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Motivation for three Higgs doublets

New sources of CP violation in the scalar sector

Possibility of having a discrete symmetry and still have CP violation, explicit or
spontaneous (in 2HDM imposing symmetry excludes CP violation in scalar sector)

Rich phenomenology, including possible DM candidates

Motivation for imposing discrete symmetries

As the number of Higgs doublets increases so does the number of free parameters
Symmetries reduce the number of free parameters leading to (testable) predictions
Symmetries help control HFCNC (e.g. NFC or MFV suppression in BGL models)

Symmetries are needed to stabilise DM



Weinberg 3HDM (1976)

- to explain experimental observation of CP violation
- only four quarks were known, no complex CKM
- Z2 X Z2 symmetry to prevent FCNC
(each quark sector, up and down, only couples to one doublet - NFC)

- complex couplings introduced In the scalar potential
- despite Z2 X Z> symmetry CP can be violated explicitly in scalar sector

Branco 1980: Weinberg model with real couplings

- Possibility of Spontaneous CP violation
- NFC and six quarks leads to real CKM



Our Framework: Weinberg 3HDM with real coefficients

Notation and Definitions:

Parametrisation of three Higgs doublets after spontaneous symmetry breaking

_|_
b Pi . |
bi = e (\}5(%’ A +iXi)) C1=1,2,3 the v; are real

Imposing two Zs symmetries, we automatically get a third one

doublets may then be assigned the Z, X Z4 X Z9 parities

¢1 : (_|_17_|_17 _1) ¢2 : (_17_|_17—|_1) ¢3 : (_I_la _17_|_1)



Most general Z> X Z2 symmetric 3HDM potential (Notation of lvanov and Nishi):
Vi=Vo+Vy, with Vy=Vo+ Vi,

Vo = —[ma1(¢1d1) + maa(dhda) + mas(dids)],
Vo = M1(0]01)? + Aaa(dhd2)? + Az (05 03)?
+ A2 (0] 61) (35 2) + A1z (9101)(d5d3) + Aas(dhha) (9L3)
+ Nio(@12) (Dh1) + N5 (] h3) (D5 1) + Nog (05 d3) (9L 2).
(

Von = M (0503)2 + Aa(dld1)? + A3(d1d2)? + h.c.

This basis is called the symmetry basis. Notice the reduced number of independent
parameters

In the absence of V_{ph} the potential acquires a U(1) X U(1) symmetry



General case for the Weinberg model with real coefficients:

Minimization conditions: 3 moduli and 2 phases

May express m;; in terms of As (3 conditions)
May relate Ay and A3 to A\; (2 conditions)

Consequence:

Mass-squared matrices are homogeneous in As,
1.e., masses are bounded
by the perturbativity constraint on As



List of solutions of stationary-point equations
Let {i, |, k} be any permutation of {1, 2, 3}

Here, for symmetry reasons, we assume the most general form for the vevs:

6@’97; O
P = , 1=1,2,3.

The list that follows was obtained for the real potential

CPC indicates that the solution is CP conserving

CPV indicates that the solution is CP violating

Solutions are ordered by the number of zero vevs, first two zero vevs,
next one zero vev finally no zero vevs



Solution 1 (CPC):

Solution 2 (CPV):
v; =0, X, =0, (forasinglei

mj; — %Uz ()\;k + )\]k) + )\jj?)jz-, T — % ]2 ()‘;k + )\]k) + )\kk?)]%

T'his solution has a Zsy symmetry preserved by the vacuum.

Solution 3 (CPC):

v; =0, sin(f—0;)=0
2
J

mj; = 5vi (M + Ajk +20) + NgvF, i = 505 (N + A+ 2X0) + A

Solution 4 (CPC):
v; =0, cos(fy—0;) =0,
mj; = %U% ()‘;k: + >\jk — 2)\1) + )\jj?}?, Mpp = %sz ()\;k; + )\jk: — 2)\1) + A\ik
Solution 5 (CPC):
Sin(93 — 61) = sin(92 — 91) = O,

mi = % (v3 (Mg + 243 + Ai2) + 05 (N3 + 20 + Aig) + 2A0107)
Moo = % (v (Mg + 223 + Aia) + 05 (Nog + 201 + Agz) + 2A003)
mas = 3 (07 (Mg +2X0 + Mig) + 03 (Ngg + 2X1 + o) + 2Ag303)

Solution 6 (CPC):
cos(f3 — 61) = sin(fy — 6,) = 0,

may = 5 (03 (Mg + 2X3 + A12) + 05 (N3 — 22 + Ai3) + 2A4107)
Moo = % (v (Mo + 223 + Aig) + 05 (Ao — 2A1 + Aag) + 2A003)
maz = 5 (V7 (M3 — 2A2 + A1) + v3 (Agg — 2A1 + Aog) + 2A3303) .

