# THE MHD-CCSN CODE COMPARISON PROJECT

Matteo Bugli (IAP)

Collaborators: E. O'Connor, T. Takiwaki, B. Müller, P. Mösta, J.Guilet, K. Kotake, L. Kovalenko, J. Matsumoto, M. Obergaulinger, V. Varma, A. Celati, L. Del Zanna

1st IGWN Symposium on CCSN GW Theory and Detection - SN2025gw University of Warsaw - 21 July 2025



| Introduction | The numerical setup | Explosion dynamics | Proto-neutron star | Conclusions |
|--------------|---------------------|--------------------|--------------------|-------------|
| ●0000        | OO                  | 0000               | 000                | O           |
|              |                     |                    |                    |             |

### Initial conditions

- Progenitor/core mass, mixing, wind losses
- Rotation rate, transport of angular momentum
- Magnetic fields, dynamo processes
- Pre-collapse dynamics, turbulence

### Initial conditions

- Progenitor/core mass, mixing, wind losses
- Rotation rate, transport of angular momentum
- Magnetic fields, dynamo processes
- Pre-collapse dynamics, turbulence

### Physical ingredients

- Gravity treatment (full GR, pseudo-Newtonian)
- Neutrino treatment (M1, IDSA, FMT)
- High-density nuclear equation of state (LS220, SFHo, SFHx, ...)

## Initial conditions

- Progenitor/core mass, mixing, wind losses
- Rotation rate, transport of angular momentum
- Magnetic fields, dynamo processes
- Pre-collapse dynamics, turbulence

## Physical ingredients

- Gravity treatment (full GR, pseudo-Newtonian)
- Neutrino treatment (M1, IDSA, FMT)
- High-density nuclear equation of state (LS220, SFHo, SFHx, ...)

## Implementation

- Grid geometry (Cartesian,spherical)
- Refinement and coarsening
- Coordinates singularities
- Riemann solvers, interpolations
- Resolution and dissipation

## Initial conditions

- Progenitor/core mass, mixing, wind losses
- Rotation rate, transport of angular momentum
- Magnetic fields, dynamo processes
- Pre-collapse dynamics, turbulence

## Physical ingredients

- Gravity treatment (full GR, pseudo-Newtonian)
- Neutrino treatment (M1, IDSA, FMT)
- High-density nuclear equation of state (LS220, SFHo, SFHx, ...)

### Implementation

- Grid geometry (Cartesian,spherical)
- Refinement and coarsening
- Coordinates singularities
- Riemann solvers, interpolations
- Resolution and dissipation

## Can different codes reproduce consistent results?

(See Bernhard's lecture)

| Introduction | The numerical setup | Explosion dynamics | Proto-neutron star | Conclusions |
|--------------|---------------------|--------------------|--------------------|-------------|
| O●OOO        | OO                  | 0000               | 000                | O           |
|              |                     |                    |                    |             |

# Hydrodynamic explosions

- Impact of  $\nu\text{-transport scheme in 1D}$  (Liebendörfer et al., 2005; O'Connor et al., 2018), 2D (Just et al., 2018), and 3D (Glas et al., 2019)
- 3D hydro models with different rotation, gravity,  $\nu\text{-scheme}_{(\text{Cabezón et al.}, 2018)}$
- Main impact on PNS compression and heating efficiency



Cabezón et al. (2018)



## Extreme stellar explosions



400

| Introduction | The numerical setup | Explosion dynamics | Proto-neutron star | Co |
|--------------|---------------------|--------------------|--------------------|----|
| 000●0        | OO                  | 0000               | 000                | O  |
|              |                     |                    |                    |    |

# Magneto-rotational core-collapse supernovae

#### Main mechanism

- Rotation  $\Rightarrow$  energy reservoir
- Magnetic fields  $\Rightarrow$  means to extract that energy through magnetic stresses
- Powerful jet-driven explosions (Shibata et al., 2006; Burrows et al., 2007; Dessart et al., 2008; Winteler et al., 2012; Obergaulinger and á. Aloy, 2017; Kuroda et al., 2020; Obergaulinger and Aloy, 2021; Bugli et al., 2021; Powell et al., 2023; Shibagaki et al., 2024) (See Lyubov's poster, Martin's and Gerardo's talks tomorrow)

