

# Imaginary scaling

Talk given at Scalars 2025, Warsaw, September 2025



Odd Magne Øgreid

Based on work with Pedro Ferreira, Bohdan Grzadkowski and Per Osland.

Eur. Phys. J. C 84, 234 (2024) and arXiv:2506.21145

### The 2HDM potential

$$V_{\text{tree}} = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - [m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.}]$$

$$+ \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1})$$

$$+ \left\{ \frac{1}{2} \lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + \left[ \lambda_{6} (\Phi_{1}^{\dagger} \Phi_{1}) + \lambda_{7} (\Phi_{2}^{\dagger} \Phi_{2}) \right] \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right\}$$

- > 14 parameters (reducible to 11)
- 4 complex parameters
- Six transformations on the doublets are known that leave both the potential and kinetic terms unchanged. In addition, there are custodial symmetries.



#### Implications for the potential parameters in the symmetry basis

| $V_2$    |            |                    |            |             | $V_4$       |             |                         |                                            |             |              |
|----------|------------|--------------------|------------|-------------|-------------|-------------|-------------------------|--------------------------------------------|-------------|--------------|
| Symmetry | $m_{11}^2$ | $m_{22}^{2}$       | $m_{12}^2$ | $\lambda_1$ | $\lambda_2$ | $\lambda_3$ | $\lambda_4$             | $\lambda_5$                                | $\lambda_6$ | $\lambda_7$  |
| CP1      |            |                    | real       |             |             |             |                         | real                                       | real        | real         |
| $Z_2$    |            |                    | 0          |             |             |             |                         |                                            | 0           | 0            |
| U(1)     |            |                    | 0          |             |             |             |                         | 0                                          | 0           | 0            |
| CP2      |            | $m_{11}^{2}$       | 0          |             | $\lambda_1$ |             |                         |                                            |             | $-\lambda_6$ |
| CP3      |            | $m_{11}^{ar{2}^-}$ | 0          |             | $\lambda_1$ |             |                         | $\lambda_1 - \lambda_3 - \lambda_4$ (real) | 0           | 0            |
| SO(3)    |            | $m_{11}^{ar{2}^-}$ | 0          |             | $\lambda_1$ |             | $\lambda_1 - \lambda_3$ | 0                                          | 0           | 0            |

- > Symmetries may or may not be spontaneously broken by the vacuum.
- > These parameter relations are RGE-stable to all orders, indicating that these are indeed symmetries of the model.



### An unexpected discovery



- During work on the physical properties of softly broken symmetries in the 2HDM we made a startling discovery:
- > The set of constraints

$$\lambda_6 = \lambda_7 = 0,$$

$$\lambda_5 = \lambda_1 - \lambda_3 - \lambda_4 \text{ (real)},$$

$$\lambda_2 = \lambda_1,$$

$$m_{11}^2 + m_{22}^2 = 0,$$

seems to be RGE-stable to one-loop order

Are we just in a weird basis? No!

#### **Excitement!**

- OMO discovers using one-loop beta functions that these combined constraints are RGE-stable. Challenges PF to explain what is going on
- PF confirms, but suggests that this might be a one-loop «accident», and finds a simpler set of constraints that are one-loop RGE-stable, namely

$$\lambda_6 = \lambda_7 = 0,$$
 $\lambda_2 = \lambda_1,$ 
 $m_{11}^2 + m_{22}^2 = 0,$ 

OMO checks against two-loop beta functions and finds that these combined constraints are RGE-stable up to two loops.  An excited PF confirms and also verifies RGE-stability up to three-loop order (Bednyakov) for the set of constraints

$$\lambda_6 + \lambda_7 = 0,$$
 $\lambda_2 = \lambda_1,$ 
 $m_{11}^2 + m_{22}^2 = 0,$ 

- PF finds that using Bednyakov's results one can argue that it holds to all orders.
- > PF discovers that the bilinear form of the 2HDM suggests a simple transformation yielding the above constraints.
- OMO discovers a weird transformation of the fields that leaves the potential, scalar and gauge kinetic terms invariant
- Realistic Yukawas has been found for some cases



#### RGE stable to all orders



$$\lambda_6 + \lambda_7 = 0,$$
 $\lambda_2 = \lambda_1,$ 
 $m_{11}^2 + m_{22}^2 = 0,$ 

- We discovered another set of parameter relations, not known from before, that were shown to be RGE-stable to all orders.
- Did we discover a new symmetry of the 2HDM, or is there another explanation?



