Towards core-collapse supernovae asteroseismology including SASI

VNIVERSITAT EÇVALÈNCIA

- Dimitra Tseneklidou
 - University of Valencia
- SN2025gw: 1st IGWN Symposium July 21st 2025, Warsaw
- Collaborators: R. Luna, P. Cerdá-Durán, A. Torres-Forné

VIII DOSIUM

Anatomy of a CCSNe

See Mueller's talk!

Müller, Living Reviews (2020)

GW emission from CCSNe

Proto-neutron star (PNS) phase (before explosion):

- Duration: 0.1-15
- PNS mass grows: $0.5 M_{\odot} \rightarrow 1.2 2 M_{\odot}$
- PNS shrinks: $30 \text{ km} \rightarrow 10 \text{ km}$
- PNS cools down

Convection, SASI

Burrows et al (2021)

Reviews:

- Janka, Melson, and Summa, Ann. Rev. Nucl. Part. Sci. 66 341 (2016)
- Mueller, Liv. Rev. Comp. Astr. 6:3 (2020)
- Mezzacappa, Endeve, Messer, and Bruenn, Liv. Rev. Comp. Astr. 6:4 (2020)
- Burrows and Vartanyan, Nature 589, 29 (2021)

GW emission from CCSNe

Proto-neutron star (PNS) phase (before explosion):

- Duration: 0.1-15 •
- PNS mass grows: $0.5 M_{\odot} \rightarrow 1.2 2 M_{\odot}$
- PNS shrinks: $30 \text{ km} \rightarrow 10 \text{ km}$
- PNS cools down •

Convection, SASI

Burrows et al (2021)

Reviews:

- Janka, Melson, and Summa, Ann. Rev. Nucl. Part. Sci. 66 341 (2016)
- Mueller, Liv. Rev. Comp. Astr. 6:3 (2020)
- Mezzacappa, Endeve, Messer, and Bruenn, Liv. Rev. Comp. Astr. 6:4 (2020)
- Burrows and Vartanyan, Nature 589, 29 (2021)

GW emission from CCSNe

Proto-neutron star (PNS) phase (before explosion):

- Duration: 0.1-15 •
- PNS mass grows: $0.5 M_{\odot} \rightarrow 1.2 2 M_{\odot}$
- PNS shrinks: $30 \text{ km} \rightarrow 10 \text{ km}$
- PNS cools down •

Convection, SASI

MAIN MECHANISM OF GW EMISSIONII

Burrows et al (2021)

Reviews:

- Janka, Melson, and Summa, Ann. Rev. Nucl. Part. Sci. 66 341 (2016)
- Mueller, Liv. Rev. Comp. Astr. 6:3 (2020)
- Mezzacappa, Endeve, Messer, and Bruenn, Liv. Rev. Comp. Astr. 6:4 (2020)
- Burrows and Vartanyan, Nature 589, 29 (2021)

GW signal from CCSNe

Highly stochastic!!

Spectrograms?

Torres-Forné et al. (2019)

Oscillation modes

Talk by Torres-Forné!

Torres-Forné et al. (2019)

Oscillation modes

Talk by Torres-Forné!

Torres-Forné et al. (2019)

BUT ... there is more!

Powell et al. (2021)

Kawahara et al. (2018)

standing Accretion shock Instability

General Relativistic Hydrodynamic Equations Linear perturbation equations of a star in hydrostatic equilibrium Solve the eigenvalue problem Use data from CCSNe simulations Classify the modes
 See also talks by Mueller,
 Infer properties of the star (universal relations)
 Torres-Forné, Sotaní! Classify the modes

Asteroseismology Recipe

See Murphy's talk: Newtonian analysis!

General Relativistic Hydrodynamic Equations Linear perturbation equations of a star in hydros . C equilibrium Solve the eigenvalue problem Use data from CCSNe simulations Classify the modes
 See also talks by Mueller,
 Infer properties of the star (universal relations)
 Torres-Forné, Sotaní! Classify the modes

Asteroseismology Recipe

See Murphy's talk: Newtonian analysis!

