Detectability and Reconstruction of the Standing Accretion Shock Instability: New results with cWB XP

Universidad de Guadalajara

Vicente Sierra

Manuel D. Morales, Carlos E. Quintero, Claudia Moreno, Michele Zanolin, Marek J. Szczepańczyk, Javier M. Antelis, and Sergey Klimenko ✤ UNIWERSYTET
♠ WARSZAWSKI

SN2025gw - First IGWN Symposium on CCSe GW Theory and Detection

SASI and Gravitational Waves

What have we learned this week?

- SASI oscillations emit GWs at f ≤ 200 Hz (Mezzacappa et al., 2020; Kuroda et al., 2017; Andresen et al., 2017).
- SASI is a great multimessenger source: neutrino and GW emission (Lin et al., 2023; Drago et al., 2023).
- SASImeter: a pipeline for neutrino and GW SASI parameter estimation (Lin et al., 2023).

Figure 1. Kuroda 2017 s15 gravitational wave signal. From Correlated Signatures of Gravitational-Wave and Neutrino Emission in Three-Dimensional General-Relativistic Core-Collapse Supernova Simulations. Kuroda et al., 2017.

cWB XP Trigger Generation

- We use cWB reconstructions of GW events.
- SASImeter is a pluggin using event wavelet components (pixels).
- cWB XP reduces spectral leakage. See Sergey Klimenko presentation.

cWB XP Trigger Generation

- We use cWB reconstructions of GW events.
- SASImeter is a pluggin using event wavelet components (pixels).
- cWB XP reduces spectral leakage. See Sergey Klimenko presentation.

- 1. Assumption: SASI is located at $f \le 200$ Hz; pixels below this f are removed.
- 2. Mean Cross-power Root Square (CRS) is obtained. Pixels with CRS \leq Mean(CRS) are removed..
- 3. Perform an initial estimation of the G-mode slope to first order via least square linear regression.

- 1. Assumption: SASI is located at $f \le 200$ Hz; pixels below this f are removed.
- 2. Mean Cross-power Root Square (CRS) is obtained. Pixels with CRS \leq Mean(CRS) are removed.
- 3. Perform an initial estimation of the G-mode slope to first order via least square linear regression.

- 1. Assumption: SASI is located at $f \le 200$ Hz; pixels at this f are removed.
- Mean Cross-power Root Square (CRS) is obtained. Pixels with CRS ≤ Mean(CRS) are removed.
- 3. Perform an initial estimation of the Gmode slope to first order via least square linear regression.

- 1. Assumption: SASI is located at $f \le 200$ Hz; pixels at this f are removed.
- Mean Cross-power Root Square (CRS) is obtained. Pixels with CRS ≤ Mean(CRS) are removed.
- 3. Perform an initial estimation of the Gmode slope to first order via least square linear regression.

Figure 3. SASImeter G-mode slope estimation for Kuroda2017 s15 at 1 Kpc.

G-Mode Estimation

- 1. Assumption: SASI is located at $f \le 200$ Hz; pixels at this f are removed.
- Mean Cross-power Root Square (CRS) is obtained. Pixels with CRS ≤ Mean(CRS) are removed.
- 3. Perform an initial estimation of the Gmode slope to first order via least square linear regression.

Figure 4. SASImeter G-mode slope estimation for Kuroda2017 s15 at 10 Kpc.

- 4. Use slope estimation to obtain the G-mode initial time and frequency.
 - 4.1 If the slope is not in the physically acceptable range, the event is discarded from the analysis.
 - 4.2 If the slope is in the physically acceptable range, initial slope and frequency estimates are varied 33% to generate 200 samples.

- 4. Use slope estimation to obtain the G-mode initial time and frequency.
 - 4.1 If the slope is not in the physically acceptable range, the event is discarded from the analysis.
 - 4.2 If the slope is in the physically acceptable range, initial slope and frequency estimates are varied 33% to generate 200 samples.

- 4. Use slope estimation to obtain the G-mode initial slope and frequency.
 - 4.1 If the slope is not in the physically acceptable range, the event is discarded from the analysis.
 - 4.2 If the slope is in the physically acceptable range, initial slope and frequency estimates are varied 33% to generate 200 samples.

G-Mode Estimation

5. Estimate the g-mode slope by minimizing

$$\chi^2 = \sum_i \rho^i (f_c^i)^2 \Xi^i \left[t_c^i - \frac{f_c^i - c}{m} \right]$$

- c, m: intercept and slope.
- t_c^i , f_c^i : time and frequency of the ith pixel. ρ^i : CRS of the ith pixel.
- f_c^i : weight function to compensate for the detectors noise curve.
- Ξ^i : density of pixels around the ith pixel.

