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The 2HDM potential

Vieee = m2,®1®; +m2,31®y — [m2,0105 +h.c.]
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> 14 parameters (reducible to 11)

> 4 complex parameters

> Six transformations on the doublets are known that leave both the potential and kinetic
terms unchanged. In addition, there are custodial symmetries.



Implications for the potential parameters in the symmetry basis

Vv, v,
Symmetry | m{; m3, mis | A1 A2 A3 Mg A5 A6 A7
CP1 real real real real
Zo 0 0 0
U(1) 0 0 0 0
CP2 m%l 0 )\1 _)\6
CP3 m%l 0 )\1 )\1 — )\3 — )\4 (real) 0 0
SO(B) m%l 0 )\1 )\1 — )\3 0 0 0

> Symmetries may or may not be spontaneously broken by the vacuum.

> These parameter relations are RGE-stable to all orders, indicating that these are indeed
symmetries of the model.



An unexpected discovery

During work on the physical properties of
softly broken symmetries in the 2HDM
we made a startling discovery:

The set of constraints

Ae = A7
As
A2

2 2
myq + Moy

0,

/\1 — /\3 — /\4 (real),
)\1)

0,

seems to be RGE-stable to one-loop

order

Are we just in a weird basis? No!



Excitement!

>

OMO discovers using one-loop beta
functions that these combined
constraints are RGE-stable. Challenges
PF to explain what is going on

PF confirms, but suggests that this
might be a one-loop «accident», and
finds a simpler set of constraints that
are one-loop RGE-stable, namely
A6 = A7 0,
A2 AL,

2 2
miy + Moy 0,

OMO checks against two-loop beta
functions and finds that these combined
constraints are RGE-stable up to two
loops.

An excited PF confirms and also verifies
RGE-stability up to three-loop order
(Bednyakov) for the set of constraints
A6 + A7 0,
A2 A1,

2 2
mip + Moy 0,

PF finds that using Bednyakov'’s results
one can argue that it holds to all orders.

PF discovers that the bilinear form of the
2HDM suggests a simple transformation
yielding the above constraints.

OMO discovers a weird transformation
of the fields that leaves the potential,
scalar and gauge kinetic terms invariant

Realistic Yukawas has been found for
some cases



RGE stable to all orders

X + A7 = 0,
Ay = Aq,
mi; +m3y = 0,

> We discovered another set of parameter
relations, not known from before, that
were shown to be RGE-stable to all
orders.

> Did we discover a new symmetry of the
2HDM, or is there another explanation?




Bilinears and the r,-symmetry

> Potential in bilinear notation
Vi=M,r" + A, rtr”

where
= (T03T15T23T3):(T01m1
ME = (mil +m§2, 2Re(m§2), —21m(m%2), m%Q*m%) = (Mo, M)a
B T(AM+A2)+X3 —Re(Xs+ A7)  Im(Xg+ A7) T(A2 = A1)
AW_(AOO A)_ —Re (A6 + A7) Ay +Re(Xs) —Im (As5) Re (A¢ — A7)
“\AT A) | Im(Xe+ A7) ~Im (A5) M—Re(As) —Im(\s—A7) |-
%(/\2 = /\]) Re ()‘b = /\7) —Im ()\0 = )\7) %(/\] + )\2) — Ad
_ 1 T T
ro = 3 (@@ +ola,),
— L (oId, + PID,) =Re (D0
.= 3 1 P2 + PP ) = e 1¥2 | 5

(@{@2 ~ @;@1) — Im (qf{@g) ,

5
ry = l(@’f@ —@Tq>)
2 1*1 2*2 ] -

v

v

The six “classic” symmetries result from
demanding invariance under bilinear
transformations.

