


      The simplest inflationary model

Eternal  Inflation

1983



Einstein equation:

Klein-Gordon equation:

Equations of motion:

Compare with equation for the harmonic oscillator with 
friction:



l ⇠ 10�33 cm

m ⇠ 10�5 g
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in ANY units of length 



The universe after inflation becomes huge and almost 
absolutely uniform, but quantum fluctuations make it slightly 
non-uniform. This leads to formation of galaxies and tiny 
perturbations of the temperature of the universe 



In this theory, original inhomogeneities are 
stretched away, but new ones are produced from 
quantum fluctuations, which are  amplified and 
stretched exponentially during inflation.

Galaxies are children of quantum fluctuations 
produced in the first 10-35 seconds after the birth 
of the universe.

Mukhanov and Chibisov 1981



By observing distant parts of the universe, we see the 
universe close and closer to the Big Bang. If expansion 
of the universe was reversible, by playing the movie 
back, we would see galaxies moving closer to each 
other, particles collide, but we would never see 1090 
particles merge into nothing and disappear, we would 
never see their origin in a vacuum-like state containing 
no particles at all.

Indeed, according to the inflationary theory, all particles 
were produced in the process of reheating after inflation. 
This is an irreversible quantum mechanical process.





The Universe is similar to the Schrodinger cat, 
but without the cat to start with…





In the old Big Bang theory, by looking at the sky we were looking back in 
time, all the way to the Big Bang. Gravitational waves could come to us 
directly from the Big Bang – one could see the singularity.

In inflationary theory, we can study only the last stages of inflation, when the 
density of the universe was about 9 orders below the Planck density. Indeed, 
there is a relation between the tensor to scalar ratio

present time perturbations with momentum k⇤ ⇠ 0.05/Mpc. The results of the calculations
corresponding to the perturbations on the present scale of the horizon slightly di↵er from these
results because the spectrum is not exactly flat, but the di↵erence is rather small, so one can use
the results given above as a good first approximation for the amplitude of the perturbations
on the scale of the horizon. In many inflationary models, these perturbations are produced
at N ⇡ 60 e-foldings before the end of inflation. However, the number N can be somewhat
di↵erent, depending on details of the post-inflationary evolution. That is why when comparing
expected results for various models with observations, cosmologists often make calculations for
N = 60 and also for N = 50.

The number of e-foldings can be calculated in the slow roll approximation using the relation
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Equation (7.14) leads to the relation between r, V and H, in Planck units:

r ⇡ 3 ⇥ 107 V ⇡ 108 H2 . (7.16)

The latest Planck results, in combination with the results of WMAP and the results based on
investigation of baryon acoustic oscillations (BAO), imply that

r . 0.11 (7.17)

and
ns = 0.9607 ± 0.0063 . (7.18)

These relations are very useful for comparing inflationary models with observations. A more
detailed discussion of observational constraints can be found in Section 11.

Up to now, we discussed perturbations produced by the simplest, standard mechanism
described in [10, 16, 17]. However, in models involving additional light scalars fields �, other
mechanisms of generation of perturbations are possible.

Let us assume, for example, that the products of the inflaton decay after inflation are
ultra-relativistic and rapidly rapidly loose energy in an expanding universe, whereas the field
� is heavy decay with a significant delay. In that case, the field � may dominate the energy
density of the universe and perturbations of this field suddenly become important. When
the field � decays, its perturbations under certain conditions can be converted into the usual
adiabatic perturbations of the metric. If this conversion is incomplete, one obtains a mixture
of isocurvature and adiabatic perturbations [44, 45], which should be very small in accordance
with recent observational data [1]. On the other hand, if the conversion is complete, one
obtains a novel mechanism of generation of purely adiabatic density perturbations, which is
called the curvaton mechanism [46, 47, 48, 49]. Note that in many of the original versions of
the curvaton scenario, it was assumed that at the epoch of the curvaton decay the universe was
dominated by the classical curvaton field. In this case the curvaton decay produced significant
amount of isocurvature perturbations, which strongly constrain such models [1]. However, if one
makes a natural assumption that a large number of curvaton particles are produced during the
inflaton decay, this problem disappears [50, 51]. There are other closely related but di↵erent
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According to Plank/BICEP/Keck/ACT data, r < 0.038, which means that V < 10-9 
at the edge of visibility. To see what happen at V = O(1) one would need to look 
beyond the horizon. 

