Standard Model Baryon number Violation at T=0 from Higgs Bubble Collisions

Marco Gorghetto

Main Result

• We identified a **new source of baryon number violation** during a first-order electroweak (EW) phase transition, active at T=0

Main Result

- We identified a **new source of baryon number violation** during a first-order electroweak (EW) phase transition, active at T=0
- Bubble collisions generate EW gauge bosons, producing an **effective sphaleron rate** similar in magnitude to electroweak sphalerons in the symmetric phase

Opens up new possibilities for baryogenesis in a supercooled phase transition

Review of baryon number violation in the SM

• B and L are **global accidental symmetries** of the SM, at the classical level

• Their violation has never been measured experimentally

Review of baryon number violation in the SM

• B and L are **global accidental symmetries** of the SM, at the classical level

• Their violation has **never been measured** experimentally

 However, they must have been violated in the early Universe to account for the observed baryon asymmetry of our Universe

• In the SM both B and L are violated at the quantum level by the chiral anomaly

$$\partial_{\mu}J_{B}^{\mu} = \partial_{\mu}J_{L}^{\mu} =$$

• From the anomaly:
$$\partial_\mu J^\mu_B \ = \partial_\mu J^\mu_L \ = \qquad N_f \frac{\alpha_w}{8\pi} {\rm Tr}\, F \tilde F \not= 0$$

EW field strength

• From the anomaly:

$$\partial_{\mu}J_{B}^{\mu} \ = \partial_{\mu}J_{L}^{\mu} \ =$$

$$\partial_{\mu}J_{B}^{\mu}=\partial_{\mu}J_{L}^{\mu}=N_{f}\frac{\alpha_{w}}{8\pi}$$
 Tr $F\tilde{F}$ $\neq 0$ $D_{\mu}J_{CS}^{\mu}$ EW field strength total derivative

$$\Delta B = \Delta L = N_f \Delta N_{\rm CS}$$

$$N_{\rm CS} = \int d^3x \, J_{\rm CS}^0 \sim \int d^3x \, e^{ijk} \, \text{Tr} (W_i F_{jk} + W_i W_j W_k)$$

Chern-Simons (CS) number

• From the anomaly:

$$\partial_{\mu}J_{B}^{\mu} \ = \partial_{\mu}J_{L}^{\mu} \ =$$

$$\partial_{\mu}J_{B}^{\mu} = \partial_{\mu}J_{L}^{\mu} = N_{f}\frac{\alpha_{w}}{8\pi} \text{Tr} F\tilde{F} \neq 0$$

$$\partial_{\mu}J_{CS}^{\mu} \text{EW field strength}$$
total derivative

$$\Delta B = \Delta L = N_f \Delta N_{\rm CS}$$

$$N_{\rm CS} = \left[d^3x J_{\rm CS}^0 \sim \left[d^3x \, e^{ijk} \, \text{Tr} \left(W_i F_{jk} + W_i W_j W_k \right) \right] \right]$$

Chern-Simons (CS) number

- B-L is conserved
- Processes changing $N_{\rm CS}$ also lead to a change to B+L

$$E$$
 minima (vacua): $F_{\mu\nu}=0$ $W_{\mu}=0$

$$E$$
 minima (vacua):
$$F_{\mu\nu}=0 \qquad W_{\mu}=0 \qquad W_{\mu}=-iU^{-1}\partial_{\mu}U \\ S^{3}\to SU(2)$$

$$E$$
 minima (vacua):
$$F_{\mu\nu}=0 \qquad W_{\mu}=0 \qquad W_{\mu}=-iU^{-1}\partial_{\mu}U \\ S^{3}\to SU(2)$$

$$E$$
 minima (vacua):
$$F_{\mu\nu}=0 \qquad W_{\mu}=0 \qquad W_{\mu}=-iU^{-1}\partial_{\mu}\overline{U}_{S^3\to SU(2)}$$

$$\Delta B = N_f \Delta N_{\rm CS}$$
 \Longrightarrow Baryons created by transitions between topologically distinct vacua of the SU(2) gauge field

