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Introduction

Real Two-Higgs-Doublet Model: Usual 2HDM with softly-broken
Z2 symmetry for Natural Flavour Conservation, with CP invari-
ance imposed on scalar potential.

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
[
m2

12Φ†1Φ2 + h.c.
]

+
1

2
λ1

(
Φ†1Φ1

)2
+

1

2
λ2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

) (
Φ†2Φ2

)
+ λ4

∣∣∣Φ†1Φ2

∣∣∣
2

+
{

1

2
λ5

(
Φ†1Φ2

)2
+ h.c.

}
.

The issue: CP is broken (hard) by phase in CKM matrix. Should
propagate into renormalization of CPV phase[(m2

12
∗)2λ5].

Highlighted by D. Fontes, M. Löschner, J.C. Romão, & J.P. Silva, 2103.05002:
performed a state-of-the-art 3-loop calculation of A0 tadpole;
found that leading imaginary divergent contribution canceled!

We demonstrate that imaginary divergent contributions should
indeed show up, but that they will first appear at 7 loops.
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Outline

Framework for analyzing divergences

Necessary ingredients for CP-violating divergences

- Type II

- Type I

Practical consequences?

Conclusions
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Framework for analyzing divergences

D. Fontes et al., arXiv:2103.05002: (sample diagrams)
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which implies that their counterterms are also in gen-
eral complex. Since CP is violated, there are no scalar
states with well-defined CP, and Green’s functions will
in general be CP violating. The model is renormalizable

as long as all the terms compatible with the symmetries
are included. Finally, note that, in such a CP violating
scenario, there may be regions of the parameter space

in which �5 and µ2 are real, and f1 and f2 complex.
But this is a completely di↵erent situation from that
where one builds a theory taking ab initio �5 and µ2

real, while f1 and f2 in general complex. In fact, while
the former situation corresponds to a particular solu-
tion of a consistent, renormalizable theory, the latter
su↵ers from the inconsistencies we have shown.

4 Three-loop tadpole for A in the real 2HDM

Our goal is to check whether the complex phases of

the fermion mixing matrices introduce CP violating ef-
fects into the otherwise CP conserving scalar sector of
the real 2HDM via radiative corrections. For this pur-
pose, we focus on the e↵ects of quark-mixing. The quan-

tity that signifies quark-induced CP violation in a con-
vention independent way is the Jarlskog invariant J in
eq. (8). So, we are looking for radiative corrections to

the 2HDM which contain this quantity. As the simplest
check, we have looked for diagrams proportional to J ,
contributing to the A tadpole. As argued above, this

can only happen in amplitudes with at least four ver-
tices, each containing a factor of Vu↵dj

and additionally,
a vertex to couple to A (none of the A-couplings have
CKM-factors). Therefore, the first possible appearance

of J in A-tadpoles is at three loops. This is indeed what
we find at the amplitude-level.

An example of a pair of diagrams yielding the Jarl-

skog invariant is shown in Fig. 3. If contributions of this
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Fig. 3: Example of pair of Feynman diagrams where
J factorizes (for fixed ↵, �, i, j). They di↵er only by

the direction of fermion flow (or equivalently by the
exchange of the two down-type quarks, di $ dj).

kind were divergent, then one would lack the respec-

tive counterterm needed to absorb these divergences
within the real 2HDM. Therefore, we checked for the

existence of a leading 1/"3-pole in said contributions,

which would be a strong indication for the necessity of
a genuine three-loop A-tadpole counterterm. For this
purpose, we generated all three-loop A-tadpole ampli-

tudes TA with the only condition being that a fixed
set of quarks {u↵, u� , di, dj} must be contained. Other
contributions are CP conserving operators and, thus,

irrelevant to our discussion.
Our calculation was carried out in three indepen-

dent ways (two numeric; one analytical), fully explained
in section 5. The result is10

(TA)
↵i
�j = �i

⇣
A

⌘u↵di

u�dj

=
g5

8"3m3
W s�c�

M↵i
�j I↵i

�j + O("�2), (27)

where there is no sum over repeated indices, and

M↵i
�j =(m2

u↵
� m2

u�
)(m2

di
� m2

dj
)

⇥ (m2
u↵

� m2
di

+ m2
u�

� m2
dj

) . (28)

The fact that such di↵erent calculational techniques
yielded the same result is truly significant.

Remarkably, when summing over all di↵erent sets
of up- and down-type quark contributions, the leading

pole vanishes exactly. Indeed, it is easy to show that
summing the combination M↵i

�j I
↵i
�j over all the nine dis-

tinct sets of four di↵erent quarks (two up-type and two

down-type), the result vanishes. Notice that both M↵i
�j

and I↵i
�j are antisymmetric under ↵ $ � (or i $ j).

Thus, the vanishing of eq. (27) is not due to the sim-

ple symmetry reasons mentioned in connection with
eq. (9). It is the specific form of the mass term M↵i

�j in
eq. (28) which makes this possible. We cannot see how
one would have guessed from the start this rather pe-

culiar mass combination. We resonate with Khriplovich
and Pospelov’s remark in the context of edm that: “We
cannot get rid of the feeling that this simple result (...)

should have a simple transparent explanation. Unfortu-
nately, we have not been able to find it.”