# Bilinears and the $r_0$ -symmetry

#### Potential in bilinear notation

$$V = M_{\mu} r^{\mu} + \Lambda_{\mu\nu} r^{\mu} r^{\nu}$$

#### where

$$r^{\mu} = (r_0, r_1, r_2, r_3) = (r_0, \vec{r}),$$
  
 $M^{\mu} = (m_{11}^2 + m_{22}^2, 2\text{Re}(m_{12}^2), -2\text{Im}(m_{12}^2), m_{22}^2 - m_{11}^2) = (M_0, \vec{M}),$ 

$$\Lambda^{\mu\nu} = \begin{pmatrix} \Lambda_{00} & \vec{\Lambda} \\ \vec{\Lambda}^T & \Lambda \end{pmatrix} = \begin{pmatrix} \frac{1}{2}(\lambda_1 + \lambda_2) + \lambda_3 & -\operatorname{Re}(\lambda_6 + \lambda_7) & \operatorname{Im}(\lambda_6 + \lambda_7) & \frac{1}{2}(\lambda_2 - \lambda_1) \\ -\operatorname{Re}(\lambda_6 + \lambda_7) & \lambda_4 + \operatorname{Re}(\lambda_5) & -\operatorname{Im}(\lambda_5) & \operatorname{Re}(\lambda_6 - \lambda_7) \\ \operatorname{Im}(\lambda_6 + \lambda_7) & -\operatorname{Im}(\lambda_5) & \lambda_4 - \operatorname{Re}(\lambda_5) & -\operatorname{Im}(\lambda_6 - \lambda_7) \\ \frac{1}{2}(\lambda_2 - \lambda_1) & \operatorname{Re}(\lambda_6 - \lambda_7) & -\operatorname{Im}(\lambda_6 - \lambda_7) & \frac{1}{2}(\lambda_1 + \lambda_2) - \lambda_3 \end{pmatrix}$$

$$r_{0} = \frac{1}{2} \left( \Phi_{1}^{\dagger} \Phi_{1} + \Phi_{2}^{\dagger} \Phi_{2} \right),$$

$$r_{1} = \frac{1}{2} \left( \Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right) = \operatorname{Re} \left( \Phi_{1}^{\dagger} \Phi_{2} \right),$$

$$r_{2} = -\frac{i}{2} \left( \Phi_{1}^{\dagger} \Phi_{2} - \Phi_{2}^{\dagger} \Phi_{1} \right) = \operatorname{Im} \left( \Phi_{1}^{\dagger} \Phi_{2} \right),$$

$$r_{3} = \frac{1}{2} \left( \Phi_{1}^{\dagger} \Phi_{1} - \Phi_{2}^{\dagger} \Phi_{2} \right).$$

- > The six "classic" symmetries result from demanding invariance under bilinear transformations.
- > Invariance under  $r_0 
  ightarrow -r_0$  implies

$$M_0 = 0$$
 and  $\vec{\Lambda} = 0$ 

equivalent to 
$$\lambda_6 + \lambda_7 = 0,$$
 
$$\lambda_2 = \lambda_1,$$
 
$$m_{11}^2 + m_{22}^2 = 0,$$

- $\rightarrow$  Hence the name  $r_0$  symmetry
- Impossible to change sign of  $r_0$  using HFor CP-transformations



# The $r_o$ -symmetric potential

#### Potential in bilinear notation

$$V = M_{\mu} r^{\mu} + \Lambda_{\mu\nu} r^{\mu} r^{\nu}$$

#### where

$$r^{\mu} = (r_0, r_1, r_2, r_3) = (r_0, \vec{r}),$$
  
 $M^{\mu} = (0, 2\text{Re}(m_{12}^2), -2\text{Im}(m_{12}^2), -2m_{11}^2) = (M_0, \vec{M}),$ 