• Quantum tunnelling rate per unit time and volume:

$$\Gamma \sim e^{-4\pi/\alpha_w} \sim 10^{-165}$$

$$\alpha_w \sim 1/30$$

• Quantum tunnelling rate per unit time and volume:

$$\Gamma \sim e^{-4\pi/\alpha_w} \sim 10^{-165}$$

$$\alpha_w \sim 1/30$$

• Γ sizeable at high T: it is possible to go over the barrier via **thermal fluctuations**

EW **symmetric** phase

$$\Gamma \sim 25 \, \alpha_w^5 T^4$$

 T_c = temperature of the EW phase transition

EW broken phase

EW **symmetric** phase

$$\Gamma \sim 25 \, \alpha_w^5 T^4$$

 T_c = temperature of the EW phase transition

$$\Gamma \sim v^4 e^{-E_{\rm sph}(T)/T}$$
 $E_{\rm sph}(T) = M_W(T)/g_W \propto \langle \phi(T) \rangle$

EW broken phase

EW **symmetric** phase

$$\Gamma \sim 25 \, \alpha_w^5 T^4$$

 T_c = temperature of the EW phase transition

$$\Gamma \sim v^4 e^{-E_{\rm sph}(T)/T}$$
 $E_{\rm sph}(T) = M_W(T)/g_W \propto \langle \phi(T) \rangle$

EW broken phase

CS number transitions suppressed when $T \lesssim \langle \phi(T) \rangle$

e.g. in **supercooled** phase transitions, nucleation temperature $T_n \ll T_c$ (in addition, bubble walls are too fast)

Baryons from SU(2) texture dynamics

- 1) bubble collisions produce SU(2) textures
- 2) textures decay producing CS number transitions

 ϕ is in the **vacuum** manifold M everywhere but maps nontrivially space onto M

 ϕ is in the **vacuum** manifold M everywhere but maps nontrivially space onto M

Example: $M = U(1) \simeq S^1$ in 1+1d

 ϕ is in the **vacuum** manifold M everywhere but maps nontrivially space onto M

 ϕ is in the **vacuum** manifold M everywhere but maps nontrivially space onto M

Example: $M=U(1)\simeq S^1$ in 1+1d $X \qquad N_W=1$ M=U(1)

$$ightarrow$$
 labelled by the integer Higgs winding number: $N_W = \frac{1}{2\pi} \int dx \, \partial_x {\rm Arg} \, \phi$ [$\pi_1(S^1) = \mathbb{Z}$]

 \rightarrow energy due to the field gradient only \rightarrow (global) texture collapses to minimize it

R =texture size

$$[\pi_2(S^2) = \mathbb{Z}]$$

The SM: $M = SU(2) \times U(1)/U(1) \simeq SU(2) \simeq S^3$ in 1+3d — obvious generalization

The SM: $M = SU(2) \times U(1)/U(1) \simeq SU(2) \simeq S^3$ in 1+3d — obvious generalization

• Gauge textures **collapse** into the **vacuum** where $D_{\mu}\Phi=0 \iff N_{W}=N_{\mathrm{CS}}$

How do textures with $N_W-N_{\rm CS}=1$ and gauge fields collapse to the vacuum $N_W-N_{\rm CS}=0$?

How do textures with $N_W-N_{\rm CS}=1$ and gauge fields collapse to the vacuum $N_W-N_{\rm CS}=0$?

Small textures: $R < m_W^{-1}$

Large textures: $R > m_W^{-1}$

How do textures with $N_W-N_{\rm CS}=1$ and gauge fields collapse to the vacuum $N_W-N_{\rm CS}=0$?

Small textures: $R < m_W^{-1}$

"Unwinding" :
$$\Delta N_W = -1, \quad \Delta N_{\rm CS} = 0$$

Large textures: $R > m_W^{-1}$

How do textures with $N_W - N_{\rm CS} = 1$ and gauge fields collapse to the vacuum $N_W - N_{\rm CS} = 0$?