Thus, we will never see the moment of creation. But this also means that the 
absence of full knowledge of the processes near the cosmological 
singularity should not affect the basic observational predictions of 
inflation.

This is very similar to the cosmic censorship conjecture: The singularity may 
exist, but it should be invisible, hidden from us by a horizon.



1) The universe is flat, W = 1. (In the mid-90’s, the consensus was 
that  W = 0.3, until the discovery of dark energy confirming inflation.)  

2) The observable part of the universe is uniform (homogeneous). 

3) It is isotropic. In particular, it does not rotate. (Back in the 80’s we 
did not know that it is uniform and isotropic at such an incredible level.)

4) Perturbations produced by inflation are adiabatic

5) Unlike perturbations produced by cosmic strings, inflationary 
perturbations lead to many peaks in the spectrum 

6) The large angle TE anti-correlation (WMAP, Planck) is a distinctive 
signature of superhorizon fluctuations (Spergel, Zaldarriaga 1997), 
ruling out many alternative possibilities



7) Inflationary perturbations should have a nearly flat (but not exactly 
flat) spectrum. A small deviation from flatness is one of the 
distinguishing features of inflation. It is as significant for inflationary 
theory as the asymptotic freedom for the theory of strong interactions

8) Inflation produces scalar perturbations and tensor perturbations 
with nearly flat spectrum, and it does not produce vector 
perturbations. 

10) Scalar perturbations are Gaussian. In non-inflationary models, the 
parameter fNL

local describing the level of local non-Gaussianity can be as 
large as 104, but it is predicted to be O(1) in all single-field inflationary 
models. Confirmed by Planck. Prior to the Planck2013 data release, 
there were rumors that fNL

local >> O(1), which would rule out all single 
field inflationary models 

9) In the early 80’s it could seem that inflation is ruled out because 
scalar perturbations are not observed at the expected level 10-3 

required for galaxy formation. Thanks to dark matter, smaller 
perturbations are sufficient, and they were found by COBE.





a-attractors saving 
monomial potentials

Starobinsky model and Higgs inflation



Kallosh, AL, Roest 2013
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To match observations, the simplest chaotic inflation model 

should be modified:

Switch to canonical variables � =
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This model (a-attractor T-model) is consistent with observational 
data for m ~ 10-5 and any value of a smaller than O(5).



More generally:

In canonical variables

Asymptotically at large values of the field

Additional information can be obtained for the hilltop models. The simplest models

V = V0(1 � �4/m4) represented by the green band in Fig. 8 of the Planck2018 data release [2]

lead to a universal prediction ns = 1�3/Ne for all sub-Planckian values of the mass parameter

m . 1. This prediction is strongly disfavored by the Planck2018 data for the number of

e-foldings Ne ⇠ 50 � 60. These models could provide a good match to the Planck data for

m & 10. However, in that case they predict post-inflationary collapse of the universe, which

cannot be avoided without a substantial modification of such models, strongly modifying their

predictions [3].

More complicated versions of the hilltop models, such as the new inflation model with the

Coleman-Weinberg potential V ⇠ 1 + �4

m4 (2 log �2

m2 � 1), are marginally compatible with the

Planck2018 data [3], though only for m � 1. Now they are strongly disfavored by the results

of the recent BICEP/Keck data release, as we show in Fig. 2.

New Inflation
(Coleman-Weinberg 
potential)

Figure 2: Models of the type of new inflation [4, 5] based on the Coleman-Weinberg hilltop potential are

marginally compatible with Planck2018 data, but strongly disfavored by the BICEP/Keck data [1].

