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Main Result
• We identified a new source of baryon number violation during a first-order 

electroweak (EW) phase transition, active at T = 0
• Bubble collisions generate EW gauge bosons, producing an effective sphaleron rate 

similar in magnitude to electroweak sphalerons in the symmetric phase

• Opens up new possibilities for baryogenesis in a supercooled phase transition



Review of baryon number violation in the SM

• B and L are global accidental symmetries of the SM, at the classical level

Li = ∫ d3x (l̄iγ0li + νiγ0(1 − γ5)νi)
i = e, μ, τ

L = Le + Lμ + Lτ

• Their violation has never been measured experimentally
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Li = ∫ d3x (l̄iγ0li + νiγ0(1 − γ5)νi)
i = e, μ, τ

L = Le + Lμ + Lτ

• Their violation has never been measured experimentally

• However, they must have been violated in the early Universe to account for  
the observed baryon asymmetry of our Universe

• In the SM both B and L are violated at the quantum level by the chiral anomaly
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•     is conservedB − L

•  Processes changing  also lead to a change to NCS B + L
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8π
ϵijk ∫ d3x Tr [WiWjk + 2

3 igWiWjWk]
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NCS[Wμ]

∼ 9 TeV

E[Wμ]

Energy of a gauge field configuration

Fμν = 0 minima (vacua):E

∈ SU(2)

Wμ = 0 Wμ = − iU−1∂μU
S3 → SU(2)

Fμν ≠ 0

  ΔB = Nf ΔNCS ⟹ Baryons created by transitions between topologically 
distinct vacua of the SU(2) gauge field

∼ ∫ (WF + W W W )



NCS[Wμ]

E[Wμ]

• Quantum tunnelling rate per unit time and volume:   

αw ∼ 1/30   

   Γ ∼ e−4π/αw ∼ 10−165



NCS[Wμ]

E[Wμ]

• Quantum tunnelling rate per unit time and volume:   

αw ∼ 1/30   

•  sizeable at high  : it is possible to go over the barrier via thermal fluctuationsΓ T

   Γ ∼ e−4π/αw ∼ 10−165
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Γ ∼ 20 α5
wT4

Γ ∼ 25 α5
wT4

 temperature of the EW phase transitionTc =

Γ ∼ v4e−Esph(T)/T Esph(T ) = MW(T )/gw ∝ ⟨ϕ(T )⟩

CS number transitions suppressed when T ≲ ⟨ϕ(T )⟩

e.g. in supercooled phase transitions, nucleation temperature Tn ≪ Tc

(in addition, bubble walls are too fast)



Baryons from SU(2) texture dynamics

Turok, Zadrozny, NPB 1991 
Lue, Rajagopal, Trodden, 1996

1)  bubble collisions produce  texturesSU(2)

2)  textures decay producing CS number transitions
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Example:  in 1+1d
M = U(1) ≃ S1

M = U(1)

Vilenkin, Shellard ‘94

 energy due to the field gradient only  (global) texture collapses to minimize it→ →

 labelled by the integer Higgs winding number:        → NW = 1
2π ∫ dx ∂xArg ϕ

NW = 1

[ π1(S1) = ℤ ]

xℝ1 + {∞} = S1

Texture = field configuration where:  
 is in the vacuum manifold  everywhere but maps nontrivially space onto ϕ M M
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M = S2

Example:  in 1+2d
M = S2

ℝ2 + {∞} = S2

texture sizeR =
[  ]π2(S2) = ℤ

NW = 1

The SM:    in 1+3d  — obvious generalizationM = SU(2) × U(1)/U(1) ≃ SU(2) ≃ S3

• Gauge textures collapse into the vacuum where   DμΦ = 0 ⟺ NW = NCS
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How do textures with  and gauge fields collapse to the vacuum  ?NW − NCS = 1 NW − NCS = 0

Large textures:   R > m−1
WSmall textures:   R < m−1

W

R m−1
W

“Unwinding” : 
ΔNW = − 1, ΔNCS = 0

m−1
W

R

Gauge fields turn on and 

cancel Dμϕ = (∂μ − igAμ)ϕ

“Dressing” : 
ΔNW = 0, ΔNCS = 1

ΔB = NfΔNCSBaryons produced!



