Core-collapse Supernova Simulation with Subgrid Modeling of Fast Neutrino Flavor Conversion with **Boltzmann Radiation Hydrodynamics Code**

Ryuichiro Akaho [Waseda University] **Collaborators:** Hiroki Nagakura, Shoichi Yamada Boltzmann supernova group: Wakana Iwakami, Akira Harada, Hirotada Okawa, Shun Furusawa, Hideo Matsufuru, Kohsuke Sumiyoshi, Shoichi Yamada

arXiv:2506.07017

Accepted to PRD

Core-collapse Supernovae (CCSNe)

- Energetic explosion at the end of stellar evolution.
- Plays central role for the evolution of the universe.

Explosive nucleosynthesis

Supernova explosion

SN2025gw

Neutron stars

Ryuichiro Akaho (Waseda University)

Formation of compact stars

High energy astrophysical phenomena

Black holes

GRB

Scenario of CCSN

Explosion

Neutron star or black hole

Shock wave reach outer envelope

Core suddenly gets stiffened when the strong interaction take place

Bounce

Neutrinos inside CCSN

Intermediate: nontrivial

thermal eq. (Fermi-Dirac)

momentum: isotropic

Free streaming

Phase space distribution $f(x^{\mu}, p^{i})$ function

Boltzmann equation

$$p^{\alpha} \frac{\partial f}{\partial x^{\alpha}} - \Gamma^{i}_{\alpha\beta} p^{\alpha} p^{\beta} \frac{\partial f}{\partial p^{i}} = \begin{bmatrix} \frac{\delta}{\partial x^{\alpha}} & \frac{\partial f}{\partial y^{\alpha}} \end{bmatrix}$$

Truncated Moment Method

 $f(r, \theta, \phi,$

Instead of Boltzmann transport, truncated moment method is often used.

Oth

Distribution Function Boltzmann Equation

$$\epsilon, \theta_{\nu}, \phi_{\nu})$$

$$\frac{\partial f}{\partial t} + p^{i} \frac{\partial f}{\partial x^{i}} + \dot{p}^{i} \frac{\partial f}{\partial p^{i}} = C$$

Angular moment in momentum space

Moment eqs. (<u>depend on higher moments</u>)

$$\frac{\partial E}{\partial t} = L_1(E, M_1^i, M_2^{ij})$$
$$\frac{\partial M_1^i}{\partial t} = L_2(E, M_1^i, M_2^{ij})$$
$$\frac{\partial M_2^{ij}}{\partial t} = L_2(E, M_1^i, M_2^{ij})$$

$$\frac{d_{2}}{\partial t} = L_{2}(E, M_{1}^{i}, M_{2}^{ij}, M_{3}^{ijk})$$

Analytical Closure

Flux factor (function of 0th and 1st moment)

SN2025gw

Ryuichiro Akaho (Waseda University)

Assume closure relation to calculate 2nd moments only from 0th and 1st moments

Boltzmann Radiation-hydro Simulation Project

SN2025gw

Ryuichiro Akaho (Waseda University)

GR Boltzmann + GR hydro + 1D metric

GR Boltzmann + GR hydro + Numerical Relativity

PNS convection (RA+2023)

GR CCSN simulation (RA+ in prep.)

GR Boltzmann Neutrino Radiation Hydrodynamics Code Boltzmann & hydrodynamics equations are solved together to simulate CCSN

Boltzmann equation

$$\frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{\mu}} \left| \left[\left(e_{(0)}^{\mu} + \sum_{i=1}^{3} l_{i} e_{(i)}^{\mu} \right) \sqrt{-g} f \right] - \frac{1}{\epsilon^{2}} \frac{\partial}{\partial \epsilon} \left(\epsilon^{3} f \omega_{(0)} \right) \right. \\ \left. + \frac{1}{\sin \theta_{\nu}} \frac{\partial}{\partial \theta_{\nu}} \left(\sin \theta_{\nu} f \omega_{(\theta_{\nu})} \right) - \frac{1}{\sin^{2} \theta_{\nu}} \frac{\partial}{\partial \phi_{\nu}} \left(f \omega_{(\phi_{\nu})} \right) = S_{\text{rad}} \right]$$

Hydrodynamics equation

SN2025gw

Ryuichiro Akaho (Waseda University)

Neutrino-matter interactions

Emission/AbsorptionScattering
 $\nu + N \leftrightarrow \nu + N$
 $\nu + A \leftrightarrow \nu + A$
 $\nu + A \leftrightarrow \nu + A$
 $\nu + A \leftrightarrow \nu + A$
 $\nu + e^- \leftrightarrow \nu + e^ e^- + A \leftrightarrow \nu_e + A'$ Pair
 $e^- + e^+ \leftrightarrow \nu + \bar{\nu}$
 $N + N \leftrightarrow N + N + \nu + \bar{\nu}$

Spacetime metric

Memory GW from rotating PNS

SN2025gw

Ryuichiro Akaho (Waseda University)

Barrio, RA+ arXiv:2507.04784

Neutrino Oscillation

$$iv^{\mu}\partial_{\mu}\rho = \begin{bmatrix} \frac{m_{1}^{2} + m_{2}^{2}}{4E} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} + \frac{m_{2}^{2} - m_{1}^{2}}{4E} \begin{pmatrix} -\cos 2\theta_{12} & \sin 2\theta_{12} \\ \sin 2\theta_{12} & \cos 2\theta_{12} \\ & &$$

Vacuum oscillation (interstellar region): periodic oscillation with time

MSW resonance (e.g. solar surface): instant conversion

Matter suppression (e.g. inside stars): no neutrino oscillation

Collective oscillation (supernova core): nonlinear, can be very fast (~ns)

Density

Ryuichiro Akaho (Waseda University)

See also H. Nagakura's talk on Wed.

Fast Neutrino Flavor Conversion

- The conversion timescale can be ~ns, much shorter than the dynamical timescale. •
- FFC is induced by angular crossing in momentum space •

SN2025gw

Fast flavor conversion (FFC) is one of collective oscillation modes, and getting great attention

Setup

- . Progenitor: $M_{\rm ZAMS} = 11.2 M_{\odot}$
- Nuclear matter: Furusawa-Togashi EOS

270ms post bounce

2D simulation D ave. (w/o FFC)

2D simulation => 1D relaxation run => 1D simulation w/ and w/o FFC

FFI appear

1D simulation (w/o FFC)

1D simulation (w/ FFC subgrid)

Comparison of Mixing Methods 3sp*ρ*11 4spBGK **3spBGK**

SN2025gw

4spBGK model

$$\begin{split} f_e^{\rm as} &= \eta f_e + (1 - \eta) f_x, \\ \bar{f}_e^{\rm as} &= \eta \bar{f}_e + (1 - \eta) f_x, \\ f_x^{\rm as} &= \frac{1 - \eta}{4} f_e + \frac{1 - \eta}{4} \bar{f}_e + \frac{1 + \eta}{2} f_x. \end{split}$$

violated!

Impose 3-species assumption ($\nu_x = \bar{\nu}_x$) to

Lepton number

SN2025gw

Ryuichiro Akaho (Waseda University)

Flavor evolution at the appearance of FFI

_

Difference of energy spectra w.r.t no FFC model

SN2025gw

Heating rate and temperature profiles

Summary

- dynamics.

Future Prospects

- Multi-dimensional CCSN simulation with FFC subgrid
- Progenitor and EOS dependences

 We implemented BGK subgrid model to Boltzmann neutrino radiation hydrodynamics simulation and performed 1D CCSN simulations.

For the models simulated, FFC can have negative effects onto CCSN

