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Three-Higgs-Doublet Models (3HDMs)

3HDMs offer a unique way to approach the flavor puzzle.
Is it possible to assign masses to the massive fermions such that all quarks and
leptons of a particular generation get the masses primarily from a particular
doublet?

Then, strong hierarchy among the VEVs of the three doublets
=⇒ strong mass hierarchies between different generations of fermions

This gives rise to a horizontal Yukawa structure as explained in the diagram
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About FCNCs

Unlike vertical (democratic) 3HDMs, natural flavor conservation (NFC) is
absent here =⇒ scalar-mediated flavor changing neutral currents (FCNCs).

In nHDMs, it is possible to work in the alignment limit, where a particular
CP-even scalar becomes SM-like. This mitigates flavor constraints on that
scalar.

FCNCs mediated by the nonstandard scalars are still present.

So nonstandard scalars must be much heavier than the electroweak scale to
satisfy the constraints from flavor data.
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We attempt to construct a 3HDM with the following properties:

The charged fermions of a particular generation primarily receive their masses
from a particular Higgs-doublet i.e. Choose appropriate Yukawa textures.
Then, a strong VEV hierarchy, v1 ≪ v2 ≪ v3 among the scalar doublets lead to
the strong mass hierarchy among the different generations of fermions.

All the FCNCs occur exclusively in the up-quark sector, with their effects being
considerably suppressed by the off-diagonal elements of the CKM matrix.
Similar to BGL models. This is what we call an up-type BGL 3HDM.

No FCNC couplings in down-quark and charged lepton sector i.e. the neutral
Higgs couplings in these sectors are flavor diagonal.

The constraints arising from the flavor data are quite relaxed that sub-TeV
scale non-standard scalars can successfully pass through the flavor constraints.
Observable signatures in collider searches.

It should be, at the very least, as economical as the NFC versions of 3HDMs in
terms of the number of physical parameters. No compromise on the predictive
power in comparison with NFC 3HDMs.
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Implementation of the horizontal 3HDM

Our construction is based on a 3HDM structure with a global U(1)1 × U(1)2
horizontal symmetry.

U(1)1 : (QL)1 → e−iq1(QL)1 , (nR)1 → e−2iq1(nR)1 , ϕ1 → eiq1ϕ1 , (1a)

U(1)2 : (QL)2 → e−iq2(QL)2 , (nR)2 → e−2iq2(nR)2 , ϕ2 → eiq2ϕ2 , (1b)

QL = (pL nL)
T , the usual SM quark SU(2)L doublets

nR, the down-type SU(2) quark singlets
ϕi, the scalar doublets
The subscript refers to the different generations in the Lagrangian basis.

All other quark and scalar fields transform trivially under the flavour symmetry.
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Yukawa Sector

The Yukawa Lagrangian,

LY = −
3∑

k=1

[
Q̄LΓkϕknR + Q̄L∆kϕ̃kpR

]
+ h.c. , (2)

pR, the up-type quark SU(2)L singlets.

The flavour indices (Γk and ∆k are 3× 3 matrices in the flavour space) are
suppressed.

The mass matrices for the down-type and up-type quarks are

Mn =
1√
2

3∑
k=1

vk Γk , Mp =
1√
2

3∑
k=1

vk ∆k . (3)
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The textures of Γ and ∆ matrices that follow from the transformations of
Eq. (1) are given below:

Γ1 =

yd
1 0 0
0 0 0
0 0 0

 ; Γ2 =

0 0 0

0 yd
2 0

0 0 0

 ; Γ3 =

0 0 0
0 0 0

0 0 yd
3

 ,

∆1 =

a1 b1 c1
0 0 0
0 0 0

 ;∆2 =

 0 0 0
a2 b2 c2
0 0 0

 ;∆3 =

 0 0 0
0 0 0
a3 b3 c3


Γk’s and hence Mn are already diagonal =⇒ the mass of each generation in
the down sector only receives contributions from the VEV of a dedicated ϕk.

1√
2

3∑
k=1

vk Γk =
1√
2
diag

(
v1 y

d
1 , v2 y

d
2 , v3 y

d
3

)
= diag (md , ms , mb) . (5)

Although not as obvious as the down sector, the same VEV hierarchy will lead
to analogous effects in the up-quark sector, i.e., the VEV of a particular
doublet will be the major source of mass for a particular generation of quark in
the up-sector as well.
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The physical quark fields, u ≡ (u c t)T and d ≡ (d s b)T , are

nL = ULdL , nR = URdR , pL = VLuL , pR = VRuR , (6)

The diagonal mass matrices will be obtained as follows:

Dd = U†
L ·Mn · UR = diag(md, ms, mb) , (7a)

Du = V †
L ·Mp · VR = diag(mu, mc, mt) , (7b)

and the CKM matrix will be given by V = V †
LUL.

