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Abstract

A simplest interpretation of the Planck data was that inflationary
potentials may have a plateau, which is approached exponentially
fast at large values of the scalar field.

However, recent data from ACT and SPT, in combination with DESI,
suggest that the inflationary spectral index, n,, is slightly higher than
its value based on Planck data.

We will explain why this small deviation, if confirmed, is very
significant: it disfavors some of the most popular inflationary models
of the last decade, and suggests that the inflaton potentials may
approach the plateau not exponentially but polynomially.



Single field inflation models
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n,-r plane

Primordial power spectra conventionallv parameterized as

) ) B ns(k)—1

N, is the spectral index

Ratio of the power in primordial gravitational waves to the power in primordial density perturbations:

tensor-to-scalar ratio r

LiteBIRD constraints on the
tensor-to-scalar ratio r and
the scalar spectral index ns.
The red line and the dark
purple dot show the predictions
of the Starobinsky model and
Higgs model of inflaton.
The lines show
the predictions of the

models based on a-attractors
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“Holy Grail” of observational cosmology is to detect primordial gravitational waves
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Find a value of tensor-to-scalar ratio r detecting primordial gravitational waves

Boundsonr

BICEP / Keck XIII: Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and
BICEP/Keck Observations through the 2018 Observing Season arXiv:2110.00483

reos< 0.036 at 95% confidence

The Atacama Cosmology Telescope: DR6 Constraints on Extended Cosmological Models

r < 0.038 (95%, P-ACT-LB- arXiv:2503.14454
BK18)



One of the conclusions based on the Planck data was that the simplest

inflationary potentials that fit the data have a plateau, which is approached
exponentially fast at the large values of the scalar field
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Fig. 12. Marginalized joint 68 % and 95 % CL regions for ng and r at k = 0.002Mpc~' from Planck compared to the theoretical
predictions of selected inflationary models. Note that the marginalized joint 68 % and 95% CL regions have been obtained by
assuming dng/dInk = 0.

Fig. 1. Marginalized joint 68% and 95% CL regions for n; and ry g2 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

R? inflationary model proposed by
Starobinsky is the most preferred.

Due to its high tensor- to-scalar ratio, the
model ¢? is now strongly disfavored

As shown in Fig. 1, most of the joint 95% allowed
region lies below the convex potential limit, and
concave models with a red tilt in the range [0.945-

0.98] are allowed by Planck at 95% CL.

Now in 2025 r < 0.036
Exponential approach: n, < 0. 965
ACT, DESI, SPT: n,=0.974

Polynomial approach to plateau

Preference to plateau potentials :
no discovery of gravity waves

Still valid



Snowmass2021 Cosmic Frontier: Cosmic Microwave arXiv:2203.07638

Background Measurements White Paper Planck+BICEP/Keck Array
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Shown are the current best constraints from a combination of the BICEP2/Keck Array experiments
and Planck for a model with r = 0.003.

Models that naturally explain the observed departure from scale invariance separate into two viable
classes: monomial and plateau.

The monomial models P are shown for three values of p as blue lines for 47 < N, < 57. The simplest
realization of this class is now disfavored

The plateau models include the tanh? form (gray band) as an example, as this form arises in a sub-class of
a-attractor models. Some particular realizations of physical models in the plateau class are also shown:
Starobinsky model, Higgs inflation and Poincare” disk a-attractors. The differing choices of N, for

Higgs and Starobinsky reflect differing expectations for reheating efficiency.



The meaning of the parameter a in a-attractor models in hyperbolic geometry
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Next CMB satellite mission targets: 7 Poincare disks



http://mathworld.wolfram.com/PoincareHyperbolicDisk.html
https://www.sciencedirect.com/science/article/pii/S1631070515001309?via%3Dihub

Why attractors?
Simple analytic answers for observables in slow-roll approximation
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Here N is the number of e-foldings of inflation

At large N and small & we find an attractor value of CMB observables
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Plateau potentials of a-attractors
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Why Higgs inflation (Bezrukov, Shaposhnikov “The Standard Model Higgs boson as the Inflaton” 2007)
is related to a-attractors with o=1 and exponential approach to plateau?
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After conformal transformation from the Jordan frame to the Einstein frame
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the potential for the canonical scalar field ¢ at large field y is
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at large field y the potential has a plateau, and it approaches it exponentially with the factor \/;
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a-attractors have the factor %

Hence, in Higgs inflation the values of n.and r are the same as that of the a-attractors with a=1




Is n, = 0.974 from ACT, DESI, and SPT, 2025 a final word?

