

Higgs boson measurements and searches for new scalars with ATLAS

Scalars 2025 — Warsaw, Poland

The LHC is terra incognita... "Here be dragons"

LHC Plan ("break physics")

- The world's highest-energy particle collider, just outside of Geneva, CH
 - Home to four major experiments (and a number of smaller ones too...)

LHC Point-I: The ATLAS Experiment

Integrated Luminosity and Pile-Up

- ATLAS recorded ~26 fb⁻¹ during Run-1 ($\sqrt{s} = 7$ and 8 TeV) and 147 fb⁻¹ at $\sqrt{s} = 13$ TeV (Run-2)
- Total integrated luminosity from $\sqrt{s} = 13.6$ TeV pp collisions delivered to ATLAS so far in Run-3: 275 fb⁻¹
- Average pile-up in Run-3: ~55 interactions per bunch crossing, about 60% higher than Run-2
 - Fills with μ in the high-end tail are challenging: detector 'busy' more often, then readout must recover
 Run-3 Integrated Luminosity
 Luminosity-weighted Pile-up Distributions

Brout-Englert-Higgs Mechanism

- The BEH complex scalar field
 - Permeates the entire universe
 - Gives mass to the elementary particles
- To verify its existence, we must find the associated Higgs boson

July 4, 2012

Photo: Pnicolet via Wikimedia Commons

François Englert

Photo: G-M Greuel via Wikimedia Commons

Peter W. Higgs

October 2013

6

Source: AAAS

But... What Kind Of Higgs Is It?

Standard Model Higgs

Beyond the SM Higgs

- Higgs boson properties (many of which are predicted by the Standard Model):
 - Electric charge
 - Spin angular momentum
 - Parity
 - Charge conjugation

- Mass
- Width
- Cross-sections, branching ratios and signal strength
- Couplings

Higgs Production and Decay

ATLAS Run-2 Higgs Production and Decay Results

- Precise measurements of Higgs boson properties provide a test of the consistency of the SM
 - Observed cross-sections, with branching ratios assumed to be equal to their SM predictions
 - Observed branching ratios, with production cross-sections assumed to be equal to their SM predictions

ATLAS Run-2 Higgs Production and Decay Results

 Can also examine the ratio of observed rate to predicted SM event rate for different combinations of Higgs boson production and decay processes

ATLAS Higgs Couplings Overview

- Direct measurements of all particles with mass ≥m_T
- Includes 140 fb⁻¹ (Run-2) and 165 fb⁻¹ (Run-3)
- Indirect constraints for many in addition
- Limits on charm and 3.4σ measurement of muon
- Testing 3 orders of magnitude in coupling and 4 orders in mass

ATLAS Higgs to mu-mu evidence

 A search for the dimuon decay of the Higgs boson is carried out based on pp collision data recorded by ATLAS during Run-3 of the Large Hadron Collider, corresponding to an integrated luminosity of 165 fb⁻¹ at √s=13.6 TeV

	Selection
Common preselection	Primary vertex Two opposite-charge muons Muons: $ \eta < 2.5$, $p_{\rm T}^{\rm lead} > 27$ GeV, $p_{\rm T}^{\rm sublead} > 15$ GeV
Fit region	$m_{\mu\mu} = 110 - 160 \text{ GeV}$
Jets	$p_{\rm T} > 25$ GeV and $ \eta < 2.4$ or with $p_{\rm T} > 30$ GeV and $2.4 < \eta < 4.5$
b-tagged jets	$p_{\rm T} > 25$ GeV and $ \eta < 2.4$ or with $p_{\rm T} > 30$ GeV and $2.4 < \eta < 2.5$ Tagging efficiency working point of 85%
 ttH categories VH 4-lepton category VH 3-lepton categories VH 2-lepton categories VBF and ggF categories 	At least one b -jet Exactly two additional e or μ with $p_{\rm T} > 8$ GeV, 5 GeV (μ) / 7 GeV (e), no b -jets Exactly one additional e or μ with $p_{\rm T} > 15$ GeV, no b -jets No additional lepton, no b -jets, $E_{\rm T}^{\rm miss} > 120$ GeV No additional lepton, no b -jets, $E_{\rm T}^{\rm miss} < 120$ GeV

ATLAS Higgs to mu-mu evidence

- Results from Run-2 and Run-3 are statistically combined
 - An excess of events over the background is observed with a significance of 3.4σ (2.5σ expected). Best-fit signal strength is $\mu = 1.4 \pm 0.4$.
 - Provides evidence for the H → µµ decay with ATLAS data and offers a direct probe of the Higgs-boson Yukawa coupling to second-generation fermions.