## Origin of the magnetic field

- Progenitor (Woosley and Heger, 2006; Aguilera-Dena et al., 2020)
- Stellar mergers (Schneider et al., 2019)
- PNS dynamos (Raynaud et al., 2020; Reboul-Salze et al., 2021;

Reboul-Salze et al., 2022; Barrère et al., 2022, 2023)





nclusions

|        | 00         | 0000 | 000      | O              |
|--------|------------|------|----------|----------------|
| 2D MHD | comparison |      | (Varma 8 | & Müller 2021) |

- $\bullet$  Progenitors: 35OC  $_{\rm (Woosley\ and\ Heger,\ 2006)},$  fast rotation with strong (S) or weak (W) magnetic field
- Qualitatively similar onset of the explosions, quantitative deviations
- Main sources of differences: central grid treatment, numerical dissipation ⇒ impact of angular momentum transport



#### How would more codes compare in 3D?

| Introduction | The numerical setup | Explosion dynamics | Proto-neutron star | Conclusions      |
|--------------|---------------------|--------------------|--------------------|------------------|
| 00000        | ●O                  | 0000               | 000                | O                |
| The 3D       | code comparise      | on                 | (MB                | et al. in prep.) |

| The numerical codes                           |                    |           |            |                  |  |
|-----------------------------------------------|--------------------|-----------|------------|------------------|--|
| Code Name                                     | Grid Geometry      | Neutrinos | Dimensions | Gravity          |  |
| <b>3DnSNe-IDSA</b><br>(Takiwaki et al., 2016) | $(r, 	heta, \phi)$ | IDSA      | 2D, 3D     | Pseudo-Newtonian |  |
| AENUS-ALCAR<br>(Just et al., 2015)            | $(r, 	heta, \phi)$ | M1        | 2D, 3D     | Pseudo-Newtonian |  |
| CoCoNuT-FMT<br>(Müller and Janka, 2015)       | $(r, 	heta, \phi)$ | FMT       | 2D         | Pseudo-Newtonian |  |
| FLASH-M1<br>(O'Connor and Couch, 2018)        | (x, y, z)          | M1        | 3D         | Pseudo-Newtonian |  |
| GRaM-X<br>(Shankar et al., 2023)              | (x, y, z)          | M0        | 3D         | Full GR          |  |

| Introduction | The numerical setup | Explosion dynamics | Proto-neutron star | Conclusions         |
|--------------|---------------------|--------------------|--------------------|---------------------|
| 00000        | ●O                  | 0000               | 000                | O                   |
| The 3D co    | ode comparison      |                    | (                  | MB et al. in prep.) |

| The numerical codes                          |                     |                    |           |            |                  |
|----------------------------------------------|---------------------|--------------------|-----------|------------|------------------|
| Code Name                                    |                     | Grid Geometry      | Neutrinos | Dimensions | Gravity          |
| <b>3DnSNe-IDSA</b><br>(Takiwaki et al., 2016 | )                   | $(r, 	heta, \phi)$ | IDSA      | 2D, 3D     | Pseudo-Newtonian |
| AENUS-ALCA<br>(Just et al., 2015)            | R                   | $(r, 	heta, \phi)$ | M1        | 2D, 3D     | Pseudo-Newtonian |
| CoCoNuT-FM<br>(Müller and Janka, 20          | <b>T</b><br>(15)    | $(r, 	heta, \phi)$ | FMT       | 2D         | Pseudo-Newtonian |
| FLASH-M<br>(O'Connor and Couch               | <b>l</b><br>, 2018) | (x, y, z)          | M1        | 3D         | Pseudo-Newtonian |
| GRaM-X<br>(Shankar et al., 2023)             |                     | (x, y, z)          | M0        | 3D         | Full GR          |

#### Common settings

- Nuclear equation of state  $\rightarrow$  SFHo (Steiner et al., 2013)
- Non-axisymmetric perturbation in density:  $\delta \rho = \rho_0 \epsilon \sin(2\theta) \cos \phi$  with  $\epsilon = 0.01$

| <b>T</b> I · · · · | 1  | 0000 | 000 |   |
|--------------------|----|------|-----|---|
| 00000              | O● | 0000 | 000 | O |

