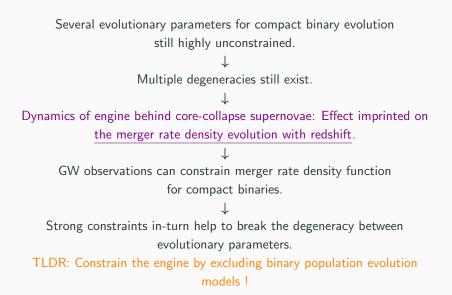
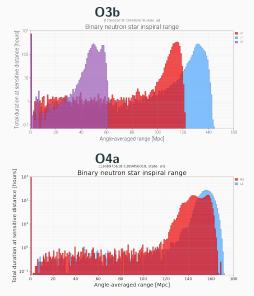
Constraining core-collapse supernova engine with **Einstein Telescope**

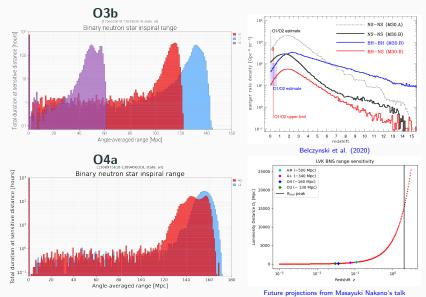

SN2025gw, 25 July 2025

Neha Singh*(Departament de F´ısica, Universitat de les Illes Balear)

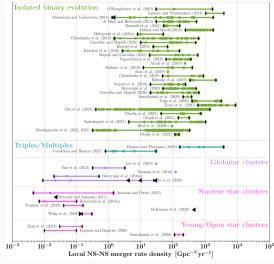
<u>Collaborators</u>: Aleksandra Olejak (MPA-Garching), Tomasz Bulik (UW), Felip Antoni Ramis Vidal (UIB), Marta Colleoni (UIB), David Keitel (UIB)



Motivation: Thought process

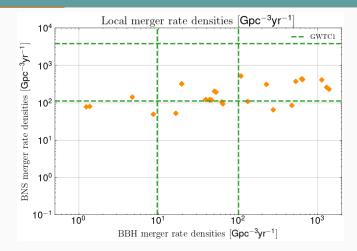

1

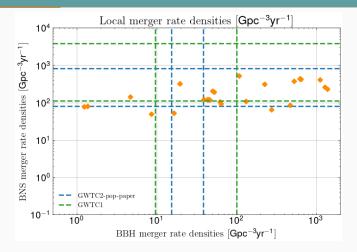
Reason for Scepticism: Current sensitivities


gwosc.org

Reason for Scepticism: Current sensitivities

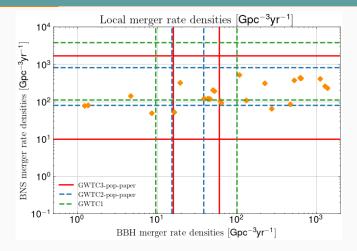
gwosc.org


Local merger rate density: Predictions



Rates from 2010 to present: Mandel & Broekgaarden Living Reviews 2022

Points to ponder


- Local rates vary by orders of magnitude.
- What is the probability that a combination of parameters will result is exact merger rate density for 0 ≤ z ≤ 10 ?

• The models satisfying the local rate may not reproduce the rates at larger redshifts.

Belczynski et al. 2020

• The models satisfying the local rate may not reproduce the rates at larger redshifts.