$$\Lambda^{\mu\nu} = \begin{pmatrix} \Lambda_{00} & \vec{\Lambda} \\ \vec{\Lambda}^T & \Lambda \end{pmatrix} = \begin{pmatrix} \lambda_1 + \lambda_3 & 0 & 0 & 0 \\ 0 & \lambda_4 + \operatorname{Re}(\lambda_5) & -\operatorname{Im}(\lambda_5) & 2\operatorname{Re}(\lambda_6) \\ 0 & -\operatorname{Im}(\lambda_5) & \lambda_4 - \operatorname{Re}(\lambda_5) & -2\operatorname{Im}(\lambda_6) \\ 0 & 2\operatorname{Re}(\lambda_6) & -2\operatorname{Im}(\lambda_6) & \lambda_1 - \lambda_3 \end{pmatrix}.$$

$$r_{0} = \frac{1}{2} \left( \Phi_{1}^{\dagger} \Phi_{1} + \Phi_{2}^{\dagger} \Phi_{2} \right),$$

$$r_{1} = \frac{1}{2} \left( \Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right) = \operatorname{Re} \left( \Phi_{1}^{\dagger} \Phi_{2} \right),$$

$$r_{2} = -\frac{i}{2} \left( \Phi_{1}^{\dagger} \Phi_{2} - \Phi_{2}^{\dagger} \Phi_{1} \right) = \operatorname{Im} \left( \Phi_{1}^{\dagger} \Phi_{2} \right),$$

$$r_{3} = \frac{1}{2} \left( \Phi_{1}^{\dagger} \Phi_{1} - \Phi_{2}^{\dagger} \Phi_{2} \right).$$

#### Potential in standard notation

$$V_{\text{tree}} = m_{11}^{2} \left( \Phi_{1}^{\dagger} \Phi_{1} - \Phi_{2}^{\dagger} \Phi_{2} \right) - \left[ m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right]$$

$$+ \frac{1}{2} \lambda_{1} \left( (\Phi_{1}^{\dagger} \Phi_{1})^{2} + (\Phi_{2}^{\dagger} \Phi_{2})^{2} \right)$$

$$+ \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1})$$

$$+ \left\{ \frac{1}{2} \lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + \lambda_{6} \left[ (\Phi_{1}^{\dagger} \Phi_{1}) - (\Phi_{2}^{\dagger} \Phi_{2}) \right] \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right\}$$



# RGE stability

> Using 
$$M_0=0$$
 and  $\vec{\Lambda}=0$ 

 we were able to show, using results of A.V. Bednyakov ("On three-loop RGE for the Higgs sector of 2HDM", JHEP 11 (2018) 154) that

$$\beta_{m_{11}^2 + m_{22}^2} = 0,$$

$$\beta_{\lambda_1 - \lambda_2} = 0,$$

$$\beta_{\lambda_6 + \lambda_7} = 0.$$

to all orders.

Thus, 
$$\lambda_6 + \lambda_7 = 0,$$
  $\lambda_2 = \lambda_1,$   $m_{11}^2 + m_{22}^2 = 0,$ 

is a fixed point under the running of the RGE to all orders.

- Same behavior as the fixed points of the HF/CP symmetries.
- Can also include fermions (at least up to two-loop order).



### More on the $r_0$ - symmetry

Parameterise the two doublets as

$$\Phi_1 = \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} \phi_5 + i\phi_6 \\ \phi_7 + i\phi_8 \end{pmatrix},$$

#### then

$$r_{0} = \frac{1}{2}(\phi_{1}^{2} + \phi_{2}^{2} + \phi_{3}^{2} + \phi_{4}^{2} + \phi_{5}^{2} + \phi_{6}^{2} + \phi_{7}^{2} + \phi_{8}^{2}),$$

$$r_{1} = \phi_{1}\phi_{5} + \phi_{2}\phi_{6} + \phi_{3}\phi_{7} + \phi_{4}\phi_{8},$$

$$r_{2} = -\phi_{2}\phi_{5} + \phi_{1}\phi_{6} - \phi_{4}\phi_{7} + \phi_{3}\phi_{8},$$

$$r_{3} = \frac{1}{2}(\phi_{1}^{2} + \phi_{2}^{2} + \phi_{3}^{2} + \phi_{4}^{2} - \phi_{5}^{2} - \phi_{6}^{2} - \phi_{7}^{2} - \phi_{8}^{2}).$$