However, one can recover all of these losses by making a relatively simple generalization

of the kinetic term of the scalar field. After this generalization, most of the improved models,

which we called “cosmological attractors,” become compatible with all presently available

inflation-related observational data, almost independently of the choice of the scalar potential

prior to the generalization.

2 ↵-attractors

2.1 T-models

We will begin with describing ↵-attractors [6–12]. The simplest example is given by the theory
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Here �(x) is the scalar field, the inflaton. In the limit ↵ ! 1 the kinetic term becomes

the standard canonical term � (@µ�)2

2 . The new kinetic term has a singularity at |�| =
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We called such models T-models due to their dependence on the tanh 'p
6↵

. Asymptotic value

of the potential at the plateau at large ' > 0 is given by
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Here V0 = V (�)|�=p
6↵ is the height of the plateau potential, and V 0

0 = @�V |�=p
6↵. The
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0 in front of the exponent can be absorbed into a redefinition (shift) of the

field '. Therefore all inflationary predictions of this theory in the regime with e
�
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2
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are determined only by two parameters, V0 and ↵, i.e. they do not depend on any other

features of the potential V (�). That is why they are called attractors.
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Figure 3: The figure illustrating the main results of the BICEP/Keck [1] superimposed with the predictions

of ↵-attractor T-models with the potential tanh2n 'p
6↵

[8, 10]. Each of these models starts at some �2n (at

↵ ! 1) and is forced to go down with decreasing ↵ [8] into the area favored by the BICEP/Keck.

The amplitude of inflationary perturbations As in these models matches the Planck

normalization for V0
↵ ⇠ 10�10. For the simplest model V = m2

2 �2 one finds

V = 3m2↵ tanh2 'p
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. (2.4)
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Here                                    This factor can be absorbed in the 
redefinition (shift) of the field. Therefore, at small a, values of 
ns and r depend only on V0 and a, not on the shape of V(f).
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Then the condition V0
↵ ⇠ 10�10 reads m ⇠ 0.6 ⇥ 10�5. It is this simplest model that is shown

by the prominent vertical yellow band on Fig. 8 of the Planck2018 data release [2].

To illustrate advantages of this class of models, we show in Fig. 3 predictions of the

models with monomial potentials �2n after the modification of the kinetic term shown in (2.1).

At large ↵, predictions of all of these models coincide with the predictions shown in Fig. 1,

and these models are ruled out, but at smaller ↵ they all run towards the dark blue area

favored by the latest BICEP/Keck data release. Fig. 3 illustrates the main advantage of the

cosmological attractors: Their predictions for ns and r coincide in the small ↵ limit, nearly

independently of the choice of the potential V (�):

ns = 1 � 2

Ne
, r =

12↵

N2
e

. (2.5)

These models are compatible with the presently available observational data for su�ciently

small ↵.

2.2 E-models

The second family of ↵-attractors called E-models is given by
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The simplest example is provided by V (⇢) = V0(1 � ⇢)2. In the canonical variables it is given

by

V = V0

⇣
1 � e
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2
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For the particular case ↵ = 1 this potential coincides with the potential of the Starobinsky

model [13]. In the small ↵ limit the predictions of the E-models coincide with the predictions

of the T-models (2.5).

Fig. 4 shows a combination of predictions of the simplest T-model (2.4) and the simplest

E-model (2.8). Predictions of both of these models at large ↵ coincide with the predictions

of the model �2, and then go down into the blue area with decreasing ↵. T-model band

goes straight, E-model band first slightly bends to the right, to larger values of ns, but later

reaches the same attractor value as in the T-model. Their predictions are consistent with the

Planck/BICEP/Keck bound r < 0.036 for ↵ . 7. Note that both models can describe any

value of r ⌧ 1, all the way down to r = 0.1

1An opposite statement made in the comment on the BICEP/Keck results in [14] is based on discarding

predictions of ↵-attractors for ↵ < 1.