Since Mn is directly diagonal, UL and UR are diagonal. We take UL to be the
identity matrix, whereas UR provides the necessary rephasings such that the
elements of Dd are real and positive.

Therefore, the CKM mixing arises exclusively from the up-sector as follows:

V = V †
LUL = V †

L . (8)
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Scalar Sector

Now we take a detour to look at the scalar sector of the model in order to set
up notations and to define the scalar basis in which we will further calculate the
flavor constraints.

Taking into account the field transformations of Eq. (1), the scalar potential
can be written as:

VU(1)×U(1) = m2
11ϕ

†
1ϕ1 +m2

22ϕ
†
2ϕ2 +m2

33ϕ
†
3ϕ3

−
(
m2

12ϕ
†
1ϕ2 +m2

13ϕ
†
1ϕ3 +m2

23ϕ
†
2ϕ3 + h.c.

)
+λ1(ϕ

†
1ϕ1)

2 + λ2(ϕ
†
2ϕ2)

2 + λ3(ϕ
†
3ϕ3)

2 + λ4(ϕ
†
1ϕ1)(ϕ

†
2ϕ2)

+λ5(ϕ
†
1ϕ1)(ϕ

†
3ϕ3) + λ6(ϕ

†
2ϕ2)(ϕ

†
3ϕ3) + λ7(ϕ

†
1ϕ2)(ϕ

†
2ϕ1)

+λ8(ϕ
†
1ϕ3)(ϕ

†
3ϕ1) + λ9(ϕ

†
2ϕ3)(ϕ

†
3ϕ2) , (9)

where m2
12, m

2
13, and m2

23 break the global U(1)1 × U(1)2 symmetry softly.

We also assume that all the potential parameters (including VEVs) are real.
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The individual VEVs after the EWSB, are further parameterized as follows:

v1 = v cosβ1 cosβ2 , v2 = v sinβ1 cosβ2 , v3 = v sinβ2 , (10)

with v =
√

v21 + v22 + v23 = 246 GeV being the total electroweak VEV.

For later convenience, we go to a Intermediate basis by rotating the fields in the
Lagrangian basis as follows:H0

R1

R2

 = Oβ

h1

h2

h3

 ,

G0

A′
1

A′
2

 = Oβ

z1
z2
z3

 ,

G±

H ′±
1

H ′±
2

 = Oβ

w±
1

w±
2

w±
3

 , (11)

Here,

Oβ =

 cosβ2 cosβ1 cosβ2 sinβ1 sinβ2

− sinβ1 cosβ1 0
− cosβ1 sinβ2 − sinβ1 sinβ2 cosβ2

 . (12)

In Eq. (11), G0 and G± stand for the neutral and charged Goldstone bosons
respectively.

Horizontal 3HDMs 11 / 27



The rest of the fields are not the physical mass eigenstates, in general.

The rotations to the mass eigenstates are as follows,G±

H±
1

H±
2

 = Oγ2

G±

H ′±
1

H ′±
2

 ,

G0

A1

A2

 = Oγ1

G0

A′
1

A′
2

 ,

 h
H1

H2

 = Oα3

H0

R1

R2

 , (13)

with Oγ1 and Oγ2 are,

Oγ1 =

1 0 0
0 cos γ1 − sin γ1
0 sin γ1 cos γ1

 . Oγ2 =

1 0 0
0 cos γ2 − sin γ2
0 sin γ2 cos γ2

 (14)

We will work in the above defined Higgs basis under the alignment limit where
the scalar H0 is also the mass eigenstate corresponding to the SM Higgs boson.
In this basis, R1 and R2 are rotate by the following matrix to obtain the
physical eigenstates H1 and H2.

Oα3 =

1 0 0
0 cosα3 − sinα3

0 sinα3 cosα3

 (15)
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Returning to the Yukawa Sector

To understand the structure of the FCNCs and calculate the flavor constraints,
we will determine the couplings of the physical quarks to the scalar fields
defined in Eq. (11).

These scalars are in general not mass eigenstates but the couplings to the
physical eigenstates can be obtained by suitable rotations originating from the
scalar sector alone.