But the physical consequence is quite clear:
X

↵<�

X

i<j

(TA)
↵i
�j = O("�2). (29)

It remains uncertain whether this cancellation has a
physical origin or it is to be interpreted as accidental.
There is the possibility that the next order 1/"2-poles

would be non-vanishing. Otherwise, a genuine CP vi-
olating tadpole counterterm for A would only become
relevant at the four-loop level.

10Notice that the angle � in s�c� is the angle in eq. (2),
while in all other instances of eq. (27), � refers to the up-
type quark being considered. Here and henceforth, which � is
meant should be clear from the context.
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5 Details of the calculation

In this section, we discuss our derivation of eq. (27).
First note that a complete calculation of the renor-

malized three-loop tadpole for A would require the full
renormalization of the model at both one-loop and two-
loop order. Although unlikely, one cannot exclude the
possibility that combinations of the one- and two-loop

counterterms of a CP-conserving scalar sector conspire
to cancel the divergences of a CP-violating three-loop
tadpole. Secondly, one caveat in our calculation is the

treatment of amplitudes with an uneven number of �-
matrices together with �5. We chose to work in naive
dimensional regularisation with the expectation that
the leading "-poles do not depend on the choice of a �5-

scheme. This claim is supported by the findings in [37]
at the one-loop level.

As mentioned before, at least three generations of

quarks are necessary to generate a CP-violating tad-
pole. Therefore, we focus on a particular set of dia-
grams. Let us then define S{dcbt} as the set of all the
three-loop tadpole diagrams for A containing the quarks

d, c, b, t. We started by generating the amplitudes for
S{dcbt} in an R⇠-gauge. We did this through two inde-
pendent softwares: FeynMaster [38] (which makes use

of FeynRules [39] and QGRAF [40]) and FeynArts [41].11

At three loops, there are 360 amplitudes containing the
quarks d, c, b and t. However, 120 among them involve
two closed loops of fermions, which means that they can

never factorize the Jarlskog invariant J ; and since a) the
tadpole for A violates CP and b) all the CP -violation
in the real 2HDM must be proportional to J (with J

being the only rephasing-invariant quantity signifying
CP-violation), those diagrams must sum up to zero. We
checked this explicitly using FeynCalc [42–44].

We then focused on the remaining 240 diagrams. Af-

ter simplifying the Lorentz and Dirac algebra of the 240
diagrams with FeynCalc, another 32 diagrams, such as
the ones with two internal W-boson loops, vanish im-

mediately (in naive dimensional regularisation) due to
the chirality of the interactions involved. This eventu-
ally left us with 208 diagrams which can be categorized

as follows:

1. The first group of diagrams can be generated from

connecting A to any fermion line in Fig. 4 and the
corresponding ones with reversed fermion flow giv-
ing 16 diagrams. The same goes for all possible vec-
tor boson and scalar insertions, namely

{HW, WH, HG, GH, HH, GW, WG, GG}.

11It is worth emphasizing that the three-loop tadpole ampli-
tudes generated with FeynArts and FeynMaster coincide.

Diagrams where we connect A to a line with an at-
tached W -loop vanish though, leaving us with 8 ⇥
16 � 4 ⇥ 4 = 112 diagrams.

c H�

d

b

tW

(a)

d H+

t

c

bW

(b)

Fig. 4: Attaching A to the fermion lines of these dia-
grams and the ones with reversed fermion flow gener-
ates the first category of relevant diagrams.

2. An example of the second group is shown in Fig. 5.
From this diagram and the one with reversed fermion
flow, we get 8 diagrams by cyclic permutations of

the fermions. The A can be connected to either
{WH,HW,GH, HG} and we can have either a W -,
H-, or G-loop in the diagram. This gives 3⇥4⇥8 =
96 diagrams.

b

t W

H�

c

d

W

A

Fig. 5: The second set of relevant diagrams is generated
from permutations of the fermions in this diagram and
by replacing the W -insertions with a Goldstone boson.

We proceeded to numerically evaluate the most di-

vergent part of the 208 diagrams using FIESTA [45]
in Feynman gauge, i.e. at ⇠W = 1. In order to gen-
erate input integrals, the FeynCalc function ApartFF

was essential for decomposing the diagrams via par-
tial fractioning. This decomposition yielded scalar in-
tegrals for which we could easily get an accurate result
from FIESTA. One integral type needed additional at-

tention though, namely the one with a scalar product
in the numerator and five di↵erent propagator factors
(see Appendix A for a discussion). This type of integral

yielded large error estimates in FIESTA, such that the
results could no be trusted. In order to obtain an exact
result for those, we used integration-by-parts identities

with FIRE [46] to decompose this integral type into a
set of scalar integrals. The intermediate steps required

- 4 insertions of CKM matrix: lowest order that can give rise to
Jarlskog invariant J =

∣∣∣Im(VαiVβjV
∗
αjV

∗
βi)
∣∣∣

- 208 nonvanishing fully-massive 3-loop vacuum∗ diagrams for
each combination of fermion flavours ∗no external momentum injections

- Two independent software chains; valuable stress-test of tools
- Computed the leading 1/ε3 divergence
- CPV divergence found! But it canceled upon summation over
all possible quark combinations!!

Need different strategy to understand cancellation and to go
beyond 3 loops.

Heather Logan (Carleton U.) (In)consistency of Real 2HDM SCALARS, Sept 2025

4



Framework for analyzing divergences

All we care about (in this talk) is whether we’ll need a counter-
term for Im(λ5). ⇒ Equivalent to asking whether Im(λ5) runs
under renormalization-group (RG) flow.