Invariance under 19 — —7rg implies

—

MQZO and A=0

equivalent to e + A7 = 0,
AQ — )\17
2 2
mi; +ma; = 0,

Hence the name r, - symmetry

Impossible to change sign of r, using HF-
or CP-transformations



The ry-symmetric potential

> Potential in bilinear notation
Vi=M,r" + A, rtr”

where
it = (7"0,7‘1,7'2,7‘3)2(7’0,7_'),
M* = (0, 2Re(my), —2Im(miy), —2m3;) = (Mo, M),

. A1+ As 0 0 0
AR — Ago A o 0 )\4 + Re ()\5) —Im ()\5) 2Re (/\5)
TAAT AT 0 —Tm (As) Ay —Re(As) —2Im(Ag) | °
)

0 2Re (A6 —2Im (As) A= Ag
ro = = ((IDJ{(I)l + <I>£<I>z) :
T (‘I’J{‘I)z + (I);(I)l) = Re (‘I’J{qb) )
ry = i (@{@2 _ @;@1) — Im (@I<Pz),

> Potential in standard notation

Viree = m%1 ((I)J{(Dl — @;@2) — [m%QQ)I‘I)Q + ].’l.C.]
1
30 ((@]0)? + (@]@,)?)
23 (D1D1) (R] Do) + Aa (D] Do) (RS D)

1
+ {§A5(q>{q>2)2 A6 [(@]@)) — (B]Dy)]| BT Dy + h.c.}



RGE stability

—

> Using  My=0 and A=0

> we were able to show, using results of
A.V. Bednyakov ("On three-loop RGE for
the Higgs sector of 2HDM", JHEP 11
(2018) 1564) that

Bm%l—l—mgz — 07
/B)\l—)\g — 07
Bre+rr =

to all orders.

Thus, )\6 + )\7 — O,
Ay = A,
mi, +msy = 0,

is a fixed point under the running of the
RGE to all orders.

Same behavior as the fixed points of the
HF/CP symmetries.

Can also include fermions (at least up to
two-loop order).



More on the r,- symmetry

> Parameterise the two doublets as
(1 +ida (&5 +igs
1= (d’s +i¢4) o P2 (¢’7 + i¢8) ’

then

1

5(#1+ 65 + 65 + 61 + 65 + &6 + ¢7 + ¢5);
G195 + P206 + G307 + PaPs,
— Q205 + Q106 — G4P7 + G308,

1
§(¢f+¢§+¢§+¢ﬁ—¢§—¢§—¢3—¢§)-

o =
™ =

T =

T3 =

> Want to change sign of r, while r,, r, , 5
are unchanged

M1 0O 0 0 0 0« 00 ol
b2 0O 0 0 0 4« 0 0 0]
b3 0 0 0 0 0 0 0 1 03
P4 0o 0 0 0 00 ¢ 0 on
“lolo 50 0 000 ofls| works!!!
(oF —i 0 0 0 0 0 0 0]|¢os
b7 0 0 0 — 00 0 0]]|or
Ps 0o 0 — 0 0 0 00 s

>

>

Wl,u — in,u;

>

>

What about the kinetic terms? Define

0 /
DM — §h 1 %inf + i%B”,

and scalar kinetic terms
Ly = (Du(I)l)T(Duq)l) + (DM(I)2)T(DM(I)2)

Turns out to be invariant under r,
provided also

By = 08By 1By = W5y,
WQM — _iWZW
Combined transformation of fields and

spacetime coordinates, all scaled by
imaginary unit =+

Imaginary scaling !!!

W3M — ’Z.Wgu.
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More on the r,-symmetry

> Gauge kinetic terms

1 1
£B p— —EB‘UJVB‘UJV — ZW’I:LLVWiuV
where
BW — @“BF_ OB,
WZHV = 8”Wf — 6“Wiu + geijkaW,’;,

> Also invariant under imaginary scaling.

Symmetry or anomaly?

Consider one-loop effective potential
(Coleman-Weinberg)

1 [ d*p
ASUE 5 f (2Wﬁlﬁ[1n(p%+M§)]
_ d'pE S ME\"
B _if [ g n (P%) ]
where (M3),; = 0*Viree/ (86:00;)

IS a scalar mass-squared matrix calculated

for a given tree-level potential at a constant
classical field.

n odd: Terms change sign under r,

n even: Terms invariant under r,
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Momentum behavior under imaginary scaling transformation

sy _ 1 [d'pe 5
Veff - 5/(2ﬂ)4Tr[ln(pE+M§)]

- ey S (2]

Terms with n odd would be invariant if
2 2
P — —PE
under r, transformation.