The Yukawa couplings of the CP-even scalars are

− L CP−even
Y =

1√
2

3∑
k=1

[
n̄L Γk hk nR + p̄L ∆k hk pR

]
+ h.c.

= d̄L

(
1√
2

3∑
k=1

Γk hk

)
dR + ūLV

†
L

(
1√
2

3∑
k=1

∆k hk

)
VRuR + h.c. . (16)

In the intermediate basis defined in Eq. (11), we can decompose hk as

hk = (Oβ)1k H0 + (Oβ)2k R1 + (Oβ)3k R2 . (17)
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By virtue of being a SM-like Higgs, the couplings of H0 simplify to SM
couplings.

−L H0

Y =
H0

v

[
d̄L Dd dR + ūL Du uR

]
+ h.c. =

H0

v

[
d̄ Dd d+ ūDu u

]
.(18)

The couplings of R1 and R2 that mediate FCNCs can be read of from Eq. (16)
as

−L R
Y = R1

[
d̄L Nd

1 dR + ūL Nu
1 uR

]
+R2

[
d̄L Nd

2 dR + ūL Nu
2 uR

]
+ h.c.

(19)

where,

Nd
1 =

1√
2

3∑
k=1

(Oβ)2kΓk , Nu
1 = V †

L

(
1√
2

3∑
k=1

(Oβ)2k∆k

)
VR , (20a)

Nd
2 =

1√
2

3∑
k=1

(Oβ)3kΓk , Nu
2 = V †

L

(
1√
2

3∑
k=1

(Oβ)3k∆k

)
VR . (20b)
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Taking Eqs. (5) and (12) into account, Nd
1 assumes a simple shape:

Nd
1 = diag

(
md(Oβ)21

v1
,
ms(Oβ)22

v2
,
mb(Oβ)23

v3
,

)
= diag

(
−md

v

tβ1tβ2

sβ2

,
ms

v

tβ2

tβ1sβ2

, 0

)
, (21)

where tα, sα and cα denote tanα, sinα, and cosα, respectively.

Similarly

Nd
2 = diag

(
md(Oβ)31

v1
,
ms(Oβ)32

v2
,
mb(Oβ)33

v3
,

)
= diag

(
−md

v
tβ2 ,−

ms

v
tβ2 ,

mb

v

1

tβ2

)
. (22)

We can write Nu
1 and Nu

2 as

Nu
1 = − sinβ1F1 + cosβ1F2 (23)

Nu
2 = − cosβ1 sinβ2F1 − sinβ1 sinβ2F2 + cosβ2F3 (24)

where,

Fk =
1√
2
V †
L .∆k.VR =

1

vk
V †
L(PkMp)VR (25)
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Now, we can write Fk as,

Fk =
1

vk
V †
L(PkMp)VR =

1

vk
(V †

LPkVL)Du (26)

where, Pk is the projection matrix which has all elements zero except the (k,k)
element.

Now, we can expand,

(V †
LPkVL)ab = VakV

∗
bk (27)

Therefore

(Fk)ab =
1

vk
Vak(V

∗
bk)mb (28)

Using this, we can write Nu
1 and Nu

2 as

(Nu
1 )ab =

(
−tβ1tβ2

sβ2

(V )a1(V )∗b1 +
tβ2

tβ2sβ2

(V )a2(V )∗b2

)
(Du)bb

v
(29)

(Nu
2 )ab =

(
−tβ2(V )a1(V )∗b1 − tβ2(V )a2(V )∗b2 +

1

tβ2

(V )a3(V )∗b3

)
(Du)bb

v
(30)
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The pseudoscalar couplings follow similarly.

−L CP−odd
Y =

1√
2

3∑
k=1

[
n̄L Γk (izk)nR − p̄L ∆k (izk) pR

]
+ h.c.

⊃ i A′
1

[
d̄
(
Nd

1 PR −Nd
1

†
PL

)
d− ū

(
Nu

1 PR −Nu
1
† PL

)
u

]
+ i A′

2

[
d̄
(
Nd

2 PR −Nd
2

†
PL

)
d− ū

(
Nu

2 PR −Nu
2
† PL

)
u

]
.(31)

Similarly, for the charged scalars.

−L charged
Y =

3∑
i=1

[
p̄L Γi ϕ

+
i nR + p̄R ∆†

i (−ϕ+
i )nL

]
+ h.c.