Belczynski et al. 2020

	BNS	NSBH	BBH	NS gap	BBH gap	Full
	$\begin{array}{c} m_1 \in [1,2.5] M_\odot \\ m_2 \in [1,2.5] M_\odot \end{array}$		$\begin{array}{l} m_1 \in [2.5, 100] M_\odot \\ m_2 \in [2.5, 100] M_\odot \end{array}$	$\begin{array}{l} m_1 \in [2.5,5] M_\odot \\ m_2 \in [1,2.5] M_\odot \end{array}$	$\begin{array}{l} m_1 \in [2.5, 100] M_\odot \\ m_2 \in [2.5, 5] M_\odot \end{array}$	$\begin{array}{l} m_1 \in [1,100] M_\odot \\ m_2 \in [1,100] M_\odot \end{array}$
PDB (pair)	170^{+270}_{-120}	27^{+31}_{-17}	$25^{+10}_{-7.0}$	19^{+28}_{-13}	$9.3^{+15.7}_{-7.2}$	240_{-140}^{+270}
PDB (ind)	44^{+96}_{-34}	73^{+67}_{-37}	$22^{+8.0}_{-6.0}$	$12^{+18}_{-9.0}$	$9.7^{+11.3}_{-7.0}$	150^{+170}_{-71}
MS	660^{+1040}_{-530}	49^{+91}_{-38}	37^{+24}_{-13}	$3.7^{+35.3}_{-3.4}$	$0.12^{+24.88}_{-0.12}$	770^{+1030}_{-530}
BGP	$98.0^{+260.0}_{-85.0}$	$32.0_{-24.0}^{+62.0}$	$33.0^{+16.0}_{-10.0}$	$1.7^{+30.0}_{-1.7}$	$5.2^{+12.0}_{-4.1}$	$180.0^{+270.0}_{-110.0}$
MERGED	10-1700	7.8-140	16-61	0.02-39	$9.4\times10^{-5}-25$	72-1800

R. Abbot et al. 2023: Assuming merger rates per unit comoving volume are redshift independent.

- PDB: POWER LAW + DIP + BREAK model
- MS: MULTI SOURCE model
- BGP: BINNED GAUSSIAN PROCESS model

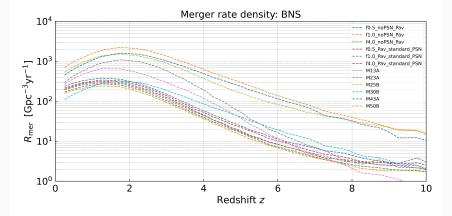
Constraints on the evolution of the BBH merger rate with redshift. Central 50% (dark blue) and 90% (light blue) credible bounds on the BBH merger rate density. The dashed line, for reference, is proportional to the rate of cosmic star formation. R. Abbot et al. 2023

- Current GW observations provide weak constraints on local merger rate density.
- The evolution of merger rate density ($z \lesssim 1.5$) is dependent on assumed mass distribution models.
- Given the reach of detectors, no constraints at higher redshift.
- Still a long way to go to confidently exclude population models with current detectors. Can ET do better??