ATLAS Higgs to Zy search

- Search for Higgs decays to $Z\gamma$ (Z to $\ell\ell$, $\ell=e$ or μ) is carried out on 165 fb⁻¹ of Run-3 data
- Results statistically combined with those from earlier search on 140 fb⁻¹ of Run-2 data
- Total statistical significance is observed (expected) significance of 2.5σ (1.9σ expected)
- Observed signal strength is $\mu = 1.3 + 0.6 0.5$

Analysis considers a total of 13 categories

ATLAS Higgs self-coupling results

- Higgs self-interaction can be measured via HH production
 - 10³ times more rare than single Higgs processes
 - Allows us to probe the shape of the Higgs potential
- Many different channels analyzed
- Sensitivity better than 3x the SM

Latest on ATLAS Di-Higgs searches

- Recent result for one of the "golden" decay channels of the Higgs pairs: HH → bbγγ
- Based on over 300 fb⁻¹ of pp collision data, reaching an expected sensitivity comparable to that of the full Run-2 combination across all Higgs boson pair production channels.

Higgs Boson Mass Measurements

- No update yet beyond the Run-2 legacy ATLAS analysis for $H \to ZZ^* \to 4\ell$ ($\ell = e$ or μ):
 - Profits from an increased data sample (full Run-2 dataset of 139 fb⁻¹), includes a new high-precision muon momentum calibration,
 - exploits a neural-network-based classifier for the signal versus background discrimination (improves
 measurement precision by ~2%) and the inclusion of the event-by-event invariant mass resolution in the
 analytical model used to fit the data (reducing the total expected uncertainty on m_H by ~1%).

Full Run-2 result: $m_H = 124.99 \pm 0.18 \, (\text{stat.}) \pm 0.04 \, (\text{syst.}) = 124.99 \pm 0.19 \, \text{GeV}$

Run-1 + Run-2 result:

 $m_H = 124.94 \pm 0.17 \text{ (stat.)} \pm 0.03 \text{ (syst.)} = 124.94 \pm 0.18 \text{ GeV}$

Higgs Boson Mass Measurements

- Run-2 legacy mass measurement analysis in the Higgs to γγ channels benefits from:
 - An increased data sample (full Run-2 dataset of 140 fb⁻¹), and a new photon reconstruction algorithm with better energy resolution,
 - an improved estimation of the photon energy scale with reduced uncertainties—total systematic uncertainty now down to 90 MeV as compared to an earlier result with 340 MeV (Phys. Lett. B 784 (2018) 345)

Full Run-2 result: $m_H = 125.17 \pm 0.11 \text{ (stat.)} \pm 0.09 \text{ (syst.)} = 125.17 \pm 0.14 \text{ GeV}$

Run-1 + Run-2 result: $m_H = 125.22 \pm 0.11 \text{ (stat.)} \pm 0.09 \text{ (syst.)} = 125.22 \pm 0.14 \text{ GeV}$

Higgs Boson Mass Combination

- Measurement combines the latest results in the H \rightarrow ZZ* \rightarrow 4 ℓ and H \rightarrow $\gamma\gamma$ decay channels
- Result based on 140 fb⁻¹ of pp collision data collected at a center of mass energy of 13 TeV during Run-2

Full Run-2 result: $m_H = 125.10 \pm 0.09 \, (\text{stat.}) \pm 0.07 \, (\text{syst.}) = 125.10 \pm 0.11 \, \text{GeV}$

Extremely precise measurement of the Higgs boson mass, with an uncertainty of only 110 MeV!