Solution 7 (CPC):
sin(93 — 91) = COS(HQ - 01) = O,

mi1 = % (v3 (M2 = 223 + A12) + 03 (N3 + 2X9 + Aiz) + 2A0107)
Moz = 1 (U7 (Njy — 203 + Aiz) + v2 (My3 — 201 + Aaz) + 2X0003) ,
mas = § (07 (Mg + 2Xa + Mis) + v3 (Agg — 2M1 + Aag) + 2Xa303)

Solution 8 (CPC):
cos(fs — 61) = cos(fs — 61) =0,

my = % (V3 (Mg = 2A3 4+ Ai2) + v5 (M3 — 2X0 + Aig) + 2Aqq07)
Moo = % (v (M2 = 23 + Ai2) + 03 (No3 + 21 + Aag) + 2A003)
mas = 1 (03 (Mg — 2X0 + Aiz) + 03 (Ngg + 2X1 + Aag) + 2Ag303)



Solution 9 (CPC):
sin(f;, —0;,) =0, X\ =X\; =0,

vE (N Aij +20) + 0 (N + Aig) + 2X07)
2N 4 Aij +20) +up (N + Njk) + 2507
(07 ()03 () + 2t

=5
=5 (v

Mgk =

Solution 10 (CPC):

NI o=

cos(0; —0;) =0, XN =X;=0,
02 (N5 4 A — 2X0) + 07 (N, + Aig) + 20007)
mjj:%( 2()\’ + Aij —2>\k)+vk (Xk+)‘3k)+2)‘jjvjz)’
= L (02 (N + M) + 02 (N 4 Aji) + 2207)

Solution 11 (CPV)' . .
mi = 5 ( 2 (Mg + A12) + 035 (N5 + A\i3) Y sml2v(292i3 891;1) 81§122(_913)93) | 2)\110%) :

maz = 5 (V] (g + A2) + 0F (Ngg + Aas) + 200003 + Mv3 o=,
mas = 5 (V] (N5 + As) + 03 (Nog + Aas) + 2ha503) + Mv3 Sag—s
e — A1v2 sin 2(02—03) N, — A1v2 sin 2(62—03)
37 02sin2(01—02) 27 v?sin2(61—03) -

Solution 11 is Branco’s spontaneous CP violating solution (1980), it is a more general
solution than Solution 2. In solution 11 all lambda | are taken to be different from zero

Solution 2 has only two vevs different from zero, one CP violating phase survives. Five
of the CP-odd invariants given in what follows are non-vanishing containing the factor (for i=1):

J() — ”UQUS)\Q)\g S1N 2(92 — 93)



Conditions for CP Conservation

Jl — Im {Vac%ezcadfzedfgnghh}a
J2 = Im {Vac%ezcadfzedfgzghhb}a
—104, JS = Im {Vac%ezcadfzegfdnghh}a

V = Yoo (dh ) + % Zaea(0l05) (01 00)

A v,e% e o
Vab — J4 = Im {Vac%dzcedgzeafhnghf}a
(V) (V) A
Js = Im{V, Va2 Z /Z hb (s
Here, the indices a, b, c, ... can take the values > { o Abd cedg*ehfagf J
1,2,3, identifying the three fields Jo = Im {Vac%dzcedf 4 ea f ngbhh},

J7 = Im {Vad%evvcfzdaehszgizhcig}7
J8 = Im {Vad%e‘A/cdeaehZfigbZhgic}7

Whenever the stationary point equations o
y p q J9 = Im {Vad%e‘/cfzdaengbghzhcii}7

are satisfied, the real Z_2x Z_2 symmetric Jro = Im {VaaVoeVor Zaaeg Z shgi Znbic

_ _ Jll = Im {Vac%eanngedffZgithibjj}7
three-Higgs-doublet potential conserves Tio = 10 (Vi Vi Zods Zet 10 Zmmi Zisn
CP if and only if all of the 15 CP-odd Sig = I VacVie Zeady Zeago Zgins Zivin -

J14 = Im {Vac%dzcedfzeafgzgihjZibjh}7
iInvariants given here vanish VS J1s = Im {V,ViaYer Yao Yea Z poge b



Concerning the construction CP-odd invariants involving scalars there is a
long literature on this subject dating from long ago. | put here the examples
cited In our paper
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Conditions for CP Conservation (cont)

This result is valid for all possible different solutions 71 = Im (VacVeeZeadr Zearg Zgoin 1

to the stationary-point equations given before Jo = T (VacVoe Zeadf Zearg Zghnv 1
JS = Im {Vac%eandeegdegbhh}a
There are no redundant invariants in this set of 15 Ty = I {VoeVoaZeedg Zeath Zabht }

J5 = Im {Vac%dzcedgzehfazgfhb}a
J6 = Im {Vac%dzcedfzeafgnghh}a
J7 = Im {Vad%evvcfzdaehszgizhcig}7

We do not know if there exists a smaller set of
different CP-odd invariants implying CP conservation

Not all CP-odd quantities can be written as linear Js = Im {VaaVee Ve Zaaen Z figp Zngic}
combinations of these fifteen CP-odd invariants Jo = Im {VaaVee Vet Zaaeq Z togh Lheii }
For 2HDM see works by Grzadkowski, Ogreid, Osland, 2014, 2016 Jl() = Im {Vad%evcf Zdaeg thgi Zhbic}y