– 4 –



T-models for different a, 
or Higgs inflation for a=1

E-models for different a, or 
Starobinsky model for a=1

<latexit sha1_base64="gH9ikLHrwtYWmjImvCGWiLjm5Fo="></latexit>
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Exponential approach to the plateau



Casas, Ibanez, 2407.12081,    Kallosh, AL, 2408.05203, 2411.07552, Carrasco, Kallosh, AL, Roest, 2503.14904

This theory describes infinitely many inflationary a-attractor plateaus



ACT+DESI suggest that ns > 0.965,  but CMB-S4 and 
LiteBIRD figures do not show any targets with ns > 0.965

P-ACT-LB   ns=0.9743 ± 0.0034 

Before discussing r we have to understand that ACT shift of ns to the right, 
if correct, is highly significant. As we will see, it disfavors inflationary 
models with an exponential approach to plateau with ns ~ 0.965 and favors 
models with a power-law approach to plateau and ns > 0.965 

But first – a general question: Do we have any simple, 
comprehensive inflationary models that work no 

matter what?



A simple polynomial potential with 3 parameters can 
describe the full range of all possible values of As, ns and r, 

all the way to r = 0 and ns = 1
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V =
m2ω2

2
(1→ aω+ b(aω)2)2

Destri, de Vega, Sanchez, 2007
Nakayama, Takahashi and Yanagida, 2013
Kallosh, AL, Westphal  2014

Example:   For b = 0.34, we have r = 0.01. By increasing a from 0.13 to 0.17, 
we move from ns = 0.967 (Planck) to 0.974 (ACT), and all the way to ns = 1.



A simple polynomial potential with 3 parameters can 
describe the full range of all possible values of As, ns and r, 

all the way to r = 0 and ns = 1

But it is better to have models with 
no more than 1 or 2 parameters
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A non-minimal version of chaotic inflation
<latexit sha1_base64="vtZ1ZxhqmFT6scdBDHVzKwe1Nks="></latexit>
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In the Einstein frame, this theory has a potential with a power-law approach to the 
plateau
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V =
m2

2

(
1→ 8ω→2 + ...

)

Kallosh, AL, Roest
2503.21030  

This simple generalization 
of the chaotic inflation 
model is compatible with 
ACT+SPT+DESI

Its prediction is shown by 
the yellow star

https://arxiv.org/abs/2503.21030


Pole inflation, polynomial a-attractors, 
KKLTI  models, BI models

Power-law approach to the plateau
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Example:
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<latexit sha1_base64="jjlM0rltnFIf/rNlbrzeWd/0734=">AAACEHicdVDNS8MwHE39nPNr6tFLcIjCcLRbWXcRBl48yQT3AVspaZZtYWlaklQYpX+CF/8VLx4U8erRm/+N6TZBRR8EXt57P5Lf8yNGpTLND2NpeWV1bT23kd/c2t7ZLeztt2UYC0xaOGSh6PpIEkY5aSmqGOlGgqDAZ6TjTy4yv3NLhKQhv1HTiLgBGnE6pBgpLXmFE+4lMoXn0DpLKv1QR+GVl5A0TSYla36flCop9ApFs2yadbPqQLNs2bWKnZGa7Th2FVraylAECzS9wnt/EOI4IFxhhqTsWWak3AQJRTEjab4fSxIhPEEj0tOUo4BIN5ktlMJjrQzgMBT6cAVn6veJBAVSTgNfJwOkxvK3l4l/eb1YDetuQnkUK8Lx/KFhzKAKYdYOHFBBsGJTTRAWVP8V4jESCCvdYV6X8LUp/J+0K2WrVq5d28VGZ1FHDhyCI3AKLOCABrgETdACGNyBB/AEno1749F4MV7n0SVjMXMAfsB4+wTjKpv4</latexit>

ns = 1→ 2

Ne

k + 1

k + 2

These models can cover a wide range of ns
<latexit sha1_base64="rt+q0Btm2fJNsLAsSySpiJgGQpE="></latexit>

1→ 2

Ne
< ns < 1→ 1

Ne

For Ne = 60, this range is  0.967 < ns < 0.983

Fully compatible with ACT