G-Mode Estimation

5. Estimate the g-mode slope by minimizing

$$\chi^2 = \sum_i \rho^i (f_c^i)^2 \Xi^i \left[t_c^i - \frac{f_c^i - c}{m} \right]$$

- c, m: intercept and slope.
- t_c^i , f_c^i : time and frequency of the ith pixel. ρ^i : CRS of the ith pixel.
- f_c^i : weight function to compensate for the detectors noise curve.
- Ξ^i : density of pixels around the ith pixel.

Crude, but fast and sufficiently accurate!

Figure 5. χ^2 surface minimization for Kuroda2017 s15 at 1 Kpc.

SASI Estimation

- Select pixels with f < 200 Hz and t > 50 ms after the initial time of the G-mode.
 - 2. Select pixels with CRS values greater than <u>Max(All CRS values)</u>
 - 3. Estimate SASI parameters.
 - 3.1 SASI Central Frequency:

$$E_{\text{SASI}} = \frac{\sum_{i \in \text{SASI}} \rho^i f_c^i}{\sum_{i \in \text{SASI}} \rho^i}$$

$$_{\rm SASI} = \left(t_{\rm max} + \frac{\delta t_{\rm max}}{2}\right) - \left(t_{\rm min} + \frac{\delta t_{\rm min}}{2}\right)$$

SASI Estimation

- Select pixels with f < 200 Hz and t > 50 ms after the initial time of the G-mode.
 - 2. Select pixels with CRS values greater than <u>Max(All CRS values)</u>
 - 3. Estimate SASI parameters.
 - 3.1 SASI Central Frequency:

$$\mathcal{E}_{\text{SASI}} = \frac{\sum_{i \in \text{SASI}} \rho^i f_c^i}{\sum_{i \in \text{SASI}} \rho^i}$$

$$_{\rm SASI} = \left(t_{\rm max} + \frac{\delta t_{\rm max}}{2}\right) - \left(t_{\rm min} + \frac{\delta t_{\rm min}}{2}\right)$$

SASI Estimation

- 1. Select pixels with f < 200 Hz and t > 50 ms after the initial time of the G-mode.
- 2. Select pixels with CRS values greater than $\frac{Max(All CRS values)}{2}$.
- 3. Estimate SASI parameters.
 - 3.1 SASI Central Frequency:

$$f_{\text{SASI}} = \frac{\sum_{i \in \text{SASI}} \rho^i f_c^i}{\sum_{i \in \text{SASI}} \rho^i}$$

 $\delta t_{
m min}$

 $\mathbf{2}$

 ι_{\min}

3.2 SASI Time Duration: $(\int_{t_{max}} \delta t_{max})$

 $t_{\rm max}$

 $\tau_{\rm SASI} =$

SASI Estimation

3.2

 $\tau_{\rm SASI}$

- . Select pixels with f < 200 Hz and t > 50 ms after the initial time of the G-mode.
- 2. Select pixels with CRS values greater than $\frac{Max(All CRS values)}{2}$.
- 3. Estimate SASI parameters.

 $t_{\rm max}$

3.1 SASI Central Frequency:

$$f_{\text{SASI}} = \frac{\sum_{i \in \text{SASI}} \rho^i f_c^i}{\sum_{i \in \text{SASI}} \rho^i}$$

SASI Time Duration:

 ∂t_{\max}

5

 $\delta t_{
m min}$

2

 t_{\min}

Figure 6. Pixels in the SASI region for Kuroda2017 s15 at 1 Kpc.

SASI Estimation

- Select pixels with f < 200 Hz and t > 50 ms after the initial time of the G-mode.
 - 2. Select pixels with CRS values greater than <u>Max(All CRS values)</u>
 - 3. Estimate SASI parameters.
 - 3.1 SASI Central Frequency:

$$E_{\text{SASI}} = \frac{\sum_{i \in \text{SASI}} \rho^i f_c^i}{\sum_{i \in \text{SASI}} \rho^i}$$

$$_{\rm SASI} = \left(t_{\rm max} + \frac{\delta t_{\rm max}}{2}\right) - \left(t_{\rm min} + \frac{\delta t_{\rm min}}{2}\right)$$

SASI Estimation

- Select pixels with f < 200 Hz and t > 50 ms after the initial time of the G-mode.
 - 2. Select pixels with CRS values greater than <u>Max(All CRS values)</u>
 - 3. Estimate SASI parameters.
 - 3.1 SASI Central Frequency:

$$\dot{f}_{\text{SASI}} = \frac{\sum_{i \in \text{SASI}} \rho^i f_c^i}{\sum_{i \in \text{SASI}} \rho^i}$$

$$_{\rm SASI} = \left(t_{\rm max} + \frac{\delta t_{\rm max}}{2}\right) - \left(t_{\rm min} + \frac{\delta t_{\rm min}}{2}\right)$$