Recall that Zu — '@, implies

r? — —x°

What does this imply for momentum?

v

In QM momentum operator is
N : T
Py =10, —

INQFT, Dy = / d°x O,

oL
where ©,, = Z G2 Op i — N £

T .
Implying Pp —7 — 1Dy

Also, Fourier transforms between
coordinate space and momentum space
would be nonsensical if x were imaginary

and p were real. . :
e pr, esz
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The minimal model

L= %(%qﬁl@”qﬁl + 0u,$20" p2) — V (61, P2)
> with

V(p1, ¢p2) = %m%(ﬁ — (ﬁ%) + m%2¢1q52 + %M(CbliL + @3) + )\3(¢1¢2)2 + A6(§b% — @%)9’51%

> Can rotate into basis where Ag =0

13



The minimal model

>

V(le, ¢2) — 5771%

>

>

>

L= 3 (0,610 61 + 620" 62) — V(61
with
1

Can rotate into basis where Mg =0

Invariant under the r, like transformation
ot =zl o1 = iga, P2 = —idy

Field dependent squared mass matrix:

o13),, = (

, 92)

mi + 6167 + 2A305
m%g + 4)\3¢1¢2

(83— 63) + mdabids + S M(01+ 63) + As(6160)

m%g -+ 4)\3 ¢1 ¢2
—m7 + 61035 + 2A301

)
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The minimal model — bilinear formalism

V(rt) = —-M,r" + A, rHr” 7"8 — fr% — T% =
1 1
> with ro = §(¢% + Gbg) ’ r = ¢1¢21 ro = i(gb% T Qb%)
> Invariant under the r, like transformation (ro,r1,72) AN (—ro,71,72)
M* = (0, m{y, m7) Ao 0 0 A 000
AMY = 0 All A12 = 0 )\3 0

0

15



The potential of the minimal model

L 9 0 2 2 1 4 4 2 5
V(o1, ¢2) = 5””1(@1 — ¢3) + i1 + 5)\1(% + @3) + Az(P102) A\
A+ A3
> Saddle point at the origin = ¢1 = @2 =0
> Two degenerate minima in opposite directions mi = 2\ (¢3 — ¢°)
determined from stationary point equations m%Q = —2(A\1 + \3)o109

m: = 10°
mi, = 207
Moo= 1

A3 = 2

16



The minimal model — one-loop effective potential

> Adopt cut-off regularization

VR = 5 [ G Gk + M)
_ L [d'pe (D" (MENT
- -3/ @ [’”2 " (pE)]

_ .2
> Where we have introduced new variable of integration P =DPEg
> Possible to give explicit expression for minimal model (mass squared matrix is 2x2)

> Note that replacing A%]V — —A%]V is equivalent to substituting p2E oy —pQE

17



The minimal model — mass matrix

%

Field dependent mass matrix

(MQ) _ m% SR 6)\195% + 2)\3Q§% m%g + 4)\3¢1¢2
S/ ij m%Q =F 4)\3@1@2 —m% == 6A1¢% =F 2)\3@%

> Eigenvalues given by M12’2(fr“) = 2(3\1 + X3)rp £ VA

> Transformation of eigenvalues under r,;:
r ™
MZ % M7 and M7 "% —M?