Exploit known properties of RG equations:
(1) Spontaneous symmetry breaking does not affect RGEs of
quartic couplings – can work in unbroken phase. Simplifies sum
over all quarks to just a trace of products of Yukawa matrices.
(2) Mass terms don’t affect RGEs of quartic couplings – can treat
all particles as massless. (IR regulator does not affect renormalizability.)

... and of Feynman diagrams:
(3) Coefficient of local divergence is polynomial in momenta;
nonlocal divergences (involving logs) guaranteed to be canceled
by lower-order counterterms – can use dimensional analysis.

(4) Consider properties of pairs of diagrams that are related
by a well-defined transformation, and look for cancellations of
imaginary divergence.

Heather Logan (Carleton U.) (In)consistency of Real 2HDM SCALARS, Sept 2025
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Ingredients for CP Violation: Jarlskog invariant

Reparametrization-invariant measure of the CP violation in the
CKM matrix Jarlskog, ZPhysC, PRL 1985

J =
∣∣∣Im(VαiVβjV

∗
αjV

∗
βi)
∣∣∣ , (α 6= β, i 6= j)

More useful here to express it in terms of the quark Yukawa
couplings. Define combinations of quark Yukawa matrices:

Ĥu = YuY
†
u Ĥd = YdY

†
d

Minimal combination that yields an imaginary part involves 12
powers of Y ’s: Botella & Silva, PRD 1995

J = Tr
(
ĤuĤdĤ

2
uĤ

2
d

)
where Im(J ) ∝ J

(Any fewer powers of Ĥi gives a Hermitian matrix inside the trace.)

In the unbroken phase, this trace arises from the sum over quark
generations in diagrams involving one big quark circle with 12
scalars attached.
⇒ Draw the simplest loop diagrams that involve J or J ∗, then

try to build the non-Hermitian operators
(
Φ†1Φ2

)2
or Φ†1Φ2.

Heather Logan (Carleton U.) (In)consistency of Real 2HDM SCALARS, Sept 2025
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Ingredients for CP Violation: Jarlskog invariant

4-point operator:

connect 8 legs

⇒ min. 5 loops.

2-point operator:

connect 10 legs

⇒ min. 6 loops.

Immediately explains cancellation of divergent CPV at 3 loops
when summed over quark generations!
(3 loops, broken phase: enough CKM’s, but too few quark mass insertions.)
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Ingredients for CP Violation: Jarlskog invariant

Type I:

6 incoming Φ2’s

6 outgoing Φ2’s

Type II:

3 incoming Φ1’s

3 outgoing Φ1’s

3 incoming Φ2’s

3 outgoing Φ2’s

Cannot actually construct desired
(
Φ†1Φ2

)2
or Φ†1Φ2 operators,

without adding another ingredient!
Need to, e.g., convert two outgoing Φ2’s into Φ1’s.

Heather Logan (Carleton U.) (In)consistency of Real 2HDM SCALARS, Sept 2025
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Ingredients for CP violation: breaking the would-be U(1)

Consider the quark Yukawa couplings after imposing Natural
Flavour Conservation:

LY uk = −Y dijQ̄LiΦ1dRj − Y uijQ̄LiΦ̃2uRj + h.c.

(for Type II; replace Φ1 with Φ2 for Type I.)

We normally enforce this by imposing a Z2 symmetry.

But we could equally well have achieved this form for the Yukawa
couplings by imposing a global U(1) symmetry, e.g.:

Φ1 → e−iθΦ1, Φ2 → eiθΦ2

with QL invariant and Ferreira & Silva 2011

uR → eiθuR, dR → e−iθdR (Type I)

uR → eiθuR, dR → eiθdR (Type II)

(For Type II, this is equivalent to the Peccei-Quinn U(1).)

Heather Logan (Carleton U.) (In)consistency of Real 2HDM SCALARS, Sept 2025
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Ingredients for CP violation: breaking the would-be U(1)

Global U(1) symmetry Φ1 → e−iθΦ1, Φ2 → eiθΦ2 is broken only

by λ5 6= 0 (and softly broken by m2
12 6= 0).

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
[
m2

12Φ†1Φ2 + h.c.
]

+
1

2
λ1

(
Φ†1Φ1

)2
+

1

2
λ2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

) (
Φ†2Φ2

)
+ λ4

∣∣∣Φ†1Φ2

∣∣∣
2

+
{

1

2
λ5

(
Φ†1Φ2

)2
+ h.c.

}
.

In the (softly-broken) U(1) model, λ5 = 0 and complex phase

of m2
12 can be trivially rotated away. ⇒ Protected to all orders

from divergent CPV by global U(1)! Pilaftsis 1998

Diagrams involving only Yukawa vertices preserve the U(1):

Cannot generate
(
Φ†1Φ2

)2
or Φ†1Φ2 without a U(1)-breaking cou-

pling insertion (converts e.g. two outgoing Φ2’s into Φ1’s).

⇒ Minimum 6 loops for
(
Φ†1Φ2

)2
.
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Ingredients for CP violation: breaking the would-be U(1)

12 Yukawas plus a λ5 vertex success-

fully generates diagrams for
(
Φ†1Φ2

)2

proportional to J , in both Type I and

Type II 2HDMs!

(Sample diagram: Type II)

Superficial degree of divergence is

zero; no reason for divergent piece to

vanish.

Are we done? (No.)

Have to consider possible cancellations among diagrams.