General Relativistic Hydrodynamic Equations

- Linear perturbation equations of a star in hydros.
- Solve the eigenvalue problem
- Use data from CCSNe simulations
- Classify the modes
- Infer properties of the star (universal relations)

Asteroseismology Recipe

See Murphy's talk: Newtonian analysis! **Ac** equilibrium

See also talks by Mueller, Torres-Forné, Sotaní!

The system of equations:

+ Rankine - Hugoniot Boundary Conditions at the shock

* Spectral methods * Physics Informed Neural Networks (PINNs)

Eigenvalue Problem

Spectral Methods

is in a license in Branch service and it is the and the service of the service of

Chebyshev collocation method Differentiation matrix D Multi-domain MN; M: # of domains, N: # of points \triangleright Discretised system of S equations \rightarrow Sx(MN+1) matrices

ADVANTAGES Exponential convergence - fast! Small grids Discretised equations in matrix form All modes (also complex!) are computed at once Regularity of the solution is ensured

I. p- and g-modes in a sphere

- > Ideal fluid with c_s^2 , $\Gamma_1 \rightarrow constant$
- > Buoyant region
- > Varying Brunt–Vaisälä frequency
- 2. Plane Waves in an 1D flow
- $> N^2 = 0$
- Sound speed, pressure, density --> constant
- > Lapse -> general
- > Velocity < 0 and subsonic

Cases of study

and $v \rightarrow 0$

$$\mathcal{N}^2\equiv rac{lpha^2}{\psi^4}\mathcal{G}_lpha\mathcal{B}$$

=2

Case I: Eigenfrequencies

Models

model	$M (M_{\odot})$	R(km)	Γ_1	c_s^2	α_R
NS1	1.4	10	2	0.1	0.81
NS2	2.0	10	2	0.1	0.74
WD	1.2	$5\cdot 10^3$	4/3	0.1	0.84

•	2	호	*	*	¥	×	*	×	×	
•	×	* *	*	¥	* * *	* * *	×	*	* * *	×
•	*	* ./	¥	•	* *	×	*	× × × ×	×××××××××××××××××××××××××××××××××××××××	*
•	* •	×	*	*	*	*	* * * *	×	*	*
•	* •	×	*	¥	× • •	* *	¥	: :	*	*
•	* *	,	*	÷	×	***	×	¥ ×	***	
•	× •	:	×	*	* *	* * * *	*	*	•	×
•	* *	×	,	*	* * *	*	*	*	i	ž
•	• • ×	*		• ו •×	• × • × •	•	• • • •	****	cet X 0 000	30 40

Case I: Eigenfunctions

g-modes

 $\tilde{} = 0$ Comparison to analytical solutions

Case I: Convergence

2 = 0Comparison to analytical solutions

 $1^{2} = 0$ Comparison to analytical solutions

Case II: Plane Waves

cretion		
shock	Exterior	
	<	
	4	
	4	
	4	
No.	perturbations	
		X

Newtonian analysis

Case II: Eigenfrequencies

★ Analytical and numerical solutions a
 ★ p-modes with decreasing frequency

★ Frequencies have <u>imaginary</u> part
 ★ Stable modes

Case II: Eigenfrequencies

★ Analytical and numerical solutions a
 ★ p-modes with decreasing frequency

★ Frequencies have <u>imaginary</u> part
 ★ Stable modes

Case II: Eigenfrequencies

★ Analytical and numerical solutions a
 ★ p-modes with decreasing frequency

★ Frequencies have imaginary part
 ★ Stable modes

Case III: Eigenfrequencies

Real part of the frequency

Imaginary part of the frequency

Case III: Eigenfrequencies UNSTA

Colour scale: ínteríor velocíty

Implementing PINNs

DT et al. (2025) (arXív:2504.12183)

PINS

- Static sphere of radius unity, density and sound speed $\gg N^2 = 0$
- Analytical solutions