Want to change sign of  $r_0$  while  $r_1$ ,  $r_2$ ,  $r_3$  are unchanged

What about the kinetic terms? Define

$$D^{\mu} = \partial^{\mu} + \frac{ig}{2}\sigma_i W_i^{\mu} + i\frac{g'}{2}B^{\mu},$$

and scalar kinetic terms

$$\mathcal{L}_k = (D_{\mu}\Phi_1)^{\dagger}(D^{\mu}\Phi_1) + (D_{\mu}\Phi_2)^{\dagger}(D^{\mu}\Phi_2)$$

> Turns out to be invariant under  $r_0$  provided also

$$x_{\mu} \to i x_{\mu}, \quad B_{\mu} \to i B_{\mu},$$
  $W_{1\mu} \to i W_{1\mu}, \quad W_{2\mu} \to -i W_{2\mu}, \quad W_{3\mu} \to i W_{3\mu}.$ 

- > Combined transformation of fields and spacetime coordinates, all scaled by imaginary unit  $\pm i$
- Imaginary scaling !!!

### More on the $r_0$ -symmetry

#### Gauge kinetic terms

$$\mathcal{L}^{B} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W_{i\mu\nu} W_{i}^{\mu\nu}$$

#### where

$$B^{\mu\nu} = \partial^{\nu}B^{\mu} - \partial^{\mu}B^{\nu},$$
  

$$W_{i}^{\mu\nu} = \partial^{\nu}W_{i}^{\mu} - \partial^{\mu}W_{i}^{\nu} + g\epsilon_{ijk}W_{j}^{\mu}W_{k}^{\nu},$$

Also invariant under imaginary scaling.

# Symmetry or anomaly?

# Consider one-loop effective potential (Coleman-Weinberg)

$$V_{\text{eff}}^{(S)} = \frac{1}{2} \int \frac{d^4 p_E}{(2\pi)^4} \mathbf{Tr} \left[ \ln(p_E^2 + M_S^2) \right]$$
$$= -\frac{1}{2} \int \frac{d^4 p_E}{(2\pi)^4} \left[ \mathbf{Tr} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \left( \frac{M_S^2}{p_E^2} \right)^n \right]$$

where 
$$\left(M_S^2\right)_{ij} \equiv \partial^2 V_{\rm tree}/(\partial\phi_i\partial\phi_j)$$

is a scalar mass-squared matrix calculated for a given tree-level potential at a constant classical field.

n odd: Terms change sign under  $r_0$ 

n even: Terms invariant under  $r_0$ 



# Momentum behavior under imaginary scaling transformation

$$V_{\text{eff}}^{(S)} = \frac{1}{2} \int \frac{d^4 p_E}{(2\pi)^4} \mathbf{Tr} \left[ \ln(p_E^2 + M_S^2) \right]$$
$$= -\frac{1}{2} \int \frac{d^4 p_E}{(2\pi)^4} \left[ \mathbf{Tr} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \left( \frac{M_S^2}{p_E^2} \right)^n \right]$$

> Terms with *n* odd would be invariant if

$$p_E^2 \to -p_E^2$$

under  $r_0$  transformation.

Recall that  $x_{\mu} 
ightarrow i x_{\mu}$  implies  $x^2 
ightarrow -x^2$ 

What does this imply for momentum?

> In QM momentum operator is

$$\hat{p}_{\mu} \equiv i\partial_{\mu} \xrightarrow{r_0} -i\,\hat{p}_{\mu}$$

> In QFT, 
$$p_{\mu} \equiv \int d^3x \, \Theta_{0\mu}$$

where 
$$\Theta_{
u\mu} = \sum_i rac{\partial \mathcal{L}}{\partial (\partial^
u \phi_i)} \, \partial_\mu \, \phi_i \, - \, \eta_{\mu
u} \, \mathcal{L}$$

- $p_{\mu} \xrightarrow{r_0} -i\,p_{\mu}$
- Also, Fourier transforms between coordinate space and momentum space would be nonsensical if x were imaginary and p were real.  $e^{-ipx} \cdot e^{ipx}$



#### The minimal model

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi_1 \partial^{\mu} \phi_1 + \partial_{\mu} \phi_2 \partial^{\mu} \phi_2) - V(\phi_1, \phi_2)$$

with

$$V(\phi_1, \phi_2) = \frac{1}{2}m_1^2(\phi_1^2 - \phi_2^2) + m_{12}^2\phi_1\phi_2 + \frac{1}{2}\lambda_1(\phi_1^4 + \phi_2^4) + \lambda_3(\phi_1\phi_2)^2 + \lambda_6(\phi_1^2 - \phi_2^2)\phi_1\phi_2$$