From this point, have to study Type I and Type II separately.

Start with Type II because it’s simpler.

Heather Logan (Carleton U.) (In)consistency of Real 2HDM SCALARS, Sept 2025

11



Ingredients for CP violation (Type II): breaking a generalized CP
transformation

Consider a 6-loop diagram proportional

to λ5J that generates
(
Φ†1Φ2

)2
.

For each such diagram, we can con-

struct another diagram that generates(
Φ†1Φ2

)2
by applying a generalized CP

transformation: Branco et al. 2012

• exchanging uR ↔ dR, (J → J ∗)
• exchanging Φ1 ↔ Φ̃2. (λ5 → λ5)

New diagram is proportional to λ5J ∗!
(recall J = Tr

(
ĤuĤdĤ

2
uĤ

2
d

)
)

Because the coefficient of the divergent piece(s) cannot depend
on masses, and the structure of the diagram is otherwise identical
(at zero external momenta), the imaginary part of the divergence
must cancel between this pair of diagrams!

Heather Logan (Carleton U.) (In)consistency of Real 2HDM SCALARS, Sept 2025
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Ingredients for CP violation (Type II): breaking a generalized CP

transformation

To break this cancellation, we have to go to 7 loops by adding an

interaction that is not invariant under the GCP transformation:

• a hypercharge gauge boson (distinguishes uR from dR);

• a λ1 or λ2 vertex (distinguishes Φ1 from Φ2 if λ1 6= λ2);

• another pair of Yukawas in the quark loop (either YuY
†
u or YdY

†
d ).

Predict the parameter dependence of the RGE for Im(λ5)!

d Im(λ5)

d lnµ
=
λ5Im(J )

(16π2)7

[
a1(λ1 − λ2) + a2g

′2 + a3(y2
t − y2

b + . . .)
]

Heather Logan (Carleton U.) (In)consistency of Real 2HDM SCALARS, Sept 2025
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Ingredients for CP violation (Type I): breaking the subdiagram

structure

Type I 2HDM: structure of 6-loop diagrams more constrained:

only Φ2 couples to quarks, so the two external Φ1’s must be

attached to the λ5 vertex.

The key observation is that because in the type I model
only Φ2 couples to quarks, all six-loop diagrams contrib-
uting to O5 that are proportional to J or J ! have the
structure of a five-loop subdiagramwith two legs connected
to a λ5 vertex, as shown in Fig. 4. All of the dependence of
the six-loop result on J or J ! is thus contained within the
form factor of the five-loop subdiagram. However, this
subdiagram corresponds to the operator O2 ≡Φ†

2Φ2Φ†
2Φ2,

which is dimension four and Hermitian. This fact will allow
us to prove that all relevant parts of the five-loop form
factor must be proportional to J þ J ! and hence real,13 so
that the imaginary divergent contribution to λ5 vanishes at
six loops.
Consider an individual five-loop subdiagram that is

proportional to J ¼ TrðĤuĤdĤ2
uĤ2

dÞ. This subdiagram
can be written as

Mð5Þ
i Oi ¼ fTrðĤuĤdĤ2

uĤ2
dÞTrðγμ1 & & & γμ12ÞN i

μ1&&&μ12g

×Φ†
2ðp1ÞΦ2ðp2ÞΦ†

2ðp3ÞΦ2ðp4Þ; ð4:5Þ

where the SUð2ÞL index structure of the doublets has been
captured in the contractions of the four external scalar
fields. The factor N i

μ1&&&μ12 contains the rest of the loop
integral and is a function of the four-momenta p1&&&4 and the
common auxiliary mass introduced to regulate infrared
divergences. At this stage, the four-momenta of the external
scalars can be off shell.
For each such diagram i, a second diagram i0 exists with

identical topology and momentum structure but in which
the flow of fermion number is reversed. As discussed
in Sec. III, this replaces J with J ! and interchanges
Φ2 ↔ Φ!

2. It also introduces 12 minus signs from pμ →
−pμ in the numerators of the 12 fermion propagators
(giving an overall positive sign) and reverses the order of
the 12 gamma matrices in the Dirac trace (which is equal to
the original trace by a familiar identity). The SUð2ÞL index
contractions remain unaffected. Because the topology and

momentum structure of diagram i0 is identical to that of
diagram i, the result of the remainder of the loop integral is
the same, i.e., N i0

μ1&&&μ12 ¼ N i
μ1&&&μ12 . Subdiagram i0 can then

be written as

Mð5Þ
i0 Oi0 ¼ fTrðĤ2

dĤ
2
uĤdĤuÞð−1Þ12Trðγμ12 & & &γμ1ÞN i0

μ1&&&μ12g
×ΦT

2 ðp1ÞΦ!
2ðp2ÞΦT

2 ðp3ÞΦ!
2ðp4Þ;

¼ fTrðĤuĤdĤ2
uĤ2

dÞ!Trðγμ1 & & &γμ12ÞN i
μ1&&&μ12g

×Φ†
2ðp2ÞΦ2ðp1ÞΦ†

2ðp4ÞΦ2ðp3Þ; ð4:6Þ

where in the last line we have also taken the transpose of the
products of scalar doublets.
The operator involving the external scalars is distin-

guishable from that of diagram i because the momenta are
assigned differently. This matters because the matrix
element associated with this subdiagram is, in general, a
Lorentz-invariant function of the incoming four-momenta
p1, p2, p3, p4; in going to subdiagram i0 we have replaced
the original kinematic variables according to p1 ↔ p2,
p3 ↔ p4. However, since this subdiagram’s superficial
degree of divergence is zero, all of the local divergences
of the five-loop integral are independent of the external
momenta. Therefore the imaginary part of J multiplying
divergent terms in N , as well as any finite terms in N that
is independent of the external momenta, cancels in the sum
of diagrams i and i0. This result can also be proved trivially
by noticing that the five-loop subdiagram in the limit
p1&&&4 → 0 is just the five-loop renormalization of λ2, which
multiplies the Hermitian operator O2 in the scalar potential
and is thus guaranteed to remain real at all orders in
perturbation theory.
This leaves only the momentum-dependent terms in N .