• In addition to thermal sphalerons, there exists another mechanism (dressing of SM 
textures) that can operate even at T = 0

• What dynamics in the early Universe can generate Higgs windings in the first place?



with B = O(1). In summary, CS number may be violated in the collapse of large textures, and this may
translates to baryon number violation via the ABJ anomaly in the SM:

ωµjµ

B
= ωµjµ

L
= Nf

g2

W

32ε2
WµωW̃ µω

→ !B = !L = Nf !NCS. (12)

ωµjµ

B
= ωµjµ

L
= Nf

g2

W

32ε2
WµωW̃ µω , !B = !L = Nf !NCS. (13)

The actual baryon produced this way however depends on the precise nature of the CP–violating
interaction. As this needs to be communicated to the scalar/gauge sector, one typically considers dim–6
operators to the gauge bosons, like

OCP = ϑCP

”2
ϖ†ϖNf

g2

32ε2
WµωW̃ µω . (14)

The e!ect of this CP–violating terms is to slightly favor the production of a, say, positive !NCS in the
texture collapse. As this term is anyways supposed to be small compared to the other interactions coming
into play in the texture collapse, it becomes crucial for textures that are the edge of the winding/un–winding
behavior, as for those this small contribution can actually help the winding up leading to a positive !NCS

while making more di"cult the corresponding winding up that would lead to a negative !NCS, whereas
without CP violation the winding up for initial textures with NW ↑ NCS = ±1 would be equal.

Taking everything into account the final baryon asymmetry normalized to the entropy density is evalu-
ated as

nB ↑ n
B̄

s
= nB

s
↓ 10→3

v2

”2
ϑCP, (15)

to be compared with the value inferred from cosmological observations, nB/s ↓ 10→10 obtained from CMB
and BBN. We have used that there are no anti–baryons today.

Interesting future work involves the detailed of this dynamics during a first order EW PT that takes
place at very low temperatures. In this case, the collision of bubbles of broken EW symmetry where the
Higgs field will point in di!erent directions in the SU(2) manifold (as expected from the case of bubble
nucleating independently) will in general induce the formation of electroweak textures, whose dynamics can
lead to Chern–Simons transitions. The reheating following such supercooled phase transition reproduces
the qualitative features originally discussed in models of hybrid inflation. This process can be studied
quantitatively by performing field theory simulations of bubble nucleation, with the goal of determining
for the first time this unavoidable source of baryon asymmetry from bubble collisions, taking into account
di!erent potential shapes for the Higgs potential and the di!erent dynamics of the walls at collision.

Some equations:
Tr (#†#) = v2 (16)

#(x, t) = U(x, t)#0, #0 = v
↔

2
· 12↑2 (17)

#(x, t) = U(x, t)#0(x, t), #0(x, t) = ϱ(x, t)
↔

2
· 12↑2, ϱ2 = Tr (#†#) (18)

ϱ2 = v2 = const. ϱ2 = 0 (19)

# = v
↔

2
U, Aµ = 1

ig
U †ωµU (20)

Esph = mW

ςw

B(φ/g2), (21)

ϑN = 1
24ε2

∫
d3x ↼ijk Tr

[
U †DiU U †DjU U †DkU + 3

2 ig U †FijDkU
]

(22)

µ2

e!(t) = ↑µ2 + ↽ ϱ2(t) (23)
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inflaton during inflation. On the other hand, while the field slow rolls along its flat inflationary valley, it will
at some point reach a critical value where the Higgs mass turns negative, opening a new unstable direction
along the Higgs field.

This mechanism for baryogenesis mechanism crucially relies on the fact that the Universe is "cold" after
reheating, namely the scale of inflation is so low that the reheating temperature never exceeds → 170 GeV,
so that the EW symmetry is never restored in the early Universe. As we shall see, this is important to avoid
sphalerons to ever be in thermal equilibrium.