Can rotate into basis where  $\lambda_6=0$ 



#### The minimal model

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi_1 \partial^{\mu} \phi_1 + \partial_{\mu} \phi_2 \partial^{\mu} \phi_2) - V(\phi_1, \phi_2)$$

> with

$$V(\phi_1, \phi_2) = \frac{1}{2}m_1^2(\phi_1^2 - \phi_2^2) + m_{12}^2\phi_1\phi_2 + \frac{1}{2}\lambda_1(\phi_1^4 + \phi_2^4) + \lambda_3(\phi_1\phi_2)^2$$

- $\rightarrow$  Can rotate into basis where  $\lambda_6=0$
- > Invariant under the  $r_0$  like transformation

$$x^{\mu} \rightarrow ix^{\mu}, \quad \phi_1 \rightarrow i\phi_2, \quad \phi_2 \rightarrow -i\phi_1$$

Field dependent squared mass matrix:

$$(M_S^2)_{ij} = \begin{pmatrix} m_1^2 + 6\lambda_1\phi_1^2 + 2\lambda_3\phi_2^2 & m_{12}^2 + 4\lambda_3\phi_1\phi_2 \\ m_{12}^2 + 4\lambda_3\phi_1\phi_2 & -m_1^2 + 6\lambda_1\phi_2^2 + 2\lambda_3\phi_1^2 \end{pmatrix}$$



#### The minimal model – bilinear formalism

$$V(r^{\mu}) = -M_{\mu}r^{\mu} + \Lambda_{\mu\nu}r^{\mu}r^{\nu}$$

$$r_0^2 - r_1^2 - r_2^2 = 0$$

with  $r_0 \equiv \frac{1}{2}(\phi_1^2 + \phi_2^2)$ ,  $r_1 \equiv \phi_1 \phi_2$ ,  $r_2 \equiv \frac{1}{2}(\phi_1^2 - \phi_2^2)$ 

> Invariant under the  $r_0$  like transformation

$$(r_0, r_1, r_2) \xrightarrow{r_0} (-r_0, r_1, r_2)$$

$$M^{\mu} \equiv (0, m_{12}^2, m_1^2)$$

$$\Lambda^{\mu\nu} \equiv \begin{pmatrix} \Lambda_{00} & 0 & 0 \\ 0 & \Lambda_{11} & \Lambda_{12} \\ 0 & \Lambda_{21} & \Lambda_{22} \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_3 & 0 \\ 0 & 0 & \lambda_1 \end{pmatrix}$$



### The potential of the minimal model

$$V(\phi_1, \phi_2) = \frac{1}{2}m_1^2(\phi_1^2 - \phi_2^2) + m_{12}^2\phi_1\phi_2 + \frac{1}{2}\lambda_1(\phi_1^4 + \phi_2^4) + \lambda_3(\phi_1\phi_2)^2$$

BFB:

$$\lambda_1 >$$

$$\lambda_1 + \lambda_3 > 0$$

- Saddle point at the origin  $\phi_1 = \phi_2 = 0$
- Two degenerate minima in opposite directions determined from stationary point equations



$$m_1^2 = 2\lambda_1(\phi_2^2 - \phi_1^2)$$
  
 $m_{12}^2 = -2(\lambda_1 + \lambda_3)\phi_1\phi_2$ 

$$m_1^2 = 10^2$$

$$m_{12}^2 = 20^2$$

$$\lambda_1 = 1$$

$$\lambda_3 = 2$$



# The minimal model – one-loop effective potential

Adopt cut-off regularization

$$V_{\text{eff}}^{(S)} = \frac{1}{2} \int \frac{d^4 p_E}{(2\pi)^4} \mathbf{Tr} \left[ \ln(p_E^2 + M_S^2) \right]$$

$$= -\frac{1}{2} \int \frac{d^4 p_E}{(2\pi)^4} \left[ \mathbf{Tr} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \left( \frac{M_S^2}{p_E^2} \right)^n \right]$$

$$= -\frac{1}{64\pi^2} \sum_{n=1}^{\infty} \left[ \frac{(-1)^n}{n} \int_0^{\Lambda_{UV}^2} d\rho \rho \, \mathbf{Tr} \left( \frac{M_S^2}{\rho} \right)^n \right]$$

