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Zhang et al. 2008
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• Dependence of 
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Simulation Calculation of spherically symmetric 1D fluid in 
progenitors with "only" different hydrogen envelope

How does the hydrogen envelope affect fallback?Motivation
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Black: type II (Hydrogen: Rich) 

,  

Woosley+02

 

Z = 10−4Z⊙ MZAMS = 18M⊙

Initial Condition 

Simulation Calculation of spherically symmetric 1D fluid in 
progenitors with "only" different hydrogen envelope

How does the hydrogen envelope affect fallback?Motivation
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Hydrogen : Rich Initial Condition 
Black: type II (Hydrogen: Rich) 


,  
Woosley+02

Red: type IIb (Hydrogen: Poor)

Remove  hydrogen envelope from 
type II progenitor

(Method: Matzner+99)

Z = 10−4Z⊙ MZAMS = 18M⊙
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Code: Athena++ (Stone+20)

Equations: pure hydro + self-gravity

p = ϵ(γ − 1), γ = 5/3

Simulation Calculation of spherically symmetric 1D fluid in 
progenitors with "only" different hydrogen envelope

How does the hydrogen envelope affect fallback?Motivation
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Code: Athena++ (Stone+20)

Equations: pure hydro + self-gravity

p = ϵ(γ − 1), γ = 5/3

Explosions: Thermal bomb 

Inject internal energy  at 

⇨Calcurate total energy of ejecta as 

explosion energy 


Put  to reproduce 


(Einj) 107cm

(Eexp)

Einj Eexp ≃ 1048−52erg

Simulation Calculation of spherically symmetric 1D fluid in 
progenitors with "only" different hydrogen envelope

How does the hydrogen envelope affect fallback?Motivation
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Results :  Shock evolution (Einj = 8 × 1050erg)
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Results :  Weak Explosion (Einj = 7 × 1050erg)
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Left panel: Strong fallback due to the reverse shock! 
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Left panel: Strong fallback due to the reverse shock! 
Right panel: The final remnant mass is , ∼ 5.8M⊙ ∼ 3.8M⊙
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Results :  Strong Explosion (Einj = 2 × 1051erg)
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Left panel: Weak fallback!
Right panel: The final remnant mass is ,  ∼ 1.8M⊙ ∼ 1.8M⊙
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Result: Explosion energy and the remnant mass22
Explosion energy  : the total energy of ejecta(Eexp)
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Explosion energy  : the total energy of ejecta(Eexp)
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Explosion energy  : the total energy of ejecta(Eexp)
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Explosion energy  : the total energy of ejecta(Eexp)
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26Result: Explosion energy and the remnant mass
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27Result: Explosion energy and the remnant mass
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All models have Transition regions!


Transition region: 

Factor 2-3 of heydrogen envelope’s 
binding energy

MZAMS = 18,20,24,28M⊙
Z = 10−4Z⊙



28Summary 

•What is the factor of 2-3? 
•The effect of changing  and  ?

•Multi-dimensional effect? 

MZAMS Z

Simulation

Result

Future Task

Calculation of spherically symmetric 1D fluid in 
progenitors with "only" different hydrogen envelope

• Reverse shock makes Transition region

• Transition region mass range is  to  at 




• Transition region: 

2.5M⊙ 6M⊙
MZAMS = 18M⊙, Z = 10−4Z⊙

2 − 3 × Egrav,Hyd
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How to make inner region
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Result : Explosion energy and MC
Explosion energy  : the total energy of ejecta(Eex)
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Result : Normalized Explosion energy and MC
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Discussion : Hydrogen Envelope Value vs  MC
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Discussion : Hydrogen Envelope Value vs  MC
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Discussion : Hydrogen Envelope Value vs  MC
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