#### PROGENITOR

- s20: M<sub>ZAMS</sub> = 20M<sub>☉</sub> with solar metallicity (Woosley and Heger, 2007)
- Iron core with mass  $M_{
  m Fe}\simeq 1.85 M_{\odot}$  and radius  $R_{
  m Fe}\simeq 2600$  km
- No rotation nor magnetic field from stellar evolution



| Introduction | The numerical setup | Explosion dynamics | Proto-neutron star | Conclusions |
|--------------|---------------------|--------------------|--------------------|-------------|
| 00000        | ○●                  | 0000               | 000                | O           |
|              |                     |                    |                    |             |

## The initial conditions

#### PROGENITOR

- s20: M<sub>ZAMS</sub> = 20M<sub>☉</sub> with solar metallicity (Woosley and Heger, 2007)
- Iron core with mass  $M_{
  m Fe}\simeq 1.85 M_{\odot}$  and radius  $R_{
  m Fe}\simeq 2600$  km
- No rotation nor magnetic field from stellar evolution



#### ROTATION RATE

- Inner core ( $R_{\Omega} = 1000$  km) in solid body rotation ( $\Omega_0 = 1$  rad/s)
- Constant specific angular momentum elsewhere with shellular differential rotation:

$$\Omega(r) = \Omega_0 rac{R_\Omega^2}{R_\Omega^2 + r^2}$$



| Introduction | The numerical setup | Explosion dynamics | Proto-neutron star | Conclusions |
|--------------|---------------------|--------------------|--------------------|-------------|
| 00000        | ○●                  | 0000               | 000                | O           |
|              |                     |                    |                    |             |

## The initial conditions

#### PROGENITOR

- s20: M<sub>ZAMS</sub> = 20M<sub>☉</sub> with solar metallicity (Woosley and Heger, 2007)
- Iron core with mass  $M_{
  m Fe}\simeq 1.85 M_{\odot}$  and radius  $R_{
  m Fe}\simeq 2600$  km
- No rotation nor magnetic field from stellar evolution



### ROTATION RATE

- Inner core ( $R_{\Omega} = 1000$  km) in solid body rotation ( $\Omega_0 = 1$  rad/s)
- Constant specific angular momentum elsewhere with shellular differential rotation:

$$\Omega(r) = \Omega_0 \frac{R_{\Omega}^2}{R_{\Omega}^2 + r^2}$$



## MAGNETIC FIELD

- Modified aligned dipole: constant intensity  $B_0 \simeq 1.77 \times 10^{12} \text{ G}$ within  $R_0 = 1000 \text{ km}.$
- Azimuthal vector potential:

$$A^{\phi} = rac{B_0}{2} rac{R_0^3}{R_0^{3+r^3}} r \sin heta$$





## Shock expansion and ejecta energy



• Prompt explosion for all simulations, but with different efficiencies.

- AENUS-ALCAR (3DnSNe-IDSA) produces the fastest (slowest) shock expansion and the most (least) powerful explosion.
- 2D vs 3D: opposite trends between the codes

| Introduction | The numerical setup | Explosion dynamics | Proto-neutron star | Conclusions |
|--------------|---------------------|--------------------|--------------------|-------------|
| 00000        | OO                  | OOO                | 000                | O           |
|              |                     |                    |                    |             |

# Explosion dynamics



Matteo Bugli

| Introduction | The numerical setup | Explosion dynamics | Proto-neutron star | Conclusions |
|--------------|---------------------|--------------------|--------------------|-------------|
| 00000        | OO                  |                    | 000                | O           |
| Evaluation   | du un a una lla a   |                    |                    |             |









- Displacement of the jet's barycenter over time at r = 100 km
- Consistent saturation of the non-axisymmetric modes of the kink
- Coherence of the outflow with both Cartesian and spherical grids

(Mösta et al., 2014; Kuroda et al., 2020)







- PNS mass and moment of inertia consistent
- FLASH-M1 model significantly more oblate (higher resolution decreases the effect)
- Significant deviations in rotational energy, initial excess for 3DnSNe-IDSA models
- Toroidal magnetic energy consistent up to  $t \sim 150 \text{ ms p.b.}$





# The proto-neutron star (II)



| Introduction | The numerical setup | Explosion dynamics | Proto-neutron star | Conclusions |
|--------------|---------------------|--------------------|--------------------|-------------|
| 00000        | 00                  | 0000               | OO●                | O           |
| <u> </u>     | i i                 |                    |                    |             |