On the other hand, one still needs a certain rate for baryon number violation to reproduce to BAU.
This can be achieved very elegantly within the dynamics related to the Higgs spinodal instability around
the symmetric phase with ↑h†h↓ = 0. Indeed, on top of the homogenous (zero mode) Higgs field, the
quantum fluctuations of the IR modes with momentum lower than approximately the curvature of the
Higgs potential around the maximum will undergo exponential growth due to the tachyonic instability. The
e!ect of the additional inflaton field can be captured via a time–dependent Higgs mass. For the dynamics
around the onset of the tachyonic instability, the condensate of the Higgs is small and self–interaction may
be neglected. In addition, the inflationary Hubble is small in low–scale models H → 10→5 eV as typical
values, and the dynamics of the reheating takes place in a much shorter time scale so that the dynamics
can be approximated to take place in Minkowksi. The equations of motion in this Gaussian (free–field)
approximation are simply given by

ω2

t ε ↔ ↗
2ε + µ2

e!(t)ε = 0. (3)

Assuming for simplicity that the e!ective mass term for the Higgs field ε flips sign instantaneously at some
initial time t = 0, namely µ2

e!
(t) = +µ2 for t < 0 and ↔µ2 for t > 0, the occupation of number of the

modes with |k| < µ can be seen to grow exponentially, yielding:

↑0|εkε†
k
|0↓ = 1

2ϑk

(
nk + 1

2

)
, nk ↘ e2

≃
µ2→|k|2t, ϑk ↘

√
µ2 ↔ |k|2. (4)

This growth of these modes will be eventually cut–o! once the back-reaction from the Higgs condensate
itself becomes important, namely when ↑ε2

↓ → v2 so that Higgs–self interactions can no longer be neglected.
The time of backreaction can be estimated by evaluating the contribution of the unstable modes to ↑ε2(x)↓,
and check when the inequality 3ϖ↑ε2

↓ ⇐ µ2 is no longer satisfied (with ϖ the quartic interaction).
The out–of–equilibirum dynamics of preheating driven by tachyonic, or spinodal, instability allows

nonetheless for a fascinating intermediate stage where these IR modes with large occupation numbers
reach a local thermal equilibrium, while the more UV modes of the Higgs field are instead not excited yet.
As this temperature is distributed only in a narrow range of momenta, it can be much higher than the
reheating temperature of the SM bath after complete thermalization. By comparing the scalar occupation
numbers for the IR spectrum with those expected by a Bose–Einstein distribution, nk ⇒ Te!/ϑk ⇑ 1, one
finds typical values for Te! that are parametrically larger than the final reheating temperature by a factor
of O(few). Crucially, this allows the IR modes to reach temperatures above the sphaleron freeze out, and
given the exponential sensitivity of the sphaleron rate, allow for large enough baryon number violation in
this phase of preheating.

The actual dynamics of baryon number violation is a fascinating example of the purely SM dynamics
related to its non–trivial topology. In fact the SU(2)L ⇓ U(1) theory allows for topological configuration,
called gauged textures, which display a beatiful interplay between the Higgs winding number around its
vacuum manifold (non singular soliton), and the Chern–Simons number of the EW group. The basic
texture configuration in the SM is a configuration where the Higgs field never leaves the vacuum manifold,
namely h†h = v2, but the profile makes a winding in the SU(2) space (for this analysis, the U(1)Y may
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• Higgs mass changes from positive (stable minimum) to negative (spinodal instability)

• IR modes grow exponentially growth: inhomogeneous Higgs 
field with different  orientations ‘Cold Baryogenesis’SU(2)

1) Tachyonic instability

Figure 12: The winding number density at time mHt = 1 of the same run as used before. The
blob that we consider in this section is indicated by the arrow.
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Figure 13: Left the Higgs length (vertical) at time mHt = 2 is plotted at the position of the blob,
as function of the x and z coordinates (a vertical slice). Right the winding number density at time
mHt = 2 is plotted for the same slice through the blob.
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• We study run-away bubbles of broken EW symmetry in 3+1 (and 1+1)

• Initial condition: critical  bubble + simultaneous nucleationO(4)

• Each bubble nucleated with random  orientation of the Higgs field SU(2)

2) Bubble collisions (this work)

See also Konstandin, Servant [1104.4793] JCAP;

Servant [1407.0030] PRL



1) Boost factor of the walls at collision is , so we vary the bubble radius  at collision 
to extrapolate to cosmological scales
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 After the bubbles collide, they reheat the SM thermal bath at T ∼ (ΔV )1/4 < 100 GeV
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2)  We vary the potential shape, as this controls wall—wall collisions

 After the bubbles collide, they reheat the SM thermal bath at T ∼ (ΔV )1/4 < 100 GeV

1) Boost factor of the walls at collision is , so we vary the bubble radius  at collision 
to extrapolate to cosmological scales

γ⋆ ≫ 1 R⋆

R⋆
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R⋆

large γ⋆

!
! ! ! !

