SN2025gw, Warsaw

DEDICATED-FREQUENCY ANALYSIS OF GRAVITATIONAL-WAVE BURSTS FROM CORE COLLAPSE SUPERNOVAE

24 JULY 2025

YI SHUEN (CHRISTINE) LEE MAREK SZCZEPAŃCZYK TANMAYA MISHRA

MEG MILLHOUSE ANDREW MELATOS

TALK OVERVIEW

- GW signatures from core-collapse supernova (CCSN)
- Introducing the dedicated-frequency framework
- Analysis pipelines: coherent WaveBurst and BayesWave
- Use-cases and workflow
- Applications of the low-frequency follow-up
- Applications of the high-frequency follow-up
- Conclusion

CCSN GW SIGNATURES

• High-frequency ($\sim 400-2000 \text{ Hz}$)

- Protoneutron star (PNS) oscillations
- ✓ Constrains PNS structure and EOS, but does not imply explosion
- **Low-frequency** ($\leq 250 \text{ Hz}$)
 - Standing accretion shock instability (SASI) and neutrino-driven convection
 - Instabilities drive explosion Within the most sensitive band of LIGO/Virgo

DEDICATED-FREQUENCY FRAMEWORK

Full-band analysis : 32 - 2048 Hz

High-frequency (HF): 256 - 2048 Hz

Low-frequency (LF): 32 - 256 Hz

Time (s)

128 [↓]

4.0 3.5 -3.0 2.5

2.0 1.5

0.5

Szczepańczyk and Zanolin, Galaxies 10 (2022) 3, 70

Coherent WaveBurst (cWB)

(See Sergey's talk on Friday 25/07)

Uses a time-frequency (TF) transform called WaveScan

Both cross-power and excess power statistics used for efficient selection of transient events.

Statistic scales with coherent energy in the network: $\eta_r \sim SNR_{net}$

[Slide adapted from Tanmaya Mishra] S. Klimenko et al. <u>Phys. Rev. D 93, 042004</u> (2016)

BayesWave

Reconstruction of coherent signals \mathcal{S} and noncoherent glitches \mathscr{G} using sine-Gaussian wavelets

Uses Bayes factor to compare the evidence between signals, glitches and Gaussian noise

Statistic scales with model complexity, size of detector network and network signal-to-noise ratio: $\ln \mathscr{B}_{\mathcal{S},\mathcal{G}} \sim N\mathcal{F} \ln SNR_{net}$

Coherent WaveBurst (cWB)

- ✓ Fast and computationally efficient
- ✓ Able to analyse large datasets
- \checkmark In this work: Used to identify eligible candidates for dedicatedfrequency followup

ANALYSIS PIPELINE

BayesWave

✓ Computationally expensive due to extensive parameter space sampling

✓ Typically used to follow-up existing (e.g. cWB) triggers

\checkmark In this work:

Follows up cWB candidates in both the full-band and LF/HF

cWB candidates with FAR $\leq 1 \text{yr}^{-1}$

Full-band + low-frequency (LF) and/or high-frequency (HF)

USE-CASES

To detect and characterize frequency-specific GW signatures e.g. in CCSNe; a follow-up to GW candidates that satisfy the standard detection threshold

WORKFLOW

Full-band analysis of candidates with cWB

BayesWave follow-ups

Kanner et al., Phys, Rev. D. 93, 022002 (2016) + LVK all-sky short GW burst searches

PART I: APPLICATIONS OF THE LF FOLLOW-UP

Can we constrain explosion models of CCSNe detections in practical observing scenarios?

ANALYSIS DATASET

GW waveforms from five non-rotating and solar metallicity 3D CCSN models:

	Progenitor mass (M₀)	SASI/neutrino-driven convection?	Average LF power (%)		
SFHx (Kur+16)	15	Yes	36.6		
s25 (Rad+19)	25	Yes	19.4		
D15-3D (Mez+20)	15	Yes	18.4		
mesa20_pert (Oco+18)	20	Yes	16.2		
s183d (Pow+18)	18	No	14.9		

Injected into O3 data of the Hanford-Livingston (HL) two-detector network

SN 2023ixf, <u>ApJ 985 183</u> (2025) - see also Yanyan's talk (Tue 22/07)

VISUALISING CCSN WAVEFORMS

Time-frequency spectrograms of SFHx, s25 and s18

s25

s18

Continuous-wavelet transform: see Henshaw et al. (2025) <u>arXiv:2402.16533</u>

AMPLITUDE OF CCSN INJECTIONS

- Aim of the dedicated-frequency analyses is to follow-up "standard" detection candidates
- Detection = events with FAR below the 0 nominal threshold (1 yr^{-1}) in the cWB full-band analysis
- Inject signals at $h_{rss,50}$ to ensure the events are detectable
- BayesWave only follows up injections with with cWB FAR $\leq 1 \text{ yr}^{-1}$