Small textures: $R < m_W^{-1}$

"Unwinding":

$$\Delta N_W = -1$$
, $\Delta N_{\rm CS} = 0$

Large textures: $R > m_W^{-1}$

Gauge fields turn on and

cancel
$$D_{\mu}\phi=(\partial_{\mu}-igA_{\mu})\phi$$

How do textures with $N_W - N_{\rm CS} = 1$ and gauge fields collapse to the vacuum $N_W - N_{\rm CS} = 0$?

Small textures: $R < m_W^{-1}$

"Unwinding" : $\Delta N_W = -1, \quad \Delta N_{\rm CS} = 0$

Large textures: $R > m_W^{-1}$

Gauge fields turn on and

cancel
$$D_{\mu}\phi=(\partial_{\mu}-igA_{\mu})\phi$$

"Dressing":

$$\Delta N_W = 0, \quad \Delta N_{\rm CS} = 1$$

Baryons **produced**! $\Delta B = N_f \Delta N_{\rm CS}$

• In addition to thermal sphalerons, there exists another mechanism (dressing of SM textures) that can operate even at T=0

• What dynamics in the early Universe can generate Higgs windings in the first place?

1) Tachyonic instability

• Higgs mass changes from positive (stable minimum) to negative (spinodal instability)

$$\partial_t^2 \phi - \nabla^2 \phi + \mu_{\text{eff}}^2(t) \phi = 0$$
$$-\mu^2 + \kappa \sigma^2(t)$$

• IR modes grow exponentially growth: inhomogeneous Higgs field with different SU(2) orientations 'Cold Baryogenesis'

2) Bubble collisions (this work)

- We study run-away bubbles of broken EW symmetry in 3+1 (and 1+1)
- Initial condition: critical O(4) bubble + simultaneous nucleation
- Each bubble nucleated with random SU(2) orientation of the Higgs field

1) **Boost factor** of the walls at collision is $\gamma_{\star} \gg 1$, so we vary the bubble radius R_{\star} at collision to extrapolate to cosmological scales

1) **Boost factor** of the walls at collision is $\gamma_{\star} \gg 1$, so we vary the bubble radius R_{\star} at collision to extrapolate to cosmological scales

After the bubbles collide, they reheat the SM thermal bath at $T \sim (\Delta V)^{1/4} < 100\,{\rm GeV}$

1) **Boost factor** of the walls at collision is $\gamma_{\star} \gg 1$, so we vary the bubble radius R_{\star} at collision to extrapolate to cosmological scales

After the bubbles collide, they reheat the SM thermal bath at $T \sim (\Delta V)^{1/4} < 100\,{\rm GeV}$

2) We vary the **potential shape**, as this controls wall—wall collisions

$$\epsilon = \frac{\text{(barrier height)} - \text{(false vacuum height)}}{\text{(barrier height)} - \text{(true vacuum height)}}$$

Energy budget

Convergence of N_W and $N_{\rm CS}$

 $N_{\rm CS}$ asymptotically relaxes to the produced N_W (remember: in the vacuum $N_W=N_{\rm CS}$)

Chern—Simons variance and rate

Chern—Simons variance and rate

Chern—Simons variance and rate

Collisions with large ϵ show a non-decreasing CS variance at large γ_*

May lead to successful baryogenesis

Summary and Outlook

- Bubble collisions provide a **new sizeable source of Chern—Simons number**
- Chern—Simons rate sensitive to the **shape** of the potential (ϵ) driving the phase transition
- Possibility for new EW baryogenesis in models where the reheat temperature of the EWPT never exceeds the 130 GeV sphaleron freeze-out temperature

Summary and Outlook

- Bubble collisions provide a new sizeable source of Chern—Simons number
- Chern—Simons rate sensitive to the **shape** of the potential (ϵ) driving the phase transition
- Possibility for new EW baryogenesis in models where the reheat temperature of the EWPT never exceeds the 130 GeV sphaleron freeze-out temperature

- Include CP violation, e.g. via $|\phi|^2 F \tilde{F}$, and evaluate $\langle N_{\rm CS} \rangle$, related to actual B asymmetry
- Bubble walls with terminal velocity and interactions with SM

• ...

