Kuroda, Kotake, Takiwaki, Fischer, MNRAS (2024)

contribute to the generation of low-frequency GW.

Shibagaki, Kuroda, Kotake, Takiwaki, Fischer, MNRAS (2024)

S. Shibagaki

SN2025gw: First IGWN Symposium on Core Collapse Supernova Gravitational Wave Theory and Detection

GW Detectability

equatorial observer

The neutrino component is dominated over the jet component at low frequencies.

Shibagaki, Kuroda, Kotake, Takiwaki, Fischer, MNRAS (2024)

S. Shibagaki

Summary

- 3D GR v -radiation hydrodynamics simulation of 70 solar mass rapidly rotating stellar core collapse
- The protoneutron star deformation due to rotation changes relationship between GW and neutrinos on their spectrograms. Shibagaki, Kuroda, Kotake, Takiwaki, MNRAS (2020, 2021)
 - m=1 deformation : $f_v \sim f_{GW}/2$
 - m=2 deformation : $f_v \sim f_{GW}$
- This indicates that joint observation of GW and neutrino could give us a hint of the protoneutron star deformation as well as its rotation.
- Fully general relativistic 3D neutrino radiationmagnetohydrodynamics simulations of rotating magnetized core collapse
- GW from anisotropic neutrino emission may hide GW from aspherical explosion.

Shibagaki, Kuroda, Kotake, Takiwaki, Fischer, MNRAS (2024)