Population Models: probing the multi dimensional parametric space

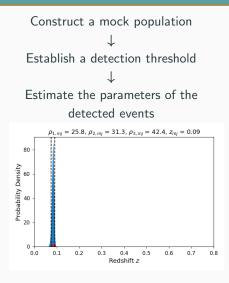
Model	Main features		
M10	2016 standard input physics: - Rapid SNa BH masses Fyrer (a1. (2012) - With strong PFSN and with PSN - 10% neutrino mass loss at BHNS formation - Low-to- no BH mult licks (set pt) fallock.) - High NS ticks: $\sigma = 265 {\rm km s^{-1}}$ with fallock - 50% non-convertive RLO [®] - 10% Bond-Hoyle accretion onto NS/BH in CE - Efficient accretion onto BH ashed MT/winds - No effects of rotation on stellar evolution ¹⁰ - Initial binary parameters: Standard at (2012) - Massive star winds: Vink et al. (2001) - LBV ⁽⁶⁾ - SH spin: Genew models (Eq. (3)) - SH spin: Genew models (Eq. (3)) - SH spin: Genew models (Eq. (3))	M30	2019 standard input physics: - Rapid SNa BH masses Fyger et al. (2012) - With weak PFSN and with FSN - 1% neutrino mass loss at BH formation - 10% neutrino mass loss at BS formation - Low-to-no BH muta licks (set by falback) - High NS licks σ ⁻ = 25 Km - 3 ⁻ / ₂ with falback - 50% non-conservative RLOF - 5% Bondi-Hoyle accretion onto NS/BH in CE - Inefficient accretion onto BH in stable MT/winds - No effects of rotation on setlar evolution of - Initial binary parameters. Sana et al. (2012) - Massives attra dick: high a (2001) + LBV θ ⁰ - BH spins: MESA modek (Eq. (4)) - SHED(2) and d2c): Madau & Frances (2017)
M13	As in M10, but with: - High BH/NS natal kicks: $\sigma = 265 \text{ km s}^{-1}$		– Solar metallicity: $Z_{\odot} = 0.014$
M20	Modified input physics, as in M10, but with: - 80% non-conservative RLOF (Appendix A.7)	M33	As in M30, but with: – High BH/NS natal kicks: $\sigma = 265 \text{ km s}^{-1}$
	 5% Bondi-Hoyle accretion onto NS/BH in CE Rotation increases CO core mass (by 20%) 	M35	As in M30, but with: – Intermediate BH/NS natal kicks: $\sigma = 130 \text{ km s}^{-1}$
M26	As in M20, but with: - Small BH/NS natal kicks: $\sigma = 70 \text{ km s}^{-1}$	M40	As in M30, but with: – BH spins: Fuller model (Eq. (5))
M25	As in M20, but with: - Intermediate BH/NS natal kicks: $\sigma = 130 \text{ km s}^{-1}$	M43	As in M40, but with: – High BH/NS natal kicks: $\sigma = 265 \text{ km s}^{-1}$
M23	As in M20, but with: – High BH/NS natal kicks: $\sigma = 265 \text{ km s}^{-1}$	M50	As in M30, but with: - 30% of wind mass loss rates for all stars

- M13A, M23A, M25B, M30B, M43A, M50B
- Rapid supernova engine model for NS/BH mass from Fryer et al. (2012)


Belczynski et al. (2020)

No.	CE criteria	PSN limit	SN model
		GWTC-3 z~0.2	
1.	Standard	Revised	$f_{\rm mix} = 0.5$
2.	Standard	Revised	$f_{\rm mix} = 1.0$
3.	Standard	Revised	$f_{\rm mix} = 4.0$
4.	Standard	Strong	$f_{mix} = 0.5$
5.	Standard	Strong	$f_{mix} = 1.0$
6.	Standard	Strong	$f_{mix} = 4.0$
7.	Revised	Revised	$f_{mix} = 0.5$
8.	Revised	Revised	$f_{mix} = 1.0$
9.	Revised	Revised	$f_{mix} = 4.0$
10.	Revised	Strong	$f_{mix} = 0.5$
11.	Revised	Strong	$f_{mix} = 1.0$
12.	Revised	Strong	$f_{mix} = 4.0$

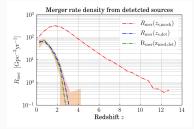
- Revised CE with f_{mix}: 0.5, 1.0, 4.0
- New formulas for remnant masses (Fryer et al. (2022))


Olejak et al 2022

Effect of Supernova engine on binary merger rate densities: BNS

- Chosen population models for this work: M30B, f0.5_Pav_standard_PSN
- The changes in convection growth time (inversely proportional to mixing fraction) affect the binary merger rate density evolution with redshift.
- Can we constrain them??

Parameter estimation with ET


Bayesian parameter estimation

Singh et al. 2022 Phys. Rev. D 106, 123014

Merger rate estimation

- Threshold value of accumulated effective S/N $\rho_{eff} > 8$, and the S/N for i^{th} segment in the j^{th} detector $\rho_j^i > 3$ in at least one segment for j = (1, 2, 3).
- $\bullet~$ Only \sim 15% BNS cross the threshold.
- We need an accurate estimate of detection efficiency. (Fraction of detected sources in a given redshift bin.)