> They transform into each other - along with a change of sign

> We shall also assume that AUV —> A%]V

A = (m%)2 -+ (mlz) + 4m1 (3)\1 )\3)7“2 + 8m12)\37“1 + 16/\37“0 -+ 12(3)\1 + )\3)()\1 — )\3)?“3 18



The minimal model — one-loop effective potential

> Perform integration to get

-loo 1 ’ i
Y L-1oop () — 32W2 v ONT MR () + s > M) [log P 5] + irrelevant terms
i=1,2 i=1,2

Afy  sign change
We conclude that under the r,transformation,
Z M2(rH) _ the one-loop effective potential of the minimal
sign change model is invariant prowded

2
) - Ay — —Afy
Y M}(r*) invariant

We argued before that this is equivalent to

pH — —Dp

> M) logf\T invariant
g uv

19



The minimal model — one-loop effective potential

> Path integral formalism does involve momentum integration

Vesr(der) o< /Hﬂ@k)exp {—i/d4$ ¢i(x) [Dm 0ij + (Mg(ébcz))ij] %‘(w)}

HD(@{;) invariant
k
J4 o invariant
O, = 8,00 — -0,
07 = —¢7

(M5),; = 0*Viree/ (06500

We conclude that under the r,transformation,
the one-loop effective potential of the minimal

model is invariant provided .

Invariance requires a combination of
field-transformations and transformation
of space-time coordinates.

20



r, invariant 2HDM — one-loop effective potential

> Path integral formalism

Vesr(der) o< /Hﬂ@k)exp {—i/d4$ ¢i(x) [Dm 0ij + (Mg(ébcz))ij] %‘(w)}

| RED invariant

k

d4 o invariant
>

®illz0;; P4 invariant

O; (M%)ij ?; invariant

(M3),; = 0*Viree/ (06:06;)

We conclude that under the r,transformation,
the one-loop effective potential of the minimal

model is invariant provided .

Invariance requires a combination of
field-transformations and transformation
of space-time coordinates.

This is unlike HF and CP transformations.
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Physical implications of the r, invariant 2HDM

> General 2HDM potential has 11
independent physical parameters

> Instead pick 11 masses/couplings to
describe model

> -4 squared masses
: 2, 2 2 2
- 3 gauge coupl_mgs e; +es+es=v
- 4 scalar couplings

P = {M]%Ij”M%’ MQQ; Mg?, €1,€2,€3,41,42, Q37q}

€, =

qi =
q =

2
— Coefficient (L, HW-W™)
g

Coefficient(V, H;H~ H™)
Coefficient(V, H-H HTH™).

> All observables arising from the
potential expressible through these 11
parameters.

> All other trilinear and quadrilinear scalar
couplings expressible through these 11
parameters.

First infroduced in:

Grzadkowski, Ogreid & Osland: JHEP 11 (2014) 084 and Phys. Rev. D 94,
115002

Description of translation process:

Ogreid: PoS CORFU2017 (2018) 065

Remainigg scalar couplings expressible
in terms of

Grzadkowski, Haber, Ogreid & Osland: JHEP 12 (2018) 056
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Physical implications of the r, invariant 2HDM

> The four(!) parameter constraints > Translate into four(!) physical
constraints

v?(e1q2 — e2qu) + erea(M3 — M7) =0,

2 2
_ ‘ (e1g5 — esq1) + eres(M5 — M7) =0,
)\6 T AT - O’ v?(e2qs — esqa) + eges(Mg — M3) =0,
S 1
A2 = AL, o) o= (EME M+ 0D,
1 1
mi, +msy = 0, o) M= jen +onten) s (@M +EME + M),

> Fixed points of the potential to all orders
under running of RGE.

23



Summary

> Formulation of softly broken symmetries
in terms of physical parameter set led to
the discovery of a new «symmetry».

> Cannot be formulated in terms of
transformation on the doublets, but in
terms of transformation on the bilinears
or on the components of the doublets.

> Rotation to imaginary spacetime must
be accompanied by rotation into
imaginary momentum space.

> Leaves potential, scalar kinetic and
gauge kinetic terms invariant. Yukawas?

One-loop effective Coleman-Weinberg
potential shown to be invariant under

imaginary scaling. Needs 7, — ixﬂ

New 2HDM-models that provides new
phenomenology with new physical
implications

Groups are looking into extending
imaginary scaling to fermionic sector.

Applications to hierarchy problem?
3HDMs next?

24
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