## Gravitational waves







| 00000      | 00        | 0000 | 000 | 0 |
|------------|-----------|------|-----|---|
| Gravitatio | nal waves |      |     |   |



| Introduction | The numerical setup | Explosion dynamics | Proto-neutron star | Conclusions |
|--------------|---------------------|--------------------|--------------------|-------------|
| 00000        | 00                  | 0000               | OO●                | O           |
| <u> </u>     | 1                   |                    |                    |             |

## Gravitational waves



| Introduction | The numerical setup | Explosion dynamics | Proto-neutron star | Conclusions |
|--------------|---------------------|--------------------|--------------------|-------------|
| 00000        | OO                  | 0000               | OO●                | O           |
| Cravitatia   | nalwayor            |                    |                    |             |





| Introduction | The numerical setup | Explosion dynamics | Proto-neutron star | Conclusions |
|--------------|---------------------|--------------------|--------------------|-------------|
| 00000        | OO                  | 0000               | 000                | •           |
| Conclusion   | 5                   |                    |                    |             |

- $\checkmark$  Qualitative agreement among all different codes at the early stages of the explosion
- $\checkmark\,$  Quantitative deviations in the explosion efficiency and shock radius expansion within the first 100 ms
- $\checkmark\,$  Proto-neutron star mass consistently reproduced, but deviations in rotation rates and toroidal magnetic field
- ✓ No disruption of the outflow by the kink instability, but significant differences in the azimuthal structure

#### Upcoming work

- $\circ~$  Impact of gravity and resolution
- Extension of models to later times
- More multi-messenger signal analysis: polarization, *v*-GW correlations (see Shota's talk tomorrow)

| Introduction | The numerical setup | Explosion dynamics | Proto-neutron star | Conclusions |
|--------------|---------------------|--------------------|--------------------|-------------|
| 00000        | OO                  | 0000               | 000                |             |
| Conclusion   | S                   |                    |                    |             |

- $\checkmark$  Qualitative agreement among all different codes at the early stages of the explosion
- $\checkmark\,$  Quantitative deviations in the explosion efficiency and shock radius expansion within the first 100 ms
- $\checkmark\,$  Proto-neutron star mass consistently reproduced, but deviations in rotation rates and toroidal magnetic field
- $\checkmark\,$  No disruption of the outflow by the kink instability, but significant differences in the azimuthal structure

### Upcoming work

- $\circ~$  Impact of gravity and resolution
- $\circ~$  Extension of models to later times
- More multi-messenger signal analysis: polarization, *v*-GW correlations (see Shota's talk tomorrow)



| Introduction | The numerical setup | Explosion dynamics | Proto-neutron star | Conclusions |
|--------------|---------------------|--------------------|--------------------|-------------|
| 00000        | OO                  | 0000               | 000                | •           |
| Conclusion   | 5                   |                    |                    |             |

- $\checkmark$  Qualitative agreement among all different codes at the early stages of the explosion
- $\checkmark\,$  Quantitative deviations in the explosion efficiency and shock radius expansion within the first 100 ms
- $\checkmark\,$  Proto-neutron star mass consistently reproduced, but deviations in rotation rates and toroidal magnetic field
- $\checkmark\,$  No disruption of the outflow by the kink instability, but significant differences in the azimuthal structure

### Upcoming work

- $\circ~$  Impact of gravity and resolution
- $\circ~$  Extension of models to later times
- More multi-messenger signal analysis: polarization, *v*-GW correlations (see Shota's talk tomorrow)

#### Dziekujemy za uwage!

# **BlackJET**







# Radial profiles (north)

Radial profiles at t = 50ms (north)



Matteo Bugli

"MHD CCSN code comparison project"

# Radial profiles (south)

Radial profiles at t = 50ms (south)



# Radial profiles (average)

Radial profiles at t = 50ms (average)



Matteo Bugli

"MHD CCSN code comparison project"

# **PNS** radius

#### PNS Radii



Referen

# **PNS** energies

**PNS Energy** 



"MHD CCSN code comparison project"

# Gravitational wave spectrograms

Aenus-ALCAR 3D FLASH-M1 3D FLASH-M1 3D (no pert.)