- Where we have introduced new variable of integration  $ho \equiv p_E^2$
- > Possible to give explicit expression for minimal model (mass squared matrix is 2x2)
- Note that replacing  $~\Lambda_{UV}^2 o -\Lambda_{UV}^2$  is equivalent to substituting  $~p_E^2 o -p_E^2$



#### The minimal model – mass matrix

> Field dependent mass matrix

$$(M_S^2)_{ij} = \begin{pmatrix} m_1^2 + 6\lambda_1\phi_1^2 + 2\lambda_3\phi_2^2 & m_{12}^2 + 4\lambda_3\phi_1\phi_2 \\ m_{12}^2 + 4\lambda_3\phi_1\phi_2 & -m_1^2 + 6\lambda_1\phi_2^2 + 2\lambda_3\phi_1^2 \end{pmatrix}$$

- $M_{1,2}^2(r^\mu) = 2(3\lambda_1 + \lambda_3)r_0 \pm \sqrt{\Delta}$
- $\rightarrow$  Transformation of eigenvalues under  $r_0$ :

$$M_1^2 \xrightarrow{r_0} -M_2^2$$
 and  $M_2^2 \xrightarrow{r_0} -M_1^2$ 

- > They transform into each other along with a change of sign
- ightarrow We shall also assume that  $\Lambda_{UV}^2 \xrightarrow{r_0} -\Lambda_{UV}^2$



# The minimal model – one-loop effective potential

#### Perform integration to get

$$V_{\rm eff}^{1\text{-loop}}(r^\mu) = \frac{\Lambda_{\rm UV}^2}{32\pi^2} \sum_{i=1,2} M_i^2(r^\mu) + \frac{1}{64\pi^2} \sum_{i=1,2} M_i^4(r^\mu) \left[\log\frac{M_i^2(r^\mu)}{\Lambda_{\rm UV}^2} - \frac{1}{2}\right] \qquad \text{+ irrelevant terms}$$

$$\Lambda_{UV}^2$$
 sign change

$$\sum_{i=1,2} M_i^2(r^\mu)$$
 sign change

$$\sum_{i=1,2} M_i^4(r^\mu) \quad \text{invariant}$$

$$\sum_{i=1,2} M_i^4(r^\mu) \log rac{M_i^2(r^\mu)}{\Lambda_{
m UV}^2}$$
 invariant

We conclude that under the  $r_0$  transformation, the one-loop effective potential of the minimal model is invariant provided

$$\Lambda_{UV}^2 \xrightarrow{r_0} -\Lambda_{UV}^2$$

We argued before that this is equivalent to

$$p_E^2 \to -p_E^2$$



### The minimal model – one-loop effective potential

> Path integral formalism does involve momentum integration

$$V_{\text{eff}}(\phi_{cl}) \propto \int \prod_{k} \mathcal{D}(\phi_{k}) \exp \left\{-i \int d^{4}x \; \phi_{i}(x) \left[\Box_{x} \; \delta_{ij} + \left(M_{S}^{2}(\phi_{cl})\right)_{ij}\right] \phi_{j}(x)\right\}$$

$$\prod_k \mathcal{D}(\phi_k)$$
 invariant

 $d^4x$  invariant

$$\Box_x \equiv \partial_\mu \partial^\mu \to -\Box_x$$

$$\phi_i^2 \to -\phi_i^2$$

$$(M_S^2)_{ij} \equiv \partial^2 V_{\text{tree}} / (\partial \phi_i \partial \phi_j)$$

We conclude that under the  $r_{o}$  transformation, the one-loop effective potential of the minimal model is invariant provided  $x_{\mu} 
ightarrow ix_{\mu}$ 

Invariance requires a combination of field-transformations and transformation of space-time coordinates.