Thanks!

Backup

• We solve the equations of motion with $N_x^3 = 500^3 - 1500^3$ points:

$$D_{\mu}D^{\mu}\phi - \partial_{\phi^*}V(\phi) = 0,$$

$$D_{\nu}W^{\mu\nu} = J_a^{\mu}T_a, \qquad J_a^{\mu} = 2g\operatorname{Im}[\phi^{\dagger}T_aD^{\mu}\phi]$$

• We solve the equations of motion with $N_x^3 = 500^3 - 1500^3$ points:

$$D_{\mu}D^{\mu}\phi - \partial_{\phi^*}V(\phi) = 0$$
,
 $D_{\nu}W^{\mu\nu} = J_a^{\mu}T_a$, $J_a^{\mu} = 2g\operatorname{Im}[\phi^{\dagger}T_aD^{\mu}\phi]$

- We calculate:
 - Higgs winding number N_{W}
 - CS diffusion rate (effective sphaleron rate):

$$\Gamma_{\rm CS} = \frac{1}{L^3} \frac{d\Delta N_{\rm CS}^2(t)}{dt} \qquad \Delta N_{\rm CS}^2(t) \equiv \langle N_{\rm CS}^2(t) \rangle - \langle N_{\rm CS}(t) \rangle^2$$

• In addition to thermal sphalerons, there exists another mechanism (dressing of SM textures) that can operate even at T=0

• What dynamics in the early Universe can generate Higgs windings in the first place?

CS number density spectrum

$$\langle n_{\rm CS}(k) n_{\rm CS}^*(k') \rangle = (2\pi)^3 \delta^3(k - k') \frac{2\pi^2}{k^3} P_{\rm CS}(k)$$

(3+1)d trend confirmed by (1+1)d simulations

$N_{\rm CS}$ density in (1+1)d

EW baryogenesis in a supercooled EW phase transitions?

 Motivated by models with near-conformal dynamics (e.g. composite Higgs with a light dilaton)

Bruggisser et al, 1804.07314, 2212.11953, 2212.00056

EW baryogenesis in a supercooled EW phase transitions?

 Motivated by models with near-conformal dynamics (e.g. composite Higgs with a light dilaton)

Bruggisser et al, 1804.07314, 2212.11953, 2212.00056

- Bubble collisions themselves produce CS number transitions
 - \rightarrow new source of B violation at low T (no thermal sphalerons)

The SM: $M = S^3$ in 1+3d

$$\phi(x) = e^{-i\eta(r)\hat{r}\cdot\vec{\sigma}}(0,v)$$

The SM: $M = S^3$ in 1+3d

$$\phi(x) = e^{-i\eta(r)\hat{r}\cdot\vec{\sigma}}(0,v)$$

• Higgs winding number integer, $\pi_3(S^3) = \mathbb{Z}$:

$$N_{W} \sim \int d^{3}x \, \epsilon_{ijk} \text{Tr}[(\partial_{i}\Phi)\Phi^{\dagger}(\partial_{j}\Phi)\Phi^{\dagger}(\partial_{k}\Phi)\Phi^{\dagger}] \qquad \frac{(i\sigma_{2}\phi^{*},\phi)}{|\phi|^{2}} \in SU(2)$$

$$[N_{W} = 1]$$

• In fact, in a gauge theory $(g \neq 0)$ only the difference $N_W - N_{\rm CS}$ is gauge invariant

$$\delta N \equiv N_W - N_{\rm CS} \sim \int d^3x \, e^{ijk} \, {\rm Tr} \Big[\Phi^{\dagger} D_i \Phi \, \Phi^{\dagger} D_j \Phi \, \Phi^{\dagger} D_k \Phi + \Phi^{\dagger} F_{ij} D_k \Phi \Big]$$

• In fact, in a gauge theory $(g \neq 0)$ only the difference $N_W - N_{\rm CS}$ is gauge invariant

$$\delta N \equiv N_W - N_{\rm CS} \sim \int d^3x \, e^{ijk} \, {\rm Tr} \Big[\Phi^{\dagger} D_i \Phi \, \Phi^{\dagger} D_j \Phi \, \Phi^{\dagger} D_k \Phi + \Phi^{\dagger} F_{ij} D_k \Phi \Big]$$