## Neutrino emission: $\nu_e$

#### Luminosity $v_e$



# Neutrino emission: $\bar{\nu}_{e_1}$

### Luminosity $\bar{\nu}_e$



Refere

# Neutrino emission: $\nu_x$

#### Luminosity $v_x$



- Aguilera-Dena, D. R., Langer, N., Antoniadis, J., and Müller, B. (2020). Pre-collapse Properties of Superluminous Supernovae and Long Gamma-Ray Burst Progenitor Models. <u>arXiv:2008.09132 [astro-ph]</u>. arXiv: 2008.09132.
- Barrère, P., Guilet, J., Raynaud, R., and Reboul-Salze, A. (2023). Numerical simulations of the Tayler-Spruit dynamo in proto-magnetars.
- Barrère, P., Guilet, J., Reboul-Salze, A., Raynaud, R., and Janka, H.-T. (2022). A new scenario for magnetar formation: Tayler-Spruit dynamo in a proto-neutron star spun up by fallback. <u>Astronomy & Computed Science</u> <u>Astrophysics, Volume 668, id.A79,</u> <u>Astrophysics, Volume 668, id.A79,</u> <u>Astrophysics, Volume 668, id.A79,</u> <u>Astronomy & CES</u> <u>Astronomy </u>

<u>NUMPAGES>14</NUMPAGES> pp.</u>, 668:A79.

Bugli, M., Guilet, J., and Obergaulinger, M. (2021). Three-dimensional core-collapse supernovae with complex magnetic structures - I.
 Explosion dynamics. <u>Monthly Notices of the Royal Astronomical Society</u>, 507:443–454. ADS Bibcode: 2021MNRAS.507..443B.

## References II

- Burrows, A., Dessart, L., Livne, E., Ott, C. D., and Murphy, J. (2007). Simulations of Magnetically Driven Supernova and Hypernova Explosions in the Context of Rapid Rotation. <u>The Astrophysical</u> Journal, 664(1):416.
- Cabezón, R. M., Pan, K.-C., Liebendörfer, M., Kuroda, T., Ebinger, K., Heinimann, O., Thielemann, F.-K., and Perego, A. (2018).
  Core-collapse supernovae in the hall of mirrors. A three-dimensional code-comparison project. ArXiv e-prints, page arXiv:1806.09184.
- Dessart, L., Burrows, A., Livne, E., and Ott, C. D. (2008). The Proto-Neutron Star Phase of the Collapsar Model and the Route to Long-Soft Gamma-Ray Bursts and Hypernovae. \apjl, 673:L43.
- Dessart, L., O'Connor, E., and Ott, C. D. (2012). THE ARDUOUS JOURNEY TO BLACK HOLE FORMATION IN POTENTIAL GAMMA-RAY BURST PROGENITORS. <u>The Astrophysical Journal</u>, 754(1):76.

# References III

- Gao, H., Zhang, B., and Lü, H.-J. (2016). Constraints on binary neutron star merger product from short GRB observations. <u>Physical Review D</u>, 93(4).
- Glas, R., Just, O., Janka, H. T., and Obergaulinger, M. (2019). Three-dimensional Core-collapse Supernova Simulations with Multidimensional Neutrino Transport Compared to the Ray-by-ray-plus Approximation. The Astrophysical Journal, 873:45.
- Gompertz, B. P., O'Brien, P. T., and Wynn, G. A. (2014). Magnetar powered GRBs: explaining the extended emission and X-ray plateau of short GRB light curves. <u>Monthly Notices of the Royal Astronomical</u> <u>Society</u>, 438:240–250.

# References IV

- Inserra, C., Smartt, S. J., Jerkstrand, A., Valenti, S., Fraser, M., Wright, D., Smith, K., Chen, T.-W., Kotak, R., Pastorello, A., Nicholl, M., Bresolin, F., Kudritzki, R. P., Benetti, S., Botticella, M. T., Burgett, W. S., Chambers, K. C., Ergon, M., Flewelling, H., Fynbo, J. P. U., Geier, S., Hodapp, K. W., Howell, D. A., Huber, M., Kaiser, N., Leloudas, G., Magill, L., Magnier, E. A., McCrum, M. G., Metcalfe, N., Price, P. A., Rest, A., Sollerman, J., Sweeney, W., Taddia, F., Taubenberger, S., Tonry, J. L., Wainscoat, R. J., Waters, C., and Young, D. (2013). Super-luminous Type Ic Supernovae: Catching a Magnetar by the Tail. <u>The Astrophysical Journal</u>, 770(2):128.
- Just, O., Bollig, R., Janka, H.-T., Obergaulinger, M., Glas, R., and Nagataki, S. (2018). Core-collapse supernova simulations in one and two dimensions: Comparison of codes and approximations. arXiv:1805.03953 [astro-ph].
- Just, O., Obergaulinger, M., and Janka, H.-T. (2015). A new multidimensional, energy-dependent two-moment transport code for neutrino-hydrodynamics. <u>\mnras</u>, 453:3386–3413.