These matter because the five-loop subdiagram has two off-
shell legs (which connect to the λ5 vertex, forming the sixth
loop), and the reversal of fermion flow switches which pair
of legs are off shell, as shown in Fig. 5. If the momentum
dependence of the five-loop subdiagram contains an anti-
symmetric term under the interchange of the choice of
off-shell legs, it could induce a divergent CP-violating
contribution at six loops.14 Fortunately, it is easy to
demonstrate that such a term cannot appear once all
contributions to the five-loop subdiagram are summed.
In the massless theory, the five-loop form factor is

an analytic dimensionless function of Lorentz-invariant
combinations of the external four-momenta. Let us write
p1 ¼ −p3 ¼ ka, p2 ¼ −p4 ¼ kb, where ka and kb are the
momenta of the sixth loop in the left and right diagrams of
Fig. 5, respectively. Then the Mandelstam variables enter-
ing the five-loop form factor are s ¼ 0, t ¼ ðka þ kbÞ2, and

FIG. 4. Subdiagram structure of the six-loop contributions to
O5 in the type I 2HDM. The subdiagram contains the closed
quark loop that yields J or J !.

13That the divergent parts of the five-loop form factor are
purely real can be immediately understood by noticing that they
also constitute the five-loop renormalization of the real coupling
λ2. We address the finite part of the form factor below.

14In the effective operator language, this piece of the five-
loop form factor corresponds to C-odd operators such as
½Φ†

2∂
2Φ2 − ð∂2Φ†

2ÞΦ2(ðΦ†
2Φ2Þ.

CAN CP BE CONSERVED IN THE TWO-HIGGS-DOUBLET … PHYS. REV. D 110, 095007 (2024)

095007-9
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Ingredients for CP violation (Type I): breaking the subdiagram
structure

For each such diagram ∝ J , can construct another diagram ∝ J ∗
by complex-conjugating the subdiagram and moving the λ5 in-
sertion to the other pair of Φ2 legs.

u ¼ ðka − kbÞ2, and any antisymmetric piece generically
takes the form ΛðpiÞ ∼ ðk2a − k2bÞ=fðt; uÞ þ % % %, where
fðt; uÞ is some linear combination of t and u and the
ellipses indicate additional dimensionless terms with higher
powers of momenta in both the numerator and denomi-
nator.15 However, in the limit ka → 0 and kb → 0, the
momentum-dependent piece of the five-loop form factor
must reduce to a well-defined, finite limit corresponding to
the physical process of massless Φ2Φ2 → Φ2Φ2 scattering
at threshold; furthermore if in this limit the form factor is
nonzero, its coefficient cannot be complex because it
becomes a contribution to the renormalization of λ2. The
antisymmetric piece of the form factor described above is
not only finite in this limit, but its sign depends on the order
in which the limits ka → 0 and kb → 0 are taken, which is
clearly unphysical. Thus, we prove that the coefficient of
any such antisymmetric piece must be zero; i.e., that the
momentum-dependent piece of the five-loop form factor
must be symmetric under the interchange of the incoming
and outgoing legs. Therefore, the entire form factor must be
proportional to J þ J & and hence real.
Embedding this form factor into the sixth loop, we thus

demonstrate that all imaginary divergent contributions to λ5
cancel at six loops in the type I model. We emphasize that
this cancellation at six loops is a diagrammatic accident in
the type I model and is not protected by any symmetry that
we have identified; instead, it is due to all contributing
diagrams having the subdiagram structure shown in Fig. 4.

V. λ5 AT SEVEN LOOPS

We showed in the previous section that the imaginary
divergent contributions to λ5 are zero at the six-loop level in
both the type II and type I 2HDMs. We now extend our
analysis to seven loops and show that the arguments used to

demonstrate the cancellation of the six-loop diagrams no
longer hold, so that an imaginary divergent contribution to
λ5 can arise at this order. We explicitly identify the classes
of diagrams that can contribute and the resulting parameter
dependence that can appear in the seven-loop RG equa-
tions, thereby laying the groundwork for future explicit
calculations. Again, we analyze the two types separately.
Since we have not performed the loop integrals to

calculate the divergent parts of the contributing diagrams,
we cannot exclude the possibility that some as-yet-
unidentified symmetry among diagrams leads to cancella-
tions of the imaginary divergent contributions to λ5 also at
the seven-loop order.