CP properties of Higgs boson interactions in VBF with τ leptons

- CP properties of the Higgs boson are studied in the vector-boson fusion production mode (Run-2 dataset)
- Results obtained using the Optimal Observable (OO). CP-violating interactions between the Higgs boson and electroweak gauge bosons are considered in the effective field theory framework $2\Re(\mathcal{M}_{SM}^*\mathcal{M}_{CP\text{-odd}})$
- No deviations relative to the Standard Model are observed, and limits are set

d is interaction strength in the **HISZ** basis

C_{Hw} is in the Warsaw basis

 \tilde{d} (lin. + quad.) \tilde{d} (lin. only) $c_{H\tilde{W}}$ (lin. + quad.) $c_{H ilde{W}}$ (lin. only)

Searches for New Scalars... 'dragons'

ATLAS BSM Higgs search results

• Regions of the m_A -tan β plane excluded (95% CL) in the hMSSM via direct searches for heavy Higgs bosons and fits to the measured rates of observed Higgs boson production and decays

ATLAS searches for additional scalars

- Search for exotic decays of the Higgs boson into new scalar or pseudoscalar (a) particles that decay into b-quarks (consider the 4b and 6b final states)
- Uses 140 fb⁻¹ of pp collision data recorded during Run-2
- No significant excess above the Standard Model prediction is observed

Search for resonance decaying to a new scalar and Higgs

- Search for resonant production of a heavy scalar X decaying into a Higgs and a lighter scalar S in the S→bb and H→γγ final state
- Analysis uses 140 fb⁻¹ and 58.6 fb⁻¹ of pp collision data at centreof-mass energies of 13 TeV and 13.6 TeV
- No significant excess over the SM background prediction is observed and limits at 95% CL limits are set on the cross-section

Summary

- ATLAS measurements of Higgs boson properties have been presented; some analyses now including Run-3 data
- Results from the full Run-2 dataset, using the H \rightarrow ZZ* \rightarrow 4 ℓ and H \rightarrow $\gamma\gamma$ decay channels, are combined with the Higgs boson mass measurements performed on Run-1 data. The combined result is:
 - An extremely precise measurement of the Higgs boson mass, reaching a 0.87 per mille accuracy on this fundamental quantity. $m_H = 125.11 \pm 0.09 \, (\mathrm{stat.}) \pm 0.06 \, (\mathrm{syst.}) = 125.11 \pm 0.11 \, \mathrm{GeV}$
- The Higgs boson width is measured to be:

$$\Gamma_H = 4.5^{+3.3}_{-2.5} \,\mathrm{MeV}$$

Phys. Lett. B 846 (2023) 138223

- CP properties of the Higgs have been studied in various channels and found to be consistent with the Standard Model
 - A pure CP-odd contribution is excluded for H-tau and H-top interactions
 - There is still room for a CP mixture
- Analysis of Run-3 data is on-going, and we're excited to learn even more about the Higgs boson and its properties
- Of course the search for any additional scalars continues...

Back-up

Determination of the Higgs Boson Width

- Predicted Higgs width of 4.1 MeV is much smaller than the detector resolution
- This 4ℓ and 2ℓ 2ν ZZ combination exploits the independence of off-shell cross section on Γ_H and relies on identical on-shell and off-shell Higgs couplings to determine Γ_H from measurements of $\mu_{\text{off-shell}}$ and $\mu_{\text{on-shell}}$

$$\sigma_{gg \to H \to VV}^{\text{on-shell}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{m_H \Gamma_H}$$
 $\sigma_{gg \to H \to VV}^{\text{off-shell}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{m_{ZZ}^2}$

Evidence for offshell Higgs boson production!

NB: Neyman likelihood profiles shown; ~5-10% more conservative than asymptotic

Measuring CP properties of Higgs boson interactions with τ leptons

- Analysis tests the CP properties of the tau Yukawa coupling, where contributions can be present at tree level
- The CP-mixing angle ϕ_{τ} is reflected in tau decay kinematics

First ATLAS analysis to use tau decay classification!

Rejection of the CP-odd hypothesis at 3.4σ (2.1σ expected)