- Kasen, D. and Bildsten, L. (2010). Supernova Light Curves Powered by Young Magnetars. The Astrophysical Journal, 717(1):245.
- Kuroda, T., Arcones, A., Takiwaki, T., and Kotake, K. (2020).
   Magnetorotational Explosion of A Massive Star Supported by Neutrino Heating in General Relativistic Three Dimensional Simulations. arXiv:2003.02004 [astro-ph]. arXiv: 2003.02004.
- Liebendörfer, M., Rampp, M., Janka, H.-T., and Mezzacappa, A. (2005). Supernova Simulations with Boltzmann Neutrino Transport: A Comparison of Methods. <u>\apj</u>, 620:840–860.
- Lü, H.-J., Zhang, B., Lei, W.-H., Li, Y., and Lasky, P. D. (2015). The Millisecond Magnetar Central Engine in Short GRBs. <u>The</u> Astrophysical Journal, 805(2):89.
- Metzger, B. D., Quataert, E., and Thompson, T. A. (2008). Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. \mnras, 385:1455–1460.

## References VI

- Müller, B. and Janka, H.-T. (2015). Non-radial instabilities and progenitor asphericities in core-collapse supernovae. <u>Monthly Notices</u> of the Royal Astronomical Society, 448:2141–2174.
- Mösta, P., Richers, S., Ott, C. D., Haas, R., Piro, A. L., Boydstun, K., Abdikamalov, E., Reisswig, C., and Schnetter, E. (2014). Magnetorotational Core-collapse Supernovae in Three Dimensions. <u>The</u> <u>Astrophysical Journal</u>, 785(2):L29. Citation Key Alias: mosta2014a.
- Nicholl, M., Smartt, S. J., Jerkstrand, A., Inserra, C., McCrum, M., Kotak, R., Fraser, M., Wright, D., Chen, T.-W., Smith, K., Young, D. R., Sim, S. A., Valenti, S., Howell, D. A., Bresolin, F., Kudritzki, R. P., Tonry, J. L., Huber, M. E., Rest, A., Pastorello, A., Tomasella, L., Cappellaro, E., Benetti, S., Mattila, S., Kankare, E., Kangas, T., Leloudas, G., Sollerman, J., Taddia, F., Berger, E., Chornock, R., Narayan, G., Stubbs, C. W., Foley, R. J., Lunnan, R., Soderberg, A., Sanders, N., Milisavljevic, D., Margutti, R., Kirshner, R. P., Elias-Rosa, N., Morales-Garoffolo, A., Taubenberger, S., Botticella, M. T., Gezari, S., Urata, Y., Rodney, S., Riess, A. G., Scolnic, D., Wood-Vasey,

## References VII

W. M., Burgett, W. S., Chambers, K., Flewelling, H. A., Magnier, E. A., Kaiser, N., Metcalfe, N., Morgan, J., Price, P. A., Sweeney, W., and Waters, C. (2013). Slowly fading super-luminous supernovae that are not pair-instability explosions. <u>Nature</u>, 502(7471):346.

Obergaulinger, M. and á. Aloy, M. (2017). Protomagnetar and black hole formation in high-mass stars. <u>Monthly Notices of the Royal</u> Astronomical Society: Letters, 469(1):L43–L47.

Obergaulinger, M. and Aloy, M. (2021). Magnetorotational core collapse of possible GRB progenitors - III. Three-dimensional models. <u>Monthly</u> <u>Notices of the Royal Astronomical Society</u>, 503:4942–4963. ADS Bibcode: 2021MNRAS.503.4942O tex.ids= obergaulinger2020, obergaulinger2020b arXiv: 2008.07205.