A. Type II 2HDM

In Sec. IVAwe demonstrated that the cancellation of the
imaginary divergent contribution to λ5 at six loops in the
type II 2HDM was guaranteed by the transformation
properties of the contributing diagrams under the general-
ized CP transformationΦ1 ↔ Φ̃2 along with uR ↔ dR and
Yu ↔ Yd. In particular, for each six-loop diagram i propor-
tional to λ5J , this transformation yielded a second diagram
i0 with identical momentum structure proportional to λ5J &,
between which the imaginary part of J canceled. The
obvious way to destroy this cancellation and potentially
recover an imaginary divergent contribution to λ5 at the
seven-loop order is by introducing an additional coupling
multiplying λ5J in diagram i that is not the same in
diagram i0. We identify three possible ways to do this:
(1) Insert an additional quartic scalar interaction involv-

ing the coupling λ1 or λ2. Under the generalized CP
transformation Φ1 ↔ Φ̃2, the most general scalar
potential of the 2HDM given in Eq. (2.1) transforms
according to λ1 ↔ λ2, λ6 ↔ λ&7, and m2

11 ↔ m2
22,

with all other terms invariant. Thus a seven-loop
diagram i proportional to λ1λ5J contributing to O5

transforms into a diagram i0 proportional to λ2λ5J &,
and the cancellation of the imaginary part of J is
spoiled when λ1 ≠ λ2. A pair of such seven-loop

FIG. 5. A pair of six-loop diagrams contributing toO5 in the type I 2HDM with Yukawa-vertex corrections on the two incoming (left)
and two outgoing (right) Φ2 legs of the five-loop subdiagram. Note that the internal closed scalar lines in the second diagram cannot be
rearranged to produce a diagram with Yukawa vertex corrections on the incoming legs because of the hypercharge flow.

15Such a structure can arise from individual five-loop diagrams
containing one-loop Yukawa vertex corrections on either the two
incoming or the two outgoing scalar lines but not both; we show
two such diagrams related by reversal of fermion flow in Fig. 5.
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The only structural difference between these diagrams is that the
injection of momentum flowing in the 6th loop happens in a dif-
ferent place. Does the imaginary part cancel?
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Ingredients for CP violation (Type I): breaking the subdiagram
structure

- Treat the sum of all 5-loop sub-

diagrams proportional to J as a

formfactor, which depends on the

momenta of its four legs.

The key observation is that because in the type I model
only Φ2 couples to quarks, all six-loop diagrams contrib-
uting to O5 that are proportional to J or J ! have the
structure of a five-loop subdiagramwith two legs connected
to a λ5 vertex, as shown in Fig. 4. All of the dependence of
the six-loop result on J or J ! is thus contained within the
form factor of the five-loop subdiagram. However, this
subdiagram corresponds to the operator O2 ≡Φ†

2Φ2Φ†
2Φ2,

which is dimension four and Hermitian. This fact will allow
us to prove that all relevant parts of the five-loop form
factor must be proportional to J þ J ! and hence real,13 so
that the imaginary divergent contribution to λ5 vanishes at
six loops.
Consider an individual five-loop subdiagram that is

proportional to J ¼ TrðĤuĤdĤ2
uĤ2

dÞ. This subdiagram
can be written as

Mð5Þ
i Oi ¼ fTrðĤuĤdĤ2

uĤ2
dÞTrðγμ1 & & & γμ12ÞN i

μ1&&&μ12g

×Φ†
2ðp1ÞΦ2ðp2ÞΦ†

2ðp3ÞΦ2ðp4Þ; ð4:5Þ

where the SUð2ÞL index structure of the doublets has been
captured in the contractions of the four external scalar
fields. The factor N i

μ1&&&μ12 contains the rest of the loop
integral and is a function of the four-momenta p1&&&4 and the
common auxiliary mass introduced to regulate infrared
divergences. At this stage, the four-momenta of the external
scalars can be off shell.
For each such diagram i, a second diagram i0 exists with

identical topology and momentum structure but in which
the flow of fermion number is reversed. As discussed
in Sec. III, this replaces J with J ! and interchanges
Φ2 ↔ Φ!

2. It also introduces 12 minus signs from pμ →
−pμ in the numerators of the 12 fermion propagators
(giving an overall positive sign) and reverses the order of
the 12 gamma matrices in the Dirac trace (which is equal to
the original trace by a familiar identity). The SUð2ÞL index
contractions remain unaffected. Because the topology and

momentum structure of diagram i0 is identical to that of
diagram i, the result of the remainder of the loop integral is
the same, i.e., N i0

μ1&&&μ12 ¼ N i
μ1&&&μ12 . Subdiagram i0 can then

be written as

Mð5Þ
i0 Oi0 ¼ fTrðĤ2

dĤ
2
uĤdĤuÞð−1Þ12Trðγμ12 & & &γμ1ÞN i0

μ1&&&μ12g
×ΦT

2 ðp1ÞΦ!
2ðp2ÞΦT

2 ðp3ÞΦ!
2ðp4Þ;

¼ fTrðĤuĤdĤ2
uĤ2

dÞ!Trðγμ1 & & &γμ12ÞN i
μ1&&&μ12g

×Φ†
2ðp2ÞΦ2ðp1ÞΦ†

2ðp4ÞΦ2ðp3Þ; ð4:6Þ

where in the last line we have also taken the transpose of the
products of scalar doublets.
The operator involving the external scalars is distin-

guishable from that of diagram i because the momenta are
assigned differently. This matters because the matrix
element associated with this subdiagram is, in general, a
Lorentz-invariant function of the incoming four-momenta
p1, p2, p3, p4; in going to subdiagram i0 we have replaced
the original kinematic variables according to p1 ↔ p2,
p3 ↔ p4. However, since this subdiagram’s superficial
degree of divergence is zero, all of the local divergences
of the five-loop integral are independent of the external
momenta. Therefore the imaginary part of J multiplying
divergent terms in N , as well as any finite terms in N that
is independent of the external momenta, cancels in the sum
of diagrams i and i0. This result can also be proved trivially
by noticing that the five-loop subdiagram in the limit
p1&&&4 → 0 is just the five-loop renormalization of λ2, which
multiplies the Hermitian operator O2 in the scalar potential
and is thus guaranteed to remain real at all orders in
perturbation theory.
This leaves only the momentum-dependent terms in N .