⊃
√
2H ′+

1

[
ū
(
V Nd

1PR −Nu
1
†V PL

)
d
]

+
√
2H ′+

2

[
ū
(
V Nd

2PR −Nu
2
†V PL

)
d
]
+ h.c. (32)
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Constraints from Perturbativity

The perturbativity bounds are obtained by imposing the following condition on
the nonstandard Yukawa couplings

|(Nu,d,ℓ
1,2 )ab| ≤

√
4π (33)

Additionally, to minimize the hierarchy in Yukawa parameters, we impose that
v2 > v1 and v3 > v2

Also we choose two benchmarks

1 (tanβ1 = 5, tanβ2 = 25) implying v1 ≈ 2 GeV, v2 ≈ 10 GeV and
v3 ≈ 246 GeV, which follows a strong hierarchy v1 ≪ v2 ≪ v3.

2 (tanβ1 = 2, tanβ2 = 1) implying v1 ≈ 78 GeV, v2 ≈ 156 GeV and
v3 ≈ 174 GeV, which follows a mild hierarchy v1 < v2 < v3

The subsequent plot shows the regions allowed from these constraints
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Figure: Allowed regions from the perturbativity constraints on the Yukawa
couplings. The shaded areas inside the boundary on the left and on the bottom right
denote the regions in which the VEV hierarchies invert: v1 > v2 (left) and v2 > v3
(bottom right).
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Flavor Constraints

We will analyze the flavor constraints in the alignment limit. In addition, to
ensure automatic compatibility with the theoretical constraints from unitarity,
boundedness from below and the ρ parameter, we impose the following relations:

mH1 = mA1 = mC1 ≡ M1 , mH2 = mA2 = mC2 ≡ M2 , α3 = γ1 = γ2 ≡ γ . (34)

We analyze the constraints arising from neutral meson oscillations, namely
∆MK , ∆MBs , ∆MBd , and ∆MD, as well as from b → sγ focusing on the
leading order contributions.
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The constraints from D0-D̄0 mixing occurs at the tree-level due to the
off-diagonal elements (Nu

1,2)12 and (Nu
1,2)21.

Nu
1 is particularly large for tanβ1,2 ≫ 1. Consequently, it is preferable to

selectively decouple one tier of nonstandard scalars, and arrange γ such that
Nu

1 couples predominantly to these decoupled scalars.

Based on this strategy, we present benchmark scenarios that largely follow this
assumption, with M1 ≫ M2 along with γ ≈ 0.

After selectively decoupling the first tier of scalars by setting γ = 0 and M1 to
be large, we still need M2 to be O(5TeV) to accomodate a strong VEV
hierarchy (v1 ≪ v2 ≪ v3) given by the benchmark tanβ1 = 5 and tanβ2 = 25.

On the other hand, if we work with a milder VEV hierarchy, v1 < v2 < v3,
reflected by the benchmark tanβ1 = 2 and tanβ2 = 1, then nonstandard masses
below the TeV scale can be easily accommodated.

These results are summarized in the following plots.
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Figure: Constraints from flavor data for the case of γ = 0 with tanβ1 = 5,
tanβ2 = 25 (left), and tanβ1 = 2, tanβ2 = 1 (right). The shaded region is
forbidden by ∆MD (cyan), ∆MK (red) and b → sγ (purple). No additional
constraints arise from ∆MBs,d for the displayed range of parameters. Please note
that the ranges are different in the axes of the two plots.
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These results can also be cast in the tanβ1-tanβ2 plane.

For masses as light as M1 = 1 TeV and M2 = 400 GeV, the flavor constraints
can be successfully satisfied with relatively mild VEV hierarchy v1 < v2 < v3.

However, if we insist on a stronger VEV hierarchy, v1 ≪ v2 ≪ v3, then the
flavor constraints will force the nonstandard masses to be much heavier than
the electroweak scale.

Additionally, we also see how changing γ = 0 significantly affects the allowed
parameter space.
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Conclusion

We constructed a model that can successfully disentangle the primary sources
of masses of different generations of charged fermions such that the k-th
generation of the fermion gets its mass from the VEV of the k-th scalar doublet.
The model also has the same number of parameters as the NFC 3HDM.

However, The flavor constraints turned out to be very strong for the up-type
version considered here. For the desired VEV hierarchy v1 ≪ v2 ≪ v3, the
constraints from neutral meson mixings forbid nonstandard masses below
(5 TeV). To allow nonstandard scalars in the sub-TeV regime, we need to relax
the aesthetic appeal of maintaining the hierarchy v1 ≪ v2 ≪ v3, i.e.,
tanβ1,2 ≫ 1.

This is because the strength of the tree-level FCNC interactions in the up-quark
sector are proportional to the up-type masses.
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Thank you
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