J11 = Im {Vac%ezcadgzedffZgithibjj}7
J12 = Im {Vac%ezcadgzeffdzghhiZz'jjb}7
J13 = Im {Vac%ezcadfzedfgzgihjZz'bjh}7
J14 = Im {Vac%dzcedfzeafgzgihjZibjh}7
0S5 = I (Ve VbaYer YagYea Z e }

All invariants involve at least two factors V hat

This results from the limited form of allowed Z tensors,
therefore only with two V_hat factors can the invariant
be sensitive to CP violating phases appearing in the vevs

Only J_{15} involves the Y tensors



Global Measures of CP violation in Weinberg 3HDM

with Spontaneous CP Violation
Global measures of CP violation, choice based on the 15 invariants

15
Agum = logy, Z J?, Apax = logm(max J?).

A ﬁ’ri i g ”'k“ 'r» "~1’s'

M&\

Lower points are associated with lower masses of the  }~ 4~ “¥° & = 1

lightest neutral scalar

Yellow points are obtained by imposing lower bound
of 45 Gev on the lightest neutral scalar

Plots suggest that suppressed CP violation may
require one or more light scalars

Figure 1

We show, in Fig 1, scatter plots of the measures of CP violation, A, (grey, bottom
layer, mostly covered), An.x (blue, over grey), defined by Eq (4 7), vs 65/7 and 03/,
based on the scan performed in Ref |[2| The cut-off at high values is obviously caused by

the upper bounds on the As (from perturbativity, since the invariants are polynomials in
the lambdas). Ref.[2] refers to the second reference in cover page



Experimental Constraints
Yukawa Sector

uw | d | e | Inert doublets
Type I-like 01 | ¢1 | P at most 2
Type 1l-like 01 | 02 | 09 at most 1
Lepton specific-like | @1 | &1 | @9 at most 1
Flipped-like 01 | 02 | 01 at most 1
Type Z P1 | P2 | @3 none
Table 1: The different NFC-respecting Yukawa structures for the Zy X Zo-symmetric SHDM
—Ly = QWY P ul + QVY 9 d%, + EOYh el + h ¢ the indices a, b, ¢ may not be different

Our study focused on the Type Z Yukawa sector because it is the least constrained scenario

In our previous work cited on the front page we had imposed theoretical constraints
(perturbativity, unitarity and boundedness from below) as well as compatibility with the

measured WWh_{SM} coupling and the CP constraint on the /sm — 77 coupling

Now, we also impose the constraint from electroweak precision observables, S, T and U
from the digamma signal strength (ism = 7). from B = X7 and from the electron EDM.

Scalar mass ranges



CP violation effects

The Electron EDM Barr-Zee (1990), Pilaftsis (2002)

The experimental upper bound has recently been tightened from 1.1 x107%” e-cm = (2018)
to 4.1 x 107%% e - cm (2022)

The SM contribution is of the order 107°® e - cm which is much smaller than the scalar contribution of the present model
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Figure 6: Scatter plots of logarithms of the electron EDM vs the angles 6, and 65 These
points correspond to random scans over the scalar potential parameters subject to theoret-
ical and collider bounds specified above Few parameter points that survive the previous
constraints survive the experimental EDM bound allowing only the lower region of |d. /€]



CP violation effects (cont)

WW~ — Z
pYV; The vertex is present at the tree level, with a well-known, CP-conserving structure

2z Triangle diagrams contribute to CP violation in this vertex

D,
Loop contributions to the CP-violating W*W~ — Z amplitude in the 2HDM,
p276 W= W
- D2, 12 o
Here, i, 5 € {1,2,3} label the neutral scalars
WG proportional to ImJ_2
P1, H1

Loop contributions to the CP-violating W*W =~ — Z amplitude. 3HDM

CP-odd invariants that appear in these contributions
are much more complicated than in the case of 2ZHDM
and may require J’s not included in those chosen before

Here, k,l,m €{1,2,3,4,5} label the neutral scalars



CP violation effects (cont.)

h:"h; — hih;

Involves only scalar particles in the initial and final states

At loop level an asymmetry :

o(hh; = hyhy)—o(hfh; = hyh)

Ay = i
" o(hth; = hihy) +o(hih; — hy k)

can be generated

H. Haber, V. Keus, R. Santos 2022



Blue points

d.| < 107%*"e-cm
Purple points

d.| < 5-107*’¢-cm

Scalar mass distributions
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Conclusions

We have provided a full set of CP-odd invariants for the real Weinberg potential with
complex vevs

The real Weinberg potencial allows for spontaneous CP violation (known in 1980). The
full set of solutions for the vacuum are given.

Even with sizeable CP violating phases in the scalar sector the model can remain
consistent with the current electron EDM bound

Z hgnh

In our analysis, light scalars and sizeable i couplings appear

This potential tends to yield two light CP mixed neutral states as well as at least one
pair of light charged scalars