These matter because the five-loop subdiagram has two off-
shell legs (which connect to the λ5 vertex, forming the sixth
loop), and the reversal of fermion flow switches which pair
of legs are off shell, as shown in Fig. 5. If the momentum
dependence of the five-loop subdiagram contains an anti-
symmetric term under the interchange of the choice of
off-shell legs, it could induce a divergent CP-violating
contribution at six loops.14 Fortunately, it is easy to
demonstrate that such a term cannot appear once all
contributions to the five-loop subdiagram are summed.
In the massless theory, the five-loop form factor is

an analytic dimensionless function of Lorentz-invariant
combinations of the external four-momenta. Let us write
p1 ¼ −p3 ¼ ka, p2 ¼ −p4 ¼ kb, where ka and kb are the
momenta of the sixth loop in the left and right diagrams of
Fig. 5, respectively. Then the Mandelstam variables enter-
ing the five-loop form factor are s ¼ 0, t ¼ ðka þ kbÞ2, and

FIG. 4. Subdiagram structure of the six-loop contributions to
O5 in the type I 2HDM. The subdiagram contains the closed
quark loop that yields J or J !.

13That the divergent parts of the five-loop form factor are
purely real can be immediately understood by noticing that they
also constitute the five-loop renormalization of the real coupling
λ2. We address the finite part of the form factor below.

14In the effective operator language, this piece of the five-
loop form factor corresponds to C-odd operators such as
½Φ†

2∂
2Φ2 − ð∂2Φ†

2ÞΦ2(ðΦ†
2Φ2Þ.
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- Any parts of this formfactor that will later contribute to diver-
gences of the 6-loop diagram must be an analytic dimensionless
function of Lorentz-invariant combinations of the momenta of
its four legs.

- If this formfactor has a piece which is antisymmetric when the
relevant momenta are swapped, then the imaginary divergence
will not cancel. Ex: (k2

a − k2
b )/f(k2

i )

- But an antisymmetric piece of a dimensionless formfactor lacks
a well-defined zero-momentum limit: unphysical, must = 0!
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Ingredients for CP violation (Type I): breaking the subdiagram
structure

The formfactor for the 5-loop subdiagram is “actually” just the
renormalization of the operator (Φ†2Φ2)2, which is hermitian and
thus cannot acquire an imaginary part (divergent or otherwise)
in the zero-momentum limit.

eight of the 12 scalar legs of either primitive diagram to
produce a four-scalar operator creates a five-loop diagram,
and inserting a λ5 vertex requires one additional loop.
Six- and seven-loop analysis—In order to show that the

real 2HDM is theoretically inconsistent, we need to
demonstrate the existence of a nonzero divergent contri-
bution to Imðλ5Þ. Starting from the two primitive diagrams
of Fig. 1 together with a λ5 vertex, we can construct all
diagrams that contribute to the ðΦ†

1Φ2Þ2 operator by
choosing all relevant configurations of external legs and
connecting the remaining legs in all possible ways.
Calculating the divergences of generic six-loop diagrams

is beyond the reach of current computational tools. We
instead look for pairings of diagrams proportional to J and
J # that give rise to identical divergent contributions so that
the imaginary part cancels in their sum. These pairings are
driven by two transformations that convert the primitive
diagram proportional to J into the one proportional to J #:
these are (i) in the type I model, reversal of the fermion
flow, which forces Φ2 ↔ Φ#

2, and (ii) in the type II model,
interchange of uR ↔ dR, which forces Φ1 ↔ Φ̃2. The first
is the standard CP transformation applied to the entire
primitive diagram; the second corresponds to a generalized
CP transformation [7].
The key observation is that because the coefficient of the

four-scalar operator is dimensionless, the divergent parts of
the diagrams cannot depend on any particle masses or
external momenta. The transformations that take J ↔ J #

are thereby promoted to accidental symmetries of the
divergent parts of the Feynman integrals at six loops, so
that the sum of each such pair of diagrams is proportional to
ðJ þ J #Þ, and hence purely real. Since the additional
accidental symmetry differs in types I and II, we study the
two models separately.
Type I 2HDM In the type I model, only Φ2 is

connected to the fermion line. Since we want to generate
the operator ðΦ†

1Φ2Þ2, we must convert two outgoing Φ2

fields into Φ1 using the λ5 insertion. All of the six-loop
diagrams then have the characteristic topology shown in
Fig. 2, in which it is always possible to cut the two Φ2

propagators connected to the λ5 vertex and thereby isolate a
five-loop subdiagram.
This gives us a clearer picture of the six-loop correction,

as it is possible to integrate and sum all the subdiagrams
first and generate a five-loop form factor before performing

the sixth loop integral. The symmetry transformation
Φ2 ↔ Φ#

2, q → q# (with q ¼ QL; uR; dR) that interchanges
the diagrams proportional to J and J # also interchanges
the incoming and outgoing Φ2 lines of the subdiagram.
This forces the λ5 insertion to be attached instead to the
other pair of legs, changing the momentum structure of the
overall diagram.
The form factor from the five-loop subdiagram can, in

principle, depend nontrivially on which legs carry the
momentum of the sixth loop. However, since any four-
scalar form factor is dimensionless and the theory is
effectively massless for the purpose of computing only
the divergent parts, only the piece of the five-loop form
factor that reduces to a constant in the zero-momentum
limit can contribute. This constant piece must be real
because it constitutes the five-loop renormalization of
the coefficient λ2 of the Hermitian operator ðΦ†

