Neutrino Flavor Conversion in Supernovae: Quantum Kinetics and Astrophysical Implications

Masamichi ZAIZEN

Postdoc, Univ. of Tokyo in Japan

Phys. Rev. D 107, 103022 (2023)

Phys. Rev. D 111, 103029 (2025)

SN2025gw: First IGWN Symposium on Core Collapse Supernova Gravitational Wave Theory and Detection

University of Warsaw on Jul. 22, 2025

Roles of Neutrinos in CCSNe

Neutrino-heating process:

- Shock wave stalls due to accreting matter and fails to explode.
- Neutrinos work as mediators because of their weakly-coupling nature with matter.
- Neutrinos transfer their energy from the hotter core to the colder stalled shock.

Neutrino transport is essential in the theoretical studies/predictions.

 \rightarrow One of the uncertainties is neutrino oscillation.

Solar Neutrino Problem

Sea of Leptons & Nucleons in CCSNe

Possibility Search of Flavor Conversion

Phenomenological Approach in 1D/2D

Simple prescriptions:

- Flavor equipartition below $ho <
ho_{crit}$.

This may over-/under-estimate the impact but can change the shock dynamics.

(noFC = traditional moment transport)

Phenomenological Approach for GW

Quantum Kinetic Neutrino Transport

Asymmetry Triggering Flavor Instability

Quantum Kinetic Equation:

$$(\partial_t + \boldsymbol{v} \cdot \nabla)\rho = -\mathrm{i} \left[\underline{\mathcal{H}_{\mathrm{vac}}} + \mathcal{H}_{\mathrm{mat}} \right] + \underline{\mathcal{H}_{\nu\nu}}, \rho + \underline{\mathcal{H}_{\mathrm{col}}}$$

e.g., **Duan+'06**

Slow flavor instability (SFI)

Asymmetry in *energy*

$$\tau_{\rm slow} \sim \mathcal{O}(\sqrt{\mu\omega_{\rm v}})^{-1}$$

e.g., *Sawyer* '16

Fast flavor instability (FFI)

Asymmetry in angle

$$\tau_{\text{fast}} \sim \mathcal{O}(\mu^{-1})$$

$$\sim \mathcal{O}(G_{\text{F}} n_{\nu})^{-1}$$

~ 1 cm

e.g., *Johns* '23

Self-interactions

Collisional flavor instability (CFI)

Asymmetry in *collisions*

$$\tau_{\rm col} \sim \mathcal{O}(\sqrt{\mu\Gamma})^{-1} - \mathcal{O}(\Gamma)^{-1}$$

Relatively longer scale

Collisions

Possibility Search of Flavor Conversion

Fast flavor instability (FFI)

Mechanism of instability:

Asymmetry in angles

Neutrino distribution

- Outside decoupling regions
- Forward-peaked
- → Angular dist. is crucial.

Asymmetry in Angular Distributions

ELN-XLN angular distribution:

$$G_{\mathbf{v}}^{ex} = \sqrt{2}G_{F} \int \frac{E^{2}dE}{2\pi^{2}} \left[(f_{\nu_{e}} - f_{\bar{\nu}_{e}}) - (f_{\nu_{x}} - f_{\bar{\nu}_{x}}) \right]$$

= **ELN** - **XLN**

(Electron Lepton Number) (Heavy-Leptonic one)

Local Simulation of Fast Instability

Note: Flavor Equipartition for Species?

Possibility Search of Flavor Conversion

Mechanism of instability:

Asymmetry in collisions

Neutrino distribution

- Inside/Outside PNS
- Close to isotropic
- \rightarrow Energy dist. is crucial.

Collisional flavor instability (CFI)

Local Simulation of Collisional Instability

+ Classical β-Equilibrium (Feedback)

Case 2:

CFI can occur near the neutrino sphere.

 $\sim \beta$ -equilibrium with matter

$$n + e^{-} \Longrightarrow p + \nu_e$$
$$p + e^{-} \leftrightarrows n + \nu_e$$

Summary & Conclusions

- 1. Refractive effects from background matter can lead to nonnegligible flavor conversion phenomena.
- 2. Neutrino flavor conversion can alter not only shock dynamics and neutrino signals but also GW signals from CCSN.
- 3. Direct computation of **fast/collisional flavor conversion** exhibits the angular / energy structure of the asymptotic states.
- 4. More accurate modeling of "Neutrino Flavor Conversion" into CCSN is running!!