!
!



Figure 11: Quartic potential for ✏ = 0.1 (blue), 0.01 (red), and 0.001 (green).

Figure 12: Simple quartic potential. Left side: Density plot of � for ✏ = 0.5, 0.1, and 0.05 and
� = 40 from top to bottom. Note that false-vacuum trapping is predicted from Eq. (2.3) for ✏ = 0.5.
Right side: Time evolution of �(t, x = xcoll) for the parameter choice in the left panels.
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Figure 2: The path of the scalar field for the three different potentials a), b), c) discussed in the
text. “1” denotes the path in the expanding bubble walls. “2” is the path during the collision. “3”
is the path in the collided region.

over from walls to the scalar (radion and Higgs) sector. Most of the energy decays into
SM particles before it is accumulated in the scalar sector. Besides, particle production is
suppressed by the Lorenz factor ω2w of the colliding bubble walls [53].

Secondly, in the case (b) where the scalar potential has two nearly degenerate local
minima, the expanding bubble walls bounce in the potential and reflect at each other (see
Fig. 2(b)). This reestablishes a region of symmetric phase between the collided bubble
walls. The expansion of the bubble walls is counteracted by the pressure difference, such
that the bubble walls are slowed down and finally the symmetric phase collapses again
(as shown in Ref. [53] and in the left plots of Fig. 3 and Fig. 4). Each collision releases
some fraction of the wall energy into scalar waves. Most of the energy is radiated away
after a few collisions. Even though expanding bubble walls do not decay into fermions2,
thermalization occurs by production of scalar waves. The different collisions are separated
by a time of the order of the Hubble time, which is much longer than the electroweak time
scale that determines the decay rate of the classical scalar waves3. This constitutes a serious
problem for us since the process of transferring the bubble wall energy into EW scale scalar
configurations is very inefficient. On top of that, the reflections of bubble walls themselves
lead to significant particle production: a fixed fraction g2 of the energy of the colliding walls
goes into production of fermions [53], even in the limit ωw → ∞. Hence, in the case of nearly
degenerate vacua, a sizable fraction of the energy will be drained into the fermionic sector.
Therefore, it is questionable that a sizable energy fraction is present in the form of classical
kinetic energy of the Higgs field.

The potential (c) with two asymmetric minima gives different results. When two scalar
bubbles collide, the scalar field bounces and is reflected close to the symmetric phase. How-
ever, a partial loss in energy implies that the field only approaches the old minimum to a
certain extent. In Ref. [57, 58], it is shown that the walls are reflected only if the field can
reach the basin of attraction of the symmetric minimum. If not, the field bounces back close
to the symmetric minimum but remains in the basin of attraction of the broken phase. In

2This can be seen by noting that the wall profile has no time-dependence in the co-moving frame and
only a support for p2 ≤ 0 in Fourier space. Hence there is no particle production according to (11).

3Using (11) the decay rate of the classical Higgs waves is basically the one of the Higgs particle.
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goes into production of fermions [53], even in the limit ωw → ∞. Hence, in the case of nearly
degenerate vacua, a sizable fraction of the energy will be drained into the fermionic sector.
Therefore, it is questionable that a sizable energy fraction is present in the form of classical
kinetic energy of the Higgs field.

The potential (c) with two asymmetric minima gives different results. When two scalar
bubbles collide, the scalar field bounces and is reflected close to the symmetric phase. How-
ever, a partial loss in energy implies that the field only approaches the old minimum to a
certain extent. In Ref. [57, 58], it is shown that the walls are reflected only if the field can
reach the basin of attraction of the symmetric minimum. If not, the field bounces back close
to the symmetric minimum but remains in the basin of attraction of the broken phase. In

2This can be seen by noting that the wall profile has no time-dependence in the co-moving frame and
only a support for p2 ≤ 0 in Fourier space. Hence there is no particle production according to (11).

3Using (11) the decay rate of the classical Higgs waves is basically the one of the Higgs particle.
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Jinno, Konstandin, Takimoto [1906.02588] JCAP
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https://www.youtube.com/watch?v=LhZFCxJ5-4g
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Convergence of  and NW NCS

 asymptotically relaxes to the produced    (remember: in the vacuum )NCS NW NW = NCS
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Asymptotic value of the CS variance vs γ⋆

(at physical point, )γ⋆ ≫ 8γ⋆
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over from walls to the scalar (radion and Higgs) sector. Most of the energy decays into
SM particles before it is accumulated in the scalar sector. Besides, particle production is
suppressed by the Lorenz factor ω2w of the colliding bubble walls [53].

