SMEFT at the LHC?

Manuel Drees

Bonn University & Bethe Center for Theoretical Physics

Contents

- (1) Motivation and Definition
- (2) SMEFT vs. UV-Complete Theories
 - a) Matching
 - b) Combinatorics
- (3) Theories Known not to be Described by SMEFT
 - a) RPC SUSY and relatives
 - b) Z' models
- (4) A SMEFT Friendly Model: RPV SUSY
- (5) Summary and Conclusions

Motivation

- LHC experiments did not find BSM physics
- Challenges pre-LHC notions of naturalness: is Nature technically natural?
- Still have compelling arguments for BSM physics: ν masses, baryon asymmetry, dark matter, . . .
- $SU(3) \times SU(2) \times U(1)_Y$ gauge symmetry well established, as is existence of one SM-like Higgs boson h with $m_h \simeq 125$ GeV.
- LHC searches: new particles with couplings to SM $\gtrsim 0.2$ must be heavy, $M \gtrsim ({\rm few})~{\rm TeV}$

Parameterize our Ignorance!

In absence of compelling guidance from theory, allow everything which:

- Respects full SM gauge theory
- Contains *only* SM particle content, including h(125)
- Contains all such terms in L up to a given mass dimension
 - dim-4: Gives \mathcal{L}_{SM} .
 - dim-5: Gives Weinberg operator, $\mathcal{L}_5 = \frac{C_{ij}}{\Lambda} L_i \cdot H L_j \cdot H$.
 - dim-6: Gives 59 operators for one generation, 2, 499 operators for three generations ("Warsaw basis")

Supposed Advantages of the SMEFT

- Is (almost) model—independent! Not really.
- In absence of BSM signal: constraining SMEFT coefficients from LHC (and other) data offers easy way to read off bounds on parameters of UV complete models! Not really.

SMEFT vs UV-Complete Theories

Idea: BSM particles with coupling $g \gtrsim 0.2$ must be heavy \implies can be integrated out!

Requires $M_V^2,\,M_\Phi^2\gg \hat s!$ Essentially, $1/(q^2-M^2)\to -1/M^2$.

$$\frac{C_{\mathcal{O}}}{\Lambda^2} = \frac{g_{\text{BSM}}^2}{M^2} \kappa_{\mathcal{O}} \quad \kappa_{\mathcal{O}} : \text{order 1 coefficient}$$

Combinatorics

One advertized use of the SMEFT: "read off" bounds on parameters of UV complete models from SMEFT fits!

- Can *only* constrain ratio $g_{\rm BSM}^2/M^2!$ (At dim-6.)
- Most BSM models generate several SMEFT operators!
 - Single operator fit: need 2,499 separate fits.
 - Two operator fits: need 3, 121, 251 separate fits
 - Actual situation often worse: models predict specific relations between SMEFT coefficients!
 - Is generic problem, not LHC specific.
- SMEFT fits with 20 (or more) free parameters have been performed: useless for deriving accurate bounds on models with (far) fewer free parameters!

Models Not Described by the SMEFT

Focus on LHC applications!

SMEFT does *not* describe BSM scenarios where new particles can only be produced in pairs!

E.g. 4-quark operators:
$$\left|\frac{C}{\Lambda^2}\right| \leq \left(\frac{1}{10 \text{ TeV}}\right)^2$$
 (PDG).

For one-loop
$$(\tilde{q}, \tilde{g})$$
 contribution: $\frac{C}{\Lambda^2} \simeq \frac{g_S^4}{16\pi^2 M^2} \simeq \left(\frac{\alpha_S}{M}\right)^2$.

From 4-quark operators: would imply $M \gtrsim 1$ TeV.

Bound comes from di-jet data with $M_{jj} \lesssim 5$ TeV: SMEFT approximation certainly not valid for $M \sim 1$ TeV!

Bounds from pair production of new particles are often stronger.

Examples

- R-parity conserving SUSY
- Large extra dimension with KK parity
- ullet Anything else with a Z_N charged sector

Z' Searches

For
$$Z'_{SSM}$$
: coupling $\simeq \frac{g_2}{2\cos\theta_W} \simeq 0.37$ $\Longrightarrow g_{\max} \simeq 0.37 \sqrt{\frac{\sigma_{\mathrm{bound}}}{\sigma_{Z'}}}$

Z' and the SMEFT

CMS (ee data only)

Evidently, the SMEFT does *not* describe the CMS Z' bound! Reason: No resonance peak in the SMEFT, instead $\hat{\sigma} \to$ const. $[\propto \hat{s}]$ at $\mathcal{O}(\Lambda^{-2})$ $[\mathcal{O}(\Lambda^{-4})]$.