# $r_0$ invariant 2HDM – one-loop effective potential

#### Path integral formalism

$$V_{\text{eff}}(\phi_{cl}) \propto \int \prod_{k} \mathcal{D}(\phi_{k}) \exp \left\{-i \int d^{4}x \; \phi_{i}(x) \left[\Box_{x} \; \delta_{ij} + \left(M_{S}^{2}(\phi_{cl})\right)_{ij}\right] \phi_{j}(x)\right\}$$

 $\prod_k \mathcal{D}(\phi_k)$  invariant

 $a_x$  invariant

 $\phi_i \Box_x \delta_{ij} \phi_j$  invariant

 $\phi_i\left(M_S^2\right)_{ij}\phi_j$  invariant

 $(M_S^2)_{ij} \equiv \partial^2 V_{\text{tree}}/(\partial \phi_i \partial \phi_j)$ 

We conclude that under the  $r_{\rm 0}$  transformation, the one-loop effective potential of the minimal model is invariant provided  $x_{\mu} 
ightarrow ix_{\mu}$ 

Invariance requires a combination of field-transformations and transformation of space-time coordinates.

This is unlike HF and CP transformations.



# Physical implications of the $r_0$ invariant 2HDM

- General 2HDM potential has 11 independent physical parameters
- Instead pick 11 masses/couplings to describe model
- > 4 squared masses
  - 3 gauge couplings

$$e_1^2 + e_2^2 + e_3^2 = v^2$$

- 4 scalar couplings

$$\mathcal{P} \equiv \{M_{H^{\pm}}^2, M_1^2, M_2^2, M_3^2, e_1, e_2, e_3, q_1, q_2, q_3, q\}$$

$$e_i \equiv \frac{2}{g^2} \text{Coefficient}(\mathcal{L}, H_i W^- W^+)$$

$$q_i \equiv \operatorname{Coefficient}(V, H_i H^- H^+)$$

$$q \equiv \text{Coefficient}(V, H^-H^-H^+H^+).$$

- All observables arising from the potential expressible through these 11 parameters.
- All other trilinear and quadrilinear scalar couplings expressible through these 11 parameters.

#### First introduced in:

Grzadkowski, Ogreid & Osland: JHEP 11 (2014) 084 and Phys. Rev. D 94, 115002

#### Description of translation process:

Ogreid: PoS CORFU2017 (2018) 065

# Remaining scalar couplings expressible in terms of :

Grzadkowski, Haber, Ogreid & Osland: JHEP 12 (2018) 056



# Physical implications of the $r_0$ invariant 2HDM

The four(!) parameter constraints

$$\lambda_6 + \lambda_7 = 0,$$

$$\lambda_2 = \lambda_1,$$

$$m_{11}^2 + m_{22}^2 = 0,$$

Translate into four(!) physical constraints

$$\lambda_{6} + \lambda_{7} = 0, \qquad \begin{cases} v^{2}(e_{1}q_{2} - e_{2}q_{1}) + e_{1}e_{2}(M_{2}^{2} - M_{1}^{2}) = 0, \\ v^{2}(e_{1}q_{3} - e_{3}q_{1}) + e_{1}e_{3}(M_{3}^{2} - M_{1}^{2}) = 0, \\ v^{2}(e_{2}q_{3} - e_{3}q_{2}) + e_{2}e_{3}(M_{3}^{2} - M_{2}^{2}) = 0, \\ q = \frac{1}{2v^{4}}(e_{1}^{2}M_{1}^{2} + e_{2}^{2}M_{2}^{2} + e_{3}^{2}M_{3}^{2}), \end{cases}$$

$$m_{11}^{2} + m_{22}^{2} = 0, \qquad M_{H^{\pm}}^{2} = \frac{1}{2}(e_{1}q_{1} + e_{2}q_{2} + e_{3}q_{3}) + \frac{1}{2v^{2}}(e_{1}^{2}M_{1}^{2} + e_{2}^{2}M_{2}^{2} + e_{3}^{2}M_{3}^{2}),$$

Fixed points of the potential to all orders under running of RGE.



### Summary

- Formulation of softly broken symmetries in terms of physical parameter set led to the discovery of a new «symmetry».
- Cannot be formulated in terms of transformation on the doublets, but in terms of transformation on the bilinears or on the components of the doublets.
- Rotation to imaginary spacetime must be accompanied by rotation into imaginary momentum space.
- Leaves potential, scalar kinetic and gauge kinetic terms invariant. Yukawas?

- One-loop effective Coleman-Weinberg potential shown to be invariant under imaginary scaling. Needs  $x_{\mu} 
  ightarrow ix_{\mu}$
- New 2HDM-models that provides new phenomenology with new physical implications
- Groups are looking into extending imaginary scaling to fermionic sector.
- Applications to hierarchy problem?
- > 3HDMs next?