Secondly, in the case (b) where the scalar potential has two nearly degenerate local
minima, the expanding bubble walls bounce in the potential and reflect at each other (see
Fig. 2(b)). This reestablishes a region of symmetric phase between the collided bubble
walls. The expansion of the bubble walls is counteracted by the pressure difference, such
that the bubble walls are slowed down and finally the symmetric phase collapses again
(as shown in Ref. [53] and in the left plots of Fig. 3 and Fig. 4). Each collision releases
some fraction of the wall energy into scalar waves. Most of the energy is radiated away
after a few collisions. Even though expanding bubble walls do not decay into fermions2,
thermalization occurs by production of scalar waves. The different collisions are separated
by a time of the order of the Hubble time, which is much longer than the electroweak time
scale that determines the decay rate of the classical scalar waves3. This constitutes a serious
problem for us since the process of transferring the bubble wall energy into EW scale scalar
configurations is very inefficient. On top of that, the reflections of bubble walls themselves
lead to significant particle production: a fixed fraction g2 of the energy of the colliding walls
goes into production of fermions [53], even in the limit ωw → ∞. Hence, in the case of nearly
degenerate vacua, a sizable fraction of the energy will be drained into the fermionic sector.
Therefore, it is questionable that a sizable energy fraction is present in the form of classical
kinetic energy of the Higgs field.

The potential (c) with two asymmetric minima gives different results. When two scalar
bubbles collide, the scalar field bounces and is reflected close to the symmetric phase. How-
ever, a partial loss in energy implies that the field only approaches the old minimum to a
certain extent. In Ref. [57, 58], it is shown that the walls are reflected only if the field can
reach the basin of attraction of the symmetric minimum. If not, the field bounces back close
to the symmetric minimum but remains in the basin of attraction of the broken phase. In

2This can be seen by noting that the wall profile has no time-dependence in the co-moving frame and
only a support for p2 ≤ 0 in Fourier space. Hence there is no particle production according to (11).

3Using (11) the decay rate of the classical Higgs waves is basically the one of the Higgs particle.
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Summary and Outlook

• Possibility for new EW baryogenesis in models where the reheat temperature of the EWPT 
never exceeds the 130 GeV sphaleron freeze-out temperature

• Chern—Simons rate sensitive to the shape of the potential ( ) driving the phase transitionϵ

• Include CP violation, e.g. via , and evaluate  , related to actual B asymmetry|ϕ |2 FF̃ ⟨NCS⟩
• Bubble walls with terminal velocity and interactions with SM

• …

• Bubble collisions provide a new sizeable source of Chern—Simons number



Thanks!
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• We solve the equations of motion with  points:N3
x = 5003 − 15003



• We solve the equations of motion with  points:N3
x = 5003 − 15003

• We calculate:

— Higgs winding number NW

— CS diffusion rate (effective sphaleron rate):



• In addition to thermal sphalerons, 
there exists another mechanism 
(dressing of SM textures) that can 
operate even at T = 0

• What dynamics in the early Universe can generate Higgs windings in the first place?



CS number density spectrum



(3+1)d trend confirmed by (1+1)d simulations



 density in (1+1)dNCS
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• Motivated by models with near-conformal dynamics 

(e.g. composite Higgs with a light dilaton)
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EW baryogenesis in a supercooled EW phase transitions?

• Motivated by models with near-conformal dynamics 

(e.g. composite Higgs with a light dilaton)

Bruggisser et al, 1804.07314, 2212.11953, 2212.00056

• Bubble collisions themselves produce CS number transitions

  new source of B violation at low  (no thermal sphalerons)→ T
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M = S3
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M = S3

ϕ(x) = e−iη(r) ̂r⋅ ⃗σ(0,v)
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texture sizeR =

NW ∼ ∫ d3x ϵijkTr[(∂iΦ)Φ†(∂jΦ)Φ†(∂kΦ)Φ†]
(iσ2ϕ*, ϕ)

|ϕ |2 ∈ SU(2)