SASI Estimation

- Select pixels with f < 200 Hz and t > 50 ms after the initial time of the G-mode.
 - 2. Select pixels with CRS values greater than <u>Max(All CRS values)</u>
 - 3. Estimate SASI parameters.
 - 3.1 SASI Central Frequency:

$$f_{\text{SASI}} = \frac{\sum_{i \in \text{SASI}} \rho^i f_c^i}{\sum_{i \in \text{SASI}} \rho^i}$$

$$\tau_{\text{SASI}} = \left(t_{\text{max}} + \frac{\delta t_{\text{max}}}{2}\right) - \left(t_{\text{min}} + \frac{\delta t_{\text{min}}}{2}\right)$$

SASI Estimation

- Select pixels with f < 200 Hz and t > 50 ms after the initial time of the G-mode.
 - 2. Select pixels with CRS values greater than <u>Max(All CRS values)</u>
 - 3. Estimate SASI parameters.
 - 3.1 SASI Central Frequency:

$$\dot{F}_{\text{SASI}} = \frac{\sum_{i \in \text{SASI}} \rho^i f_c^i}{\sum_{i \in \text{SASI}} \rho^i}$$

$$\tau_{\rm SASI} = t_{\rm max} - t_{\rm min}$$

SASI Estimation

- Select pixels with f < 200 Hz and t > 50 ms after the initial time of the G-mode.
 - 2. Select pixels with CRS values greater than <u>Max(All CRS values)</u>
 - 3. Estimate SASI parameters.
 - 3.1 SASI Central Frequency:

 $f_{\text{SASI}} = \frac{\sum_{i \in \text{SASI}} \rho^i f_c^i}{\sum_{i \in \text{SASI}} \rho^i}$ 3.2 SASI Time Duration (next implementation):

 $\tau_{\text{SASI}} = t \in (0.05 \cdot CRS, 0.95 \cdot CRS)$

Kuroda 2017 S15 on O3 Data

Central Frequency	cWB 2G		cWB XP			cWB 2G		cWB XP	
	Mean (Hz)	Std. Dev. (Hz)	Mean (Hz)	Std. Dev. (Hz)	Time Duration	Mean (ms)	Std. Dev. (ms)	Mean (ms)	Std. Dev. (ms)
10 Kpc	120.08	18.65	117.292	3.501	10 Kpc	259	347	71	21
5 Крс	120.42	13.80	123.590	6.075	5 Крс	494	552	83	27
1Крс	122.36	5.48	120.928	4.695	1Крс	166	261	95	16

Kuroda 2017 S15 on O3 Data

cWB 2G

cWBXP

Kuroda 2017 S15 on O3 Data

cWB 2G

cWBXP

Kuroda 2017 S15 on O3 Data

G-Mode	cW	′B 2G	cWB XP			
Slope	Mean (s⁻²)	Std. Dev. (s ⁻²)	Mean (s⁻²)	Std. Dev. (s ⁻²)		
10 Kpc	2564.84	1301.08	2985.75	1342.36		
5 Крс	2645.02	1132.72	2567.88	948.99		
1Крс	3190.68	929.62	2502.56	451.77		

Kuroda 2017 S15 on O3 Data

cWB 2G 0.0005 kpc 5 kpc 0.0004 10 kpc 0.0003 Prob 0.0002 0.0001 0.0000 2000 3000 4000 5000 6000 1000 g-mode Slope $[1/s^2]$ Figure 9A. Probability density distribution of the SASI G-Mode slope for cWB 2G.

From Characterizing a supernova's Standing Accretion Shock Instability with neutrinos and gravitational waves. Lin et al., 2023.

Figure 9B. Probability density distribution of the SASI G-Mode slope for cWB XP.

Kuroda 2017 S15 on O3 Data

Figure 10A. Top: histograms for the estimation of the p statistic for 1, 5 and 10 Kpc. Right: Receiving Operating Characteristic Curves. cWB 2G version.

From Characterizing a supernova's Standing Accretion Shock Instability with neutrinos and gravitational waves. Lin et al., 2023.

cWBXP

Figure 10B. Top: histograms for the estimation of the ρ statistic for 1, 5 and 10 Kpc. Bottom: Receiving Operating Characteristic Curves. cWB XP version.

Next Steps for SASImeter

- Explore Spiral SASI case.
- SASI time-frequency region was estimated from literature 3 years ago. Suggested updates are welcome!
- Test with more and more diverse GW simulations: some have already been added to our list during this week, thank you!!
 - Joint pipelines: neutrino and GW SASImeter.