This is not clear due to BAO-CMB Tension

Ferreira, McDonough, Balkenhol, RK, Knox, Linde arXiv:2507.12459

Constraint on n, derives from the combination of cosmic microwave background (CMB) data with
baryon acoustic oscillation (BAO) data. The resulting n, constraint is shifted significantly upward
relative to the constraint from CMB alone.

The consequence is that previously preferred inflationary models are seemingly disfavored by =20.

But there is a 30 — 40 tension between CMB datasets and DESI BAO data under the assumption of the

standard ACDM cosmological model.

Given the crucial role of n. in discriminating between inflationary models, we urge caution in
interpreting CMB+BAO constraints on ng until the BAO-CMB tension is resolved.

The BAO-CMB Tension:
tension between the CMB
and DESI BAO inferences of
the parameters rgh and Q. In
the case of ACT, the tension is
3.10, which increases to 3.7c
if ACT is combined with SPT
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Constraints from ACT DR6 CMB and DESI DR2 BAO Data

| Parameter l

ACT

|

ACT + DESI

|

Ns
rqh [Mpc]
Qm

0.9666 (0.9664) =+ 0.0076
96.5 (96.27) + 1.5
0.337(0.338) =+ 0.013

0.9770(0.9754) + 0.0070
101.04 (101.05) + 0.54
0.2999 (0.2996) + 0.0040

TABLE 1. Parameter constraints (best fit) from the fit of
ACDM to ACT DR6 primary CMB data alone and in combi-

nation with

DESI BAO data.

rqh parameter combines the comoving sound horizon rq and the dimensionless Hubble constant h
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We may still look at models compatible with ACT, DESI, SPT data with upward in n

CMB-S4 Snowmass2021 Cosmic Frontier:

CMB Measurements White Paper”,

arXiv:2203.07638

All targets at n, < 0.966

Meanwhile many other inflationary models were studied which fill in the right hand side
of the blue area above with n; > 0.966. These are known as
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D-brane inflation, KKLTI models, pole
inflation, polynomial a-attractors

ATTRACTORS:

exponential a-attractor ns is a-independent at smallr,

T-models and E-models

(yellow and red) r-depends on a.

polynomial attractor models
(purple, green, orange, blue)

ns is a-independent at small r,
but depends on k

RK, Linde, 1909.04687 r-depends on a and k
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KKLTI model observables at the attractor point and below, at small r

RK, Linde, Yamada, 1811.01023
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Pole Inflation Galante, RK, Linde, Roest, 1412.3797, Terada, 1602.07867
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Here the pole of order p is at p=0 and the residue at the pole is a,. For p = 2, a, = 3a/2 this equation
describes inflationary regime E-models of a-attractors, but here we consider general values of p.
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Polynomial a-attractors RK, Linde 2202.06492

Another version of the model with the same attractor values of observables.
There is a pole of order 2, but the potential is different
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Relation between r and (1-n.) in cosmological attractors

Exponential o-attractors
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Conclusions

* We have discussed various properties of inflationary attractor models in view of the data from
Planck and new data from ACT, DESI, SPT. We explained that the CMB-BAO tension needs to be
resolved before we view the increase in n as an established fact.

* |f the ACT+SPT+DESI result are confirmed, the generic set of attractor models polynomially
approaching the plateau will be of interest. These models are not as simple as the exponential
a-attractors, but nevertheless, they have analytic expressions for n, and r at the attractor point.

* Some of these models (polynomial a-attractors) also have interesting predictions continuous
in o, as well as predictions discrete in 3a=1,2,3,4,5,6,7 for LiteBIRD. These are Poincare disks

from the underlying hyperbolic geometry of the moduli space of supergravity, inspired by string
theory.

The Lite (Light) spacecraft for the study of B-mode
polarization and Inflation from cosmic background
Radiation Detection (LiteBIRD)

LiteBIRD is expected to launch in JFY2032
(JFY: Japanese fiscal year).




