The Correlation Between Supernova Fallback and Progenitor's Hydrogen Envelope

Kengo Shinoda (University of Tokyo) Co-researcher: Ryo Sawada, Yudai Suwa, Takeru Suzuki (University of Tokyo), Ryosuke Hirai (Monash University), Kazunari Iwasaki (NAOJ), Kengo Tomida(Tohoku University)

14:20/24/07/2025 SN2025GW in University of Warsaw

Core Collapse Supernova (CCSN) Mechanism

Core Collapse Supernova (CCSN) Mechanism

Effects of Fallback by Hydrogen Envelope?

Effects of Fallback by Hydrogen Envelope?

Effects of Fallback by Hydrogen Envelope?

By hydrogen envelope, accretion rate increases

Problem :

H rich

H poor

10⁶

10⁵

- Remnant mass by progenitor hydrogen envelope structure?
- Dependence of explosion energy? ...

How does the hydrogen envelope affect fallback? Motivation

Simulation

Calculation of spherically symmetric 1D fluid in progenitors with "only" different hydrogen envelope

Simulation Calculation of spherically symmetric 1D fluid in progenitors with "only" different hydrogen envelope

Initial Condition

Black: type II (Hydrogen: Rich) $Z = 10^{-4}Z_{\odot}, M_{ZAMS} = 18M_{\odot}$ Woosley+02

Simulation Calculation of spherically symmetric 1D fluid in progenitors with "only" different hydrogen envelope

Initial Condition

 $15 \quad 10$

Black: type II (Hydrogen: Rich) $Z = 10^{-4}Z_{\odot}, M_{ZAMS} = 18M_{\odot}$ Woosley+02 Red: type IIb (Hydrogen: Poor) Remove hydrogen envelope from type II progenitor (Method: Matzner+99)

Simulation Calculation of spherically symmetric 1D fluid in progenitors with "only" different hydrogen envelope

Initial Condition

Black: type II (Hydrogen: Rich) $Z = 10^{-4}Z_{\odot}, M_{ZAMS} = 18M_{\odot}$ Woosley+02 Red: type IIb (Hydrogen: Poor) Remove hydrogen envelope from type II progenitor (Method: Matzner+99)

Simulation Calculation of spherically symmetric 1D fluid in progenitors with "only" different hydrogen envelope

Code: Athena++ (Stone+20) Equations: pure hydro + self-gravity

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

 $\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + P^*) = \rho \mathbf{g}$

$$\frac{\partial e}{\partial t} + \nabla \cdot \{ \mathbf{u}(e+p) \} = \rho \mathbf{u} \cdot \mathbf{g}$$

 $p = \epsilon(\gamma - 1), \gamma = 5/3$

How does the hydrogen envelope affect fallback? Motivation

Calculation of spherically symmetric 1D fluid in progenitors with "only" different hydrogen envelope Simulation

Code: Athena++ (Stone+20) Equations: pure hydro + self-gravity

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

 $\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot \left(\rho \mathbf{u} \otimes \mathbf{u} + P^*\right) = \rho \mathbf{g}$

$$\frac{\partial e}{\partial t} + \nabla \cdot \{ \mathbf{u}(e+p) \} = \rho \mathbf{u} \cdot \mathbf{g}$$

 $p = \epsilon(\gamma - 1), \gamma = 5/3$

Explosions: Thermal bomb

Inject internal energy (E_{inj}) at $10^7 cm$

⇒Calcurate total energy of ejecta as

explosion energy (E_{exp})

Put $E_{\rm ini}$ to reproduce $E_{\rm exp} \simeq 10^{48-52} {\rm erg}$

- : Hydrogen Rich type II
- : Hydrogen Poor type IIb
- **Before** run in Envelope ⇒**Same**

<u>After</u> run in Envelope

- : Hydrogen Rich type II
- : Hydrogen Poor type IIb
- **Before** run in Envelope ⇒**Same**

<u>After</u> run in Envelope

Left panel: Weak fallback!

