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CCSN GW signatures

Figure 1: CCSN GW signatures.
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Estimation of the High Frequency Feature

Follow up of our previous papers:
1. Characterizing the temporal evolution of the high-frequency gravitational wave

emission for a core collapse supernova with laser interferometric data: A neural network
approach. https://doi.org/10.1103/PhysRevD.108.084027.

2. Dependence of the reconstructed core-collapse supernova gravitational wave
high-frequency feature on the nuclear equation of state in real interferometric data.
https://doi.org/10.1103/PhysRevD.110.083006.

3. Estimation of the High-Frequency Feature Slope in Gravitational Wave Signals from
Core Collapse Supernovae Using Machine Learning.
https://doi.org/10.3390/app15010065.

Figure 2: Previous results on PE for CCSN GWs in real LKV noise.
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We extract GW signals from two-dimensional, axisymmetric CCSN simulations performed
with the CHIMERA code. Five models were considered that employed five distinct EOS in the
CCSN simulations: DD2, FSUGold, IUFSU, SFHo, and SFHx.

Figure 3: Top panel strains for each E-series model, middle panel spectrogram and bottom panel, in
blue, the estimated slope of HFF. With red, dashed lines the estimated means of the HFF slope in the
E-series spectrograms in LVK noise data (at 1 kpc). [Murphy et al. 2024]
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Figure 4: HFF slopes estimated including the range of variability of the HFF starting frequency across
E-series models for detection distances of 1 kpc, 5 kpc, and 10 kpc [Murphy et al. 2024].
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Methodology

Clasiffication of the EOS according to the HFF slope

Is it possible to distinguish between the different EOS’s using the estimated slope of the HFF
in real interferometric LVK noise?

Figure 5: Overall structure of the CNN model implemented.
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Results: TW1 EOS Classification

Figure 6: ROC curves and confusion matrices associated to the classification of the EOS at 1 Kpc, 5
Kpc, and 10 Kpc within the TW1. MICRO gives more weight to classes with more instances -MACRO
It treats all classes equally, regardless of their frequency in the dataset.
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Results: TW2 EOS Classification

Figure 7: ROC curves and confusion matrices associated to the classification of the EOS at 1 Kpc, 5
Kpc, and 10 Kpc within the TW2.
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Results:

Figure 8: Accuracy, loss, micro-average OvR (AUC), and macro-average OvR (AUC) for the
multi-classifier CNN before and after the application of the SMOTE technique on the datasets TW1
and TW2.

Figure 9: ROC OvR AUC multiclass at Galactic distances of 1kpc, 5kpc, and 10kpc.
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Conclusions:

1. Our analysis and implementation of this CNN architecture demonstrate the ability to
precisely classify EOS based on the HFF estimated slope in LVK interferometric data.

2. This study advances the methodological framework for inferring EOS properties from
CCSN GW signals:
HFF slope estimation 7→ EOS HFF slope estimation 7→ EOS Classification7→ Astro PE.

3. This progression, alongside the methodology for HFF slope estimation presented in our
previous papers [Casallas-Lagos et al. 2023 and 2025], [Murphy et al. 2024], collectively
enriches the suite of computational tools for contemporary CCSN GW parameter
estimation, expanding avenues to investigate the fundamental nature of signatures
encoded within these astrophysical signals.
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Thank You!
Questions?
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