- The **vacuum** has $D_{\mu}\Phi=0$
- Textures **collapse** into the vacuum where trivially $\delta N=0$ \rightarrow $N_W=N_{\rm CS}$ emitting scalar/vector radiation

Example: pure gauge

$$\Phi = \frac{v}{\sqrt{2}}U, \quad A_{\mu} = \frac{1}{ig}U^{\dagger}\partial_{\mu}U$$

Standard Electroweak Baryogenesis

$$T_n$$
 = nucleation temperature

Standard Electroweak Baryogenesis

Requires:
$$\left. \frac{\langle \phi(T) \rangle}{T} \right|_{T_n} \simeq 1$$
 strong EW phase transition

If
$$\frac{\langle \phi(T) \rangle}{T} \bigg|_{T_n} \ll 1 \rightarrow \mathsf{B} \text{ washout}$$

$$T_n$$
 = nucleation temperature

Standard Electroweak Baryogenesis

$$T_n$$
 = nucleation temperature

strong EW phase transition

If
$$\frac{\langle \phi(T) \rangle}{T} \bigg|_{T_n} \ll 1 \rightarrow \mathsf{B}$$
 washout

If
$$\left. \frac{\langle \phi(T) \rangle}{T} \right|_{T_n} \gg 1$$
 • Walls are too fast • Thermal CS transitions suppressed

- Walls are too fast
- suppressed

Kuzmin, Rubakov, Shaposhnikov '85 Cohen, Kaplan, Nelson '91

includes supercooled phase transitions, $T_n \ll T_c$

Runaway condition

$$\mathcal{P} < \Delta V$$

Pressure from friction

Latent energy

$$\mathcal{P}_{LO} \sim \frac{1}{24} m^2 T^2$$

 $\mathcal{P}_{LO} \sim \frac{1}{24} m^2 T^2$ Due to particles crossing the wall, negligible for T<v

$$\mathcal{P}_{NLO} \sim \alpha_w \gamma_w m_V T^3$$

 $\mathcal{P}_{NLO} \sim \alpha_w \gamma_w m_V T^3$ Due to transition radiation of gauge bosons

Condition for the bubbles to collide before reaching their terminal velocity

$$\frac{\beta}{H} \frac{(10^{-8} \text{GeV}^3)}{T^3} \gtrsim 1$$

i.e. for
$$\beta/H \sim O(100)$$
 $T_n \lesssim 10 \text{ MeV}$

$$T_n \lesssim 10 \; \mathrm{MeV}$$

Highly supercooled EW phase transition

Estimate of baryon asymmetry

$$\mathcal{O} = \frac{g^2}{32\pi^2\Lambda^2} \phi^{\dagger} \phi W^a_{\mu\nu} \tilde{W}^{\mu\nu a}$$

$$\Lambda \gtrsim 6 \, \text{TeV}.$$

$$\frac{\partial}{\partial t} n_b(x, t) = \Gamma \left(\xi - \mathcal{A} n_b \right)$$

$$\xi \equiv \mu/T$$
 $\mu = N_F^{-1} \frac{1}{\Lambda^2} \frac{d}{dt} \langle \phi^{\dagger} \phi \rangle$

$$n_b = \int dt \, \Gamma_{\rm CS}(t) \mu(t) / T_{\rm eff}(t)$$

$$T_{\rm eff} = \Gamma_{\rm CS}^{1/4}/\alpha_w$$

$$n_b/s \simeq 10^{-10} \gamma_{\star}^{3(a-1)/4} \left(\frac{30 \,\mathrm{GeV}}{T_{\mathrm{rh}}}\right)^3 \left(\frac{10 \,\mathrm{TeV}}{\Lambda}\right)^2$$

Determinant in all baryogenesis mechanisms whatever their energy scale

$$\Delta B = N_f \Delta N_{CS}$$

Each transition creates 9 LH-quarks and 3 LH leptons.