Numerical simulations of GRB jets from the BH horizon to postbreakout in collapsing stars

Gerardo Urrutia Center for Theoretical Physics (PAS), Warsaw, Poland gurrutia@cft.edu.pl

Agnieszka Janiuk (CFT, Poland), Héctor Olivares (UA, Portugal)

Symposium on Core Collapse Supernova and Gravitational Wave, Warsaw 2025

GRBs from collapsars

Izzo $e_{\frac{2}{2}}$ al 2019

GRBs from collapsars

Small scales, e.g, McFadyen & Woosley 1999

Also see, Shibata + 2025, Aloy & Obergaulinger 2020

e.g., beyond the star surface Urrutia + 2023

Also see, Aloy + 2000, Harrison + 2019, Gottlieb + 2020, ...

Long GRB Jet is a multi-scale problem

Figure Credits: Dado et al. 2022

Long GRB Jet is a multi-scale problem

Figure Credits: Dado et al. 2022

Jets launched beyond the iron core

Lopez-Camara et al. 2016

Cold and pressure dominated jets

Matsumoto et al. 2019 Weakly magnetized jet + variable source

Gottlieb et al. 2020

Jets beyond the iron core: jets initially structured

Urrutia, De Colle & Lopez-Camara 2023

Summary: The role of jet/progenitor parameters

Connection of central engine activity with large scale dynamics?

- Luminosity vs. Time
- Distribution of velocities
- Variability
- Mean life time of the progenitor
- Jet opening angle
- Final estructure of the jet

Jet launching from the center

- Fast spinning BH (e.g., MacFadyen & Woosley 1999) $l \propto l_0 \sin^2(\theta)$ Angular moment distribution
- $t_{\rm dyn} \sim 10 \, {\rm s}$ Dynamical time
- $\dot{M} \sim 0.1 M_{\odot} \mathrm{s}^{-1}$ Accretion rate
- $B_0 \sim 10^{14} 10^{15} \,\mathrm{G}$ Magnetic Field
 - (e.g., Burrows 2007, Mösta 2014; 2015; Obergaulinger & Aloy 2020; Gottlieb 2022)

Jet launching from the center

We are remapping the stelar profile in BHAC code (Porth + 2017; Olivares + 2019)

Rotation

$$\epsilon_{isco} = -u_{t,isco} = \frac{1 - 2/r_{isco} + a/r_{isco}^{3/2}}{\sqrt{1 - 3/r_{isco} + 2a/r_{isco}^{3/2}}}$$

$$l_{isco} = u_{\phi,isco} = \frac{r_{isco}^{1/2} - 2a/r_{isco} + a^2/r_{isco}^{3/2}}{\sqrt{1 - 3/r_{isco} + 2a/r_{isco}^{3/2}}}$$

$$u^{\phi} = C \sin^2 \theta \left(-g^{t\phi} \epsilon_{isco} + g^{\phi\phi} l_{isco} \right)$$

Magnetic Field Potential

$$A_{\phi} = \frac{B_0 r_c^3}{r^3 + r_0^3} \sin \theta$$

Magnetization

Magnetization

Jet propagation

Model	θ _{j,50} [°]	$ heta_{\mathrm{j},R_{\star}}$ [°]	
	$\sigma > 1$	$\sigma > 1$	$\Gamma u > 2$
m1-B0	8.6	4.5	8.4
m1-10 ⁻¹ B0	6.4	6.6	8.7
m1-10 ⁻² B0	6.7	2.6	5.2
16TI	4.9	8.4	10.6
12TH	5.8	4.6	7.5

Central engine activity

Jet luminosity and efficiency

Jet structure

Afterglow estimation from jet structure

 $\theta_{\rm obs} = 5^{\circ}$

Jet structure

$$\theta_{\rm obs} = 30^{\circ}$$

20

Summary

- magnetic flux > 1e25 Mx.
- We obtained jet luminosities: 1e50-1e53.
- moderately magnetized wings.
- At jet's breakout the magnetization drops and kinetic energy dominates.

- For identical magnetic setups, the Wolf-Rayet models 12TH and 16TI, whose envelopes fall more steeply than the MESA star, allow faster head propagation. They also produce stronger core-wing mixing and larger terminal opening angles.

- A purely hydrodynamic accretion flow amplifies the central density but never excavates a low-density funnel, therefore, disk winds alone can not break the progenitor star.

- Jets are launched only when a dipolar field with peak strength BO >1e12 G. It produces a

- Strongly magnetized models develop a narrow, highly magnetized core surrounded by

- Hybrid field geometries yield a quasi-cylindrical outflow described as a failed jet.

Gracias! - Thank you!

dxdx dxdxdx dxdxdxdx dxdxpandx dxdxdxdx dxdxdx dx dx