Right panel: The final remnant mass is ~ $1.8M_{\odot}$, ~ $1.8M_{\odot}$

Result: Explosion energy and the remnant mass Explosion energy (E_{exp}) : the total energy of ejecta $E_{exp} \sim$ total energy of progenitor $+ E_{inj}$

<u>Black: type II (Hydrogen: Rich)</u> Increases $\sim 3M_{\odot}$ by the reverse shock immediately

Result: Explosion energy and the remnant mass Explosion energy (E_{exp}) : the total energy of ejecta $E_{\rm exp} \sim {\rm total \ energy \ of \ progenitor \ } + E_{\rm inj}$

 10^{52}

Black: type II (Hydrogen: Rich) Increases $\sim 3M_{\odot}$ by the reverse shock immediately Transition region: $\sim 2.5 - \sim 6M_{\odot}$

Result: Explosion energy and the remnant mass Explosion energy (E_{exp}) : the total energy of ejecta $E_{exp} \sim$ total energy of progenitor $+ E_{inj}$

 10^{52}

Black: type II (Hydrogen: Rich) Increases $\sim 3M_{\odot}$ by the reverse shock immediately Transition region: ~2.5 - ~6 M_{\odot}

Result: Explosion energy and the remnant mass Explosion energy (E_{exp}) : the total energy of ejecta $E_{\rm exp} \sim {\rm total \ energy \ of \ progenitor \ } + E_{\rm ini}$

 10^{52}

Black: type II (Hydrogen: Rich) Increases $\sim 3M_{\odot}$ by the reverse shock immediately Transition region: $\sim 2.5 - \sim 6M_{\odot}$ Red: type IIb (Hydrogen: Poor) Shallow than type II The remnant mass is the same at $E_{\rm exp} \gtrsim 4 \times 10^{50} \, {\rm erg}$

Result: Explosion energy and the remnant mass²⁶

Result: Explosion energy and the remnant mass

Parameter search: $M_{\rm ZAMS} = 18,20,24,28 M_{\odot}$ $Z = 10^{-4} Z_{\odot}$

All models have Transition regions!

Transition region: Factor 2-3 of heydrogen envelope's binding energy

Summary

Simulation

Calculation of spherically symmetric 1D fluid in progenitors with **"only"** different hydrogen envelope

Result

- Reverse shock makes Transition region
- Transition region mass range is $2.5M_{\odot}$ to $6M_{\odot}$ at $M_{ZAMS} = 18M_{\odot}, Z = 10^{-4}Z_{\odot}$
- Transition region: $2 3 \times E_{\text{grav,Hyd}}$

Future Task • What is the factor of 2-3?

- The effect of changing $M_{\rm ZAMS}$ and Z ?
- Multi-dimensional effect?

 $E_{\rm exp}$ [erg]

How to make inner region

Self-gravity of thin matter pointmass $\nabla p_{\rm m}(r) + G\rho_{\rm m}(r) \left(\frac{m_{\rm m}(r)}{r^2} + M_{\rm pt} \nabla \phi_{\rm pt}'(r, r_{\rm s}) \right) = 0,$

 $\nabla p_{\rm m}(r_{\rm s}) = \nabla p(r_{\rm s}),$

 $M_{\rm pt} + m_{\rm m}(r_{\rm s}) = m(r_{\rm s}).$

 $0 \leq q < 1;$

Result : Explosion energy and M_C Explosion energy (E_{ex}) : the total energy of ejecta

Result : Normalized Explosion energy and M_C

$$x = \frac{E_{\text{ex}}}{E_{\text{g,H}}}, y = \frac{M_C - M_{\text{pt}}}{M_* - M_{\text{pt}}}$$

 $y = 0: M_{\rm C} = M_{\rm pt}$ no accretion

 $y = 1: M_* = M_C$ Full collapse

cutoff : $x \sim 2 - 3$ $x = 10^{-1}$: all lines have $y \simeq 0.8$ $x \gtrsim 3$: only u18 is different ?

 ${\mathcal X}$