• Higgs winding number integer,   :π3(S3) = ℤ

[ NW = 1 ]



• In fact, in a gauge theory  only the difference   is gauge invariant(g ≠ 0) NW − NCS
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δN = 1
24π2 ∼ ∫ d3x ϵijk Tr[Φ†DiΦ Φ†DjΦ Φ†DkΦ+ 3

2 ig Φ†WijDkΦ]

δN ≡ NW − NCS ∼ ∫ d3x ϵijk Tr[Φ†DiΦ Φ†DjΦ Φ†DkΦ + Φ†FijDkΦ]

Example: pure gauge

The actual baryon produced this way however depends on the precise nature of the CP–violating
interaction. As this needs to be communicated to the scalar/gauge sector, one typically considers dim–6
operators to the gauge bosons, like

OCP = ωCP

!2
ε†εNf

g2

32ϑ2
WµωW̃ µω . (10)

The e!ect of this CP–violating terms is to slightly favor the production of a, say, positive ”NCS in the
texture collapse. As this term is anyways supposed to be small compared to the other interactions coming
into play in the texture collapse, it becomes crucial for textures that are the edge of the winding/un–winding
behavior, as for those this small contribution can actually help the winding up leading to a positive ”NCS

while making more di"cult the corresponding winding up that would lead to a negative ”NCS, whereas
without CP violation the winding up for initial textures with NW → NCS = ±1 would be equal.

Taking everything into account the final baryon asymmetry normalized to the entropy density is evalu-
ated as

nB → n
B̄

s
= nB

s
↑ 10→3

v2

!2
ωCP, (11)

to be compared with the value inferred from cosmological observations, nB/s ↑ 10→10 obtained from CMB
and BBN. We have used that there are no anti–baryons today.

Interesting future work involves the detailed of this dynamics during a first order EW PT that takes
place at very low temperatures. In this case, the collision of bubbles of broken EW symmetry where the
Higgs field will point in di!erent directions in the SU(2) manifold (as expected from the case of bubble
nucleating independently) will in general induce the formation of electroweak textures, whose dynamics can
lead to Chern–Simons transitions. The reheating following such supercooled phase transition reproduces
the qualitative features originally discussed in models of hybrid inflation. This process can be studied
quantitatively by performing field theory simulations of bubble nucleation, with the goal of determining
for the first time this unavoidable source of baryon asymmetry from bubble collisions, taking into account
di!erent potential shapes for the Higgs potential and the di!erent dynamics of the walls at collision.

Some equations:
Tr (#†#) = v2 (12)

#(x, t) = U(x, t)#0, #0 = v
↓

2
· 12↑2 (13)

#(x, t) = U(x, t)#0(x, t), #0(x, t) = ϖ(x, t)
↓

2
· 12↑2, ϖ2 = Tr (#†#) (14)

ϖ2 = v2 = const. ϖ2 = 0 (15)

# = v
↓

2
U, Aµ = 1

ig
U †ϱµU (16)

3.3.2 Scheme

• Mechanisms for the generation of the BAU typically require a hot Universe in thermal equilibrium at
temperatures larger than the EW scale (e.g. leptogenesis in minimal realizations even 109) or more
precisely the sphaleron freeze out temperature.

• Cold baryogenesis as the counter–example: the main point is the out–of–equilibrium dynamics follow-
ing the spinodal instability of the Higgs field (simple potential with negative mass term). One possible
realization: hybrid inflation with the Higgs becoming tachyonic at some values of the inflaton field.
Crucial that the Universe is cold, namely you reheat below the sphaleron freeze out temperature.

27

• The vacuum has DμΦ = 0

• Textures collapse into the vacuum where trivially  δN = 0 → NW = NCS
emitting scalar/vector radiation
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If    
⟨ϕ(T )⟩

T
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≪ 1 → B washout

Requires:
⟨ϕ(T )⟩

T
Tn

≃ 1 strong EW 

phase transition 

If      
⟨ϕ(T )⟩

T
Tn

≫ 1 →
• Thermal CS transitions 

suppressed

includes supercooled phase transitions, Tn ≪ Tc

• Walls are too fast

 nucleation temperatureTn =

broken phase
 ⟨ϕ⟩ ≠ 0

symmetric phase
 ⟨ϕ⟩ = 0

B asymmetry created 
at vicinity of CPV wall





Estimate of baryon asymmetry