A SMEFT-Friendly Model

MD, Cong Zhang, arXiv:2506.13500

R-parity violating (RPV), baryon number violating SUSY involving only one first generation (s)quark:

$$W \supset \lambda_{313}'' U_3 D_1 D_3$$

Generates $d\bar{d} \rightarrow t\bar{t}$ via t-channel \tilde{b}_R exchange:

Assumptions

- All other RPV-couplings $\ll |\lambda_{313}''|$
- All other sparticles sufficiently heavier than \tilde{b}_R (in particular, \tilde{t}_R , \tilde{d}_R)

Single \tilde{b}_R production as s-channel resonance requires t-quark in initial state: strongly suppressed!

Matching: Get two 4—quark operators at tree level:

$$\mathcal{O}_{td}^{(1)} = (\bar{t}\gamma^{\mu}t) \left(\bar{d}\gamma_{\mu}d\right), \quad C_{td}^{(1)} = \frac{|\lambda_{313}''|^2}{3M_{\tilde{b}_R}^2};$$

$$\mathcal{O}_{td}^{(8)} = (\bar{t}\gamma^{\mu}T^at) \left(\bar{d}\gamma_{\mu}T^ad\right), \quad C_{td}^{(8)} = -\frac{|\lambda_{313}''|^2}{M_{\tilde{b}_R}^2}.$$

 $C_{td}^{(1)}=-C_{td}^{(8)}/3$, but $\mathcal{O}_{td}^{(1)}$ does not interfere with LO QCD $d\bar{d} \to t\bar{t}$: no $\mathcal{O}(\Lambda^{-2})$ contribution $\propto C_{td}^{(1)}$ in LO QCD.

Issues

- Does the SMEFT describe $d\bar{d} \to t\bar{t}$ correctly, for parameters of interest to LHC experiments? No
- Experiments analyse *inclusive* $t\bar{t}$ production: should include:

Contribue at LO iff \tilde{b}_R , \tilde{b}_R^* are on—shell! $\tilde{b}_R\tilde{b}_R^*$ pair production is unimportant, but single $\tilde{b}_R^{(*)}$ production is very important in inclusive $t\bar{t}$ production! Not described by SMEFT!

Single \tilde{b}_R Diagrams Only

Only includes diagrams with single potentially on-shell $\tilde{b}_R^{(*)}$, using Breit-Wigner propagator for \tilde{b}_R .

On-shell production dominates even for $M_{\tilde{b}_R}=3$ TeV!

Comparison with CMS Data

CMS provides (arXiv:2108.02803) data on inclusive $t\bar{t}$ production in the single-lepton mode, corrected to the parton level, and with full information on covariant matrix: Allows χ^2 fits of RPV model and its SMEFT implementation using MadGraph results only!

Notation:

```
p_T(t_{	ext{high}}): \max(p_T(t),\,p_T(ar{t})); p_T(t_{	ext{low}}): \min(p_T(t),\,p_T(ar{t})); p_{T,h}: p_T of hadronically decaying (anti-)top
```

Linear RPV/SMEFT: Only interference term included; is negative!

Quadratic RPV/SMEFT: Squared BSM contribution

$p_T(t_{ m high})$ Distribution

- At large $p_T(t_{\text{high}})$: SMEFT is off
- Single $\tilde{b}_R^{(*)}$ production is important

True even for $M_{\tilde{b}_R}=3$ TeV!

Comparison RPV Model vs its SMEFT Implementation

Ratio $\sigma(SMEFT)/\sigma(RPV)$

$M_{ ilde{b}}(GeV)$	$p_T(t_{high})$ [GeV]	$tar{t}$ (linear)	$tar{t}$ (quadratic)	$tar{t}$ (linear+quadratic)	total
1500	500-600	1.50	2.42	1.10	-0.42
	1000-1500	2.77	7.46	-10.3	0.97
3000	500-600	1.13	1.37	1.10	1.14
	1000-1500	1.50	2.23	1.14	-0.41

Bounds from $p_T(t_{\text{high}})$ Distribution

Need $\lambda'' < 1.12$ in order to avoid Landau pole below 10^{16} GeV (Allanach, Dedes, Dreiner 1999)

Fit slightly prefers non-zero RPV contribution

Complete Set of Bounds

Note: Single $\tilde{b}_R^{(*)}$ production leads to $p_T(t\bar{t}) \neq 0$ even at LO without showering!

Summary

- Combinatorics: difficult to "read off" bounds on parameters of UV-complete model even if the SMEFT is applicable
- Don't use the SMEFT for LHC physics! Is "model independent" only in the sense that it doesn't describe any (weakly coupled) UV complete model (for parameter values of interest).
- $m p_T$ or high invariant mass makes no sense: throws away most important data!