M30B

Merger rate density from detected sources 10^2 10^1 10^1 10^2 $R_{mer}(z_{s,tot})$ $R_{mer}(z_{s,tot})$ $\frac{1}{2}^{\frac{1}{2}}$ 10^{-1} 10^{-2} $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{6}$ $\frac{1}{8}$ $\frac{1}{10}$ $\frac{1}{12}$ $\frac{1}{4}$ $\frac{1}{12}$

f0.5 Pay standard PSN

True merger rate: Population-independent method

Estimate the merger rate density of the detected population \downarrow Estimate the detection efficiency (How??) \downarrow Estimate the true merger rate density

The detected sources provide the priors for detection efficiency estimate

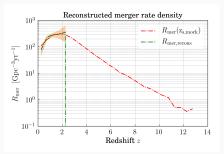
True merger rate

Priors for constructing secondary population

- $p(\mathcal{M}_{\mathrm{sec}}) \propto p(\mathcal{M}_{\mathrm{med,det}})$
- $p(z_{\rm sec}) \propto p(z_{
 m med,det})$

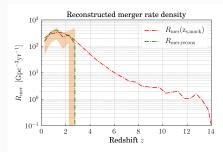
•
$$M_{\rm sec} = \mathcal{M}_{\rm sec} \left[\frac{q_{\rm sec}}{(1+q_{\rm sec})^2} \right]^{-3/5}$$

Estimating detection efficiency


•
$$\mathcal{D}(z_i, z_{i+1}) = \left[\frac{N_{\text{sec,det}}}{N_{\text{sec}}}\right]_{(z_i, z_{i+1})}$$

• $R_{\text{mer,recon}}(z_i, z_{i+1}) = \left[\frac{R_{\text{mer}}(z_{\text{med,det}})}{\mathcal{D}}\right]_{(z_i, z_{i+1})}$

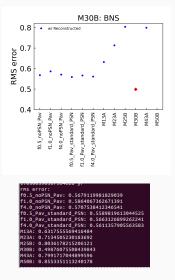
Caveat: We assume that the population which is 'detected' with the set threshold represents the true underlying population.

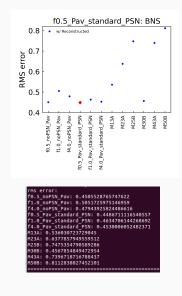

Singh et al. 2024 A&A 681, A56 "Reconstructing the star formation rate for compact binary populations with the Einstein telescope"

Reconstructed rates

M30B

Observation time of \sim 7.69 yrs Poisson error for 0.54 months Singh et al. 2025 $f0.5_Pav_standard_PSN$




Observation time of $\sim 6.2~\mbox{yrs}$ Poisson error for 0.46 months

- Get the Root mean square error on rate ratios, $\frac{R_{\rm mer,recon}}{R_{\rm mer,model}}$

13

Root mean square error on rate ratios

- Binary merger rate density evolution with redshift using ET can provide indirect constraints population evolution parameters including CCSN engine parameters.
- Rate constraints can be used to exclude parameter space more confidentiality, since we constrain the evolution of binary merger rate density as a function of redshift.
- Need population models with more densely sampled parameter space.
- Ongoing work looking into constraints using BBH and NSBH merger rate densities in addition to BNS.

Thank you

This work was supported by the Universitat de les Illes Balears (UIB); the Spanish Agencia Estatal de Investigación grants CNS2022-135440, PID2022-138626NB-100, RED2022-134204-E, RED2022-134411-T, funded by MICIU/AEI/10.13039/ 501100011033, and the European Union NextGenerationEU/PRTR, and the ERDF/EU; and Comunitat Autònoma de les Illes Balears through the Conselleria d'Educació i Universitats with funds from the European Union - NextGeneration EU/PRTR-C17.I1 (SINCO2022/6719) and from the European Union - European Regional Development Fund (ERDF) (SINCO2022/18146).

EXTRA SLIDES