## **References VIII**

- O'Connor, E., Bollig, R., Burrows, A., Couch, S., Fischer, T., Janka, H.-T., Kotake, K., Lentz, E. J., Liebendörfer, M., Messer, O. E. B., Mezzacappa, A., Takiwaki, T., and Vartanyan, D. (2018). Global comparison of core-collapse supernova simulations in spherical symmetry. <u>Journal of Physics G: Nuclear and Particle Physics</u>, 45(10):104001.
- O'Connor, E. P. and Couch, S. M. (2018). Two-dimensional Core-collapse Supernova Explosions Aided by General Relativity with Multidimensional Neutrino Transport. <u>The Astrophysical Journal</u>, 854:63.
- Powell, J., Müller, B., Aguilera-Dena, D. R., and Langer, N. (2023). Three dimensional magnetorotational core-collapse supernova explosions of a 39 solar mass progenitor star. <u>Monthly Notices of the</u> Royal Astronomical Society, 522:6070–6086.

Raynaud, R., Guilet, J., Janka, H.-T., and Gastine, T. (2020). Magnetar formation through a convective dynamo in protoneutron stars. <u>Science</u> Advances, 6:eaay2732.

## References IX

- Reboul-Salze, A., Guilet, J., Raynaud, R., and Bugli, M. (2021). A global model of the magnetorotational instability in protoneutron stars. Astronomy and Astrophysics, 645:A109.
- Reboul-Salze, A., Guilet, J., Raynaud, R., and Bugli, M. (2022). MRI-driven  $\alpha\Omega$  dynamos in protoneutron stars. <u>Astronomy and</u> Astrophysics, 667:A94.
- Schneider, F. R. N., Ohlmann, S. T., Podsiadlowski, P., Röpke, F. K., Balbus, S. A., Pakmor, R., and Springel, V. (2019). Stellar mergers as the origin of magnetic massive stars. <u>Nature</u>, 574(7777):211. Citation Key Alias: schneider2019a.
- Shankar, S., Mösta, P., Brandt, S. R., Haas, R., Schnetter, E., and de Graaf, Y. (2023). GRaM-X: A new GPU-accelerated dynamical spacetime GRMHD code for Exascale computing with the Einstein Toolkit. Classical and Quantum Gravity, 40:205009.

- Shibagaki, S., Kuroda, T., Kotake, K., Takiwaki, T., and Fischer, T. (2024). Three-dimensional GRMHD simulations of rapidly rotating stellar core collapse. <u>Monthly Notices of the Royal Astronomical</u> <u>Society</u>, 531:3732–3743.
- Shibata, M., Liu, Y. T., Shapiro, S. L., and Stephens, B. C. (2006). Magnetorotational collapse of massive stellar cores to neutron stars: Simulations in full general relativity. Physical Review D, 74(10).
- Steiner, A. W., Hempel, M., and Fischer, T. (2013). Core-collapse Supernova Equations of State Based on Neutron Star Observations. The Astrophysical Journal, 774:17.
- Takiwaki, T., Kotake, K., and Suwa, Y. (2016). Three-dimensional simulations of rapidly rotating core-collapse supernovae: finding a neutrino-powered explosion aided by non-axisymmetric flows. <u>Monthly</u> Notices of the Royal Astronomical Society: Letters, 461(1):L112–L116.

## References XI

Winteler, C., Käppeli, R., Perego, A., Arcones, A., Vasset, N., Nishimura, N., Liebendörfer, M., and Thielemann, F.-K. (2012).
 MAGNETOROTATIONALLY DRIVEN SUPERNOVAE AS THE ORIGIN OF EARLY GALAXY <u>r</u> -PROCESS ELEMENTS? <u>The</u> Astrophysical Journal, 750(1):L22.

- Woosley, S. and Heger, A. (2007). Nucleosynthesis and remnants in massive stars of solar metallicity. Physics Reports, 442(1-6):269–283.
- Woosley, S. E. and Heger, A. (2006). The Progenitor Stars of Gamma-Ray Bursts. The Astrophysical Journal, 637(2):914.
- Zhang, B. and Mészáros, P. (2001). Gamma-Ray Burst Afterglow with Continuous Energy Injection: Signature of a Highly Magnetized Millisecond Pulsar. The Astrophysical Journal, 552(1):L35–L38.