INJECTED DISTANCE

Assume $f_{\text{peak}} \approx f_0$

Model	$E_{ m GW} \ [M_{\odot}c^2]$	$f_{ m peak} \ [m Hz]$	$h_{ m rss,50} \ [{ m Hz}^{-1/2}]$	$r_{50} \ [m kpc]$
\mathbf{SFHx}	1.1×10^{-9}	267	1.07×10^{-22}	7.8
s25	$2.7 imes 10^{-8}$	1132	2.06×10^{-22}	4.9
D15	$8.9 imes 10^{-9}$	1102	2.83×10^{-22}	2.1
${\rm mesa20_pert}$	$9.4 imes 10^{-10}$	1103	2.15×10^{-22}	0.9
$\mathbf{s18}$	$1.6 imes 10^{-8}$	818	2.01×10^{-22}	5.3

	SFHx	s25	D15	mes	sa20_p	pert	s18	
upernova	s15	s25	C15		m20p		s18	
N 2019ehk	6.57	3.11	0.52		0.77		3.05	
N 2019ejj	7.94	2.73	1.73	1	0.85	. • *.	2.68	
N 2019fcn	7.40	1.86	0.84	1.1	0.64		0.83	
N 2019hsw	5.60	2.82	2.24		0.76		3.85	
N 2020oi	6.53	1.96	1.15		0.70		1.71	
N 2020 cxd	8.90	3.15	2.74		0.95		4.74	
N 2020 dpw	8.66	2.86	2.46	1.14	0.85		4.30	
N 2020fqv	6.86	2.90	2.38		0.82	1. 	4.17	
				in the second				

Szczepańczyk et al. <u>Phys. Rev. D</u> 110, 042007 (2024)

RESULTS - RECONSTRUCTION ACCURACY

IMPLICATIONS

- CCSNe models with higher LF content have better detectability with the LF follow-ups
- BUT... the LF detectability is not guaranteed for CCSN models with moderate LF content e.g. s25, D15, mesa20_pert
- What does this mean?
 - ★ A successful LF detection is useful for constraining the CCSN explosion model \star Unsuccessful detection \neq no LF emission

APPLICATIONS OF THE HF FOLLOW-UP

Can we enhance detection significance of a candidate that only has high-frequency power, by ignoring all low-frequency data contributions?

PART II:

LOUDEST EVENT OF SN 2019fcn

Recognised as a trigger by both cWB <u>and BayesWave</u>
FAR = 22 yr⁻¹, lowest among other CCSN loudest events in O3
Only has high-frequency power, with central frequencies ~1000 Hz

SIGNIFICANCE ANALYSIS

	Full			HF		
Pipeline	$\eta_{ m c}$	$\ln \mathcal{B}_{\mathcal{S},\mathcal{G}}$	$FAR (yr^{-1})$	$\eta_{ m c}$	$\ln \mathcal{B}_{\mathcal{S},\mathcal{G}}$	$\operatorname{FAR}(\operatorname{yr}^{-1})$
cWB	6.7	-	22.1	-	-	-
BayesWave	-	7.5	6.4	_	8.6	4.9

 BayesWave full-analysis follow-up reduces FAR

BayesWave HF follow-up further reduces the FAR

cWB results quoted from Szczepańczyk et al. Phys. Rev. D 110, 042007 (2024)

SUMMARY

• We demonstrated applications of the dedicated-frequency framework with the hierarchical cWB+BayesWave pipeline

Low-frequency follow-ups $(32 - 256 \, \text{Hz})$ are useful for constraining CCSN explosion models, when there is a successful detection

High-frequency follow-ups $(256 - 2048 \, \text{Hz})$ can be used to enhance detection significance of a trigger with minimal low-frequency power

Going forward:

How can we tune cWB for independent dedicated-frequency follow-ups? Could repeat this analysis for HF looking for high-frequency features? Suggestions for other features to follow-up?

SUPPLEMENTARY SLIDES

cWB LF analysis

LF BACKGROUND MEASUREMENTS

LF DETECTION EFFICIENCY

FAR COMPARISON

HF SIGNIFICANCE ANALYSIS: A HEURISTIC EXPLANATION

ΔV : posterior volume V: prior volume

Bayes factor, 9

which results in $\mathscr{B}_{\text{full},\text{HF}} < 0$ (in favour of HF)

Bayesian evidence for model *M*: $p(\vec{d} \mid \mathcal{M}) \approx \frac{\Delta V}{V}$

$$\mathscr{B}_{\text{full,HF}} = \frac{\Delta V_{\text{full}} V_{\text{HF}}}{\Delta V_{\text{HF}} V_{\text{full}}}$$

Similar reconstruction: $\frac{\Delta V_{\rm full}}{\Delta V_{\rm HF}} pprox 1$ and by definition $V_{\rm full} > V_{\rm HF}$