1. Find the intervals containing eigenvalues (S-PINN)

DT et al. (2025) (arXív:2504.12183)

PINS

2. Calculate the eigenvalues using:

- a. Bisection method (s-PINN) VS
- b. f-PINN: the frequency as a parameter
 - Eigenfunctions of the 5th mode

Asteroseismology of CCSNe is very important because it could allow us to infer properties of the PNS directly from GW observations

Included for the first time accretion flow + standing accretion shock Introduced two eigenvalue solvers: Spectral Methods + PINNs

Realistic cases — Atta from CCSNe simulations (SASI?) Full GR cases (non-Cowling) Extension to BNS (A. Revilla-Peña, R. Bondarescu)

Thank you for your attention!

Dziękuję za uwagę!

General Relativistic Euler equations:

$$\frac{1}{\sqrt{\gamma}}\partial_t \left[\sqrt{\gamma}D\right] + \frac{1}{\sqrt{\gamma}}\partial_i \left[\sqrt{\gamma}Dv^{*i}\right] = 0$$

 $\frac{1}{\sqrt{\gamma}}\partial_t \left[\sqrt{\gamma}S_j\right] + \frac{1}{\sqrt{\gamma}}\partial_i \left[\sqrt{\gamma}S_j v^{*i}\right] + \alpha \partial_j p = \frac{\alpha \rho h}{2} u^\mu u^\nu \partial_j g_{\mu\nu}$

Non-rotating spherically symmetric star In equilibrium But **NOT** static

System of equations

Perturbations $q \rightarrow q + \delta q$

Decomposition of the perturbations:

 $\delta q = \delta \hat{q}(r) Y_{lm}(heta, \phi) e^{-i\sigma t}$ $\xi^r - n V_i e^{-i\sigma t}$

$$\begin{aligned} \xi &= \eta_1 I_{lm} e^{-i\sigma t}, \\ \xi^{\theta} &= \eta_2 \frac{1}{r} \partial_{\theta} Y_{lm} e^{-i\sigma t}, \\ \xi^{\phi} &= \eta_2 \frac{1}{r \sin^2 \theta} \partial_{\phi} Y_{lm} e^{-i\sigma t}, \end{aligned}$$

Cowling approximation Adiabatic perturbations

$$\delta \hat{\alpha} = 0 = \delta \hat{\psi}$$

 $\left.\frac{\partial p}{\partial \rho}\right|_{\rm adiabatic}$ $=hc_s^2=\frac{p}{c}\Gamma_1$

Rankine-Hugoniot conditions

General Relativistic

$$\begin{split} & [[\rho u^{\mu}]]n_{\mu} = 0, \\ & [[T^{\mu\nu}]]n_{\nu} = 0, \\ & \checkmark \\ & \checkmark \\ & \checkmark \\ & \land \\ & \land \\ & \land \\ & \land \\ & [[F]] = F_{\rm int} - F_{\rm ext} \end{split}$$

Ensure continuity of mass and conservation of energy-momentum fluxes

> Ideal fluid with c_s^2 , $\Gamma_1 \rightarrow constant$

- > Buoyant region
- > Varying Brunt–Vaisälä frequency \mathcal{N}^2

$$\equiv rac{lpha^2}{\psi^4} \mathcal{G}_lpha \mathcal{B}_{lpha}$$

Background profiles

> NSI \rightarrow N²= 0

- > Sound speed, pressure, density --> constant
- > Lapse -> general
- > Velocity < 0 and subsonic

DT et al. (2025) arXív:2503.16317

Case II: Advection

Background shock quantities

Physics Informed Neural Networks

ADVANTAGES

Grid free Fast to code Easy implementation of initial & boundary conditions > Flexible to add extra features Error control

Physics Informed Neural Networks

Farea et al. (2014)

ADVANTAGES

Grid free Fast to code Easy implementation of initial & boundary conditions > Flexible to add extra features Error control

SMs Newtonian simulation, model s20

Preliminary!