2Φ2Þ2.
This guarantees that the sum of all six-loop diagrams
proportional to J generates the same divergent coefficient
as the sum of all such diagrams proportional to J #, so that
the imaginary part of J cancels in their sum. Finite
imaginary contributions do not necessarily cancel, but they
do not affect the renormalizability of the real 2HDM. We
thus conclude that the type I 2HDM has no divergent CPV
at six loops.
This subdiagram structure is not preserved at seven

loops, and the accidental enhanced symmetry that ensures
the cancelation of the divergent imaginary parts is thus
removed. Diagrams without the subdiagram structure can
be constructed by connecting a propagator between the
original subdiagram and one of the external Φ1 legs, as
shown in Fig. 3. All such diagrams involve one of the
following: (i) a λ3 or λ4 vertex or (ii) a hypercharge or
SUð2ÞL gauge boson exchange.
We thus expect imaginary divergent contributions to λ5

to first appear at the seven-loop level in the type I 2HDM,
with coefficients proportional to λ5ImðJ Þ times these
additional couplings. We have explicitly verified the break-
ing of the subdiagram structure by generating the diagram
topologies involving λ3 or λ4 using QGRAF [28].
We finally note that diagrams contributing radiative

corrections to m2
12 are also guaranteed to take the form

FIG. 2. Subdiagram topology of the six-loop diagrams in the
type I 2HDM.

FIG. 3. Two seven-loop diagrams in the type I 2HDM that
violate the subdiagram topology.
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The coefficient of this operator being dimensionless guarantees
that momentum dependence cannot circumvent this conclusion.

To break the cancellation, must break the subdiagram structure.
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Ingredients for CP violation (Type I): breaking the subdiagram
structure

To break the cancellation, again have to go to 7 loops: attach
something to both the 5-loop formfactor and an external Φ1 leg:

• a λ3

(
Φ†1Φ1

) (
Φ†2Φ2

)
or λ4

∣∣∣Φ†1Φ2

∣∣∣
2

vertex;
• an SU(2)L or hypercharge gauge boson.

eight of the 12 scalar legs of either primitive diagram to
produce a four-scalar operator creates a five-loop diagram,
and inserting a λ5 vertex requires one additional loop.
Six- and seven-loop analysis—In order to show that the

real 2HDM is theoretically inconsistent, we need to
demonstrate the existence of a nonzero divergent contri-
bution to Imðλ5Þ. Starting from the two primitive diagrams
of Fig. 1 together with a λ5 vertex, we can construct all
diagrams that contribute to the ðΦ†

1Φ2Þ2 operator by
choosing all relevant configurations of external legs and
connecting the remaining legs in all possible ways.
Calculating the divergences of generic six-loop diagrams

is beyond the reach of current computational tools. We
instead look for pairings of diagrams proportional to J and
J # that give rise to identical divergent contributions so that
the imaginary part cancels in their sum. These pairings are
driven by two transformations that convert the primitive
diagram proportional to J into the one proportional to J #:
these are (i) in the type I model, reversal of the fermion
flow, which forces Φ2 ↔ Φ#

2, and (ii) in the type II model,
interchange of uR ↔ dR, which forces Φ1 ↔ Φ̃2. The first
is the standard CP transformation applied to the entire
primitive diagram; the second corresponds to a generalized
CP transformation [7].
The key observation is that because the coefficient of the

four-scalar operator is dimensionless, the divergent parts of
the diagrams cannot depend on any particle masses or
external momenta. The transformations that take J ↔ J #

are thereby promoted to accidental symmetries of the
divergent parts of the Feynman integrals at six loops, so
that the sum of each such pair of diagrams is proportional to
ðJ þ J #Þ, and hence purely real. Since the additional
accidental symmetry differs in types I and II, we study the
two models separately.
Type I 2HDM In the type I model, only Φ2 is

connected to the fermion line. Since we want to generate
the operator ðΦ†

1Φ2Þ2, we must convert two outgoing Φ2

fields into Φ1 using the λ5 insertion. All of the six-loop
diagrams then have the characteristic topology shown in
Fig. 2, in which it is always possible to cut the two Φ2

propagators connected to the λ5 vertex and thereby isolate a
five-loop subdiagram.
This gives us a clearer picture of the six-loop correction,

as it is possible to integrate and sum all the subdiagrams
first and generate a five-loop form factor before performing

the sixth loop integral. The symmetry transformation
Φ2 ↔ Φ#

2, q → q# (with q ¼ QL; uR; dR) that interchanges
the diagrams proportional to J and J # also interchanges
the incoming and outgoing Φ2 lines of the subdiagram.
This forces the λ5 insertion to be attached instead to the
other pair of legs, changing the momentum structure of the
overall diagram.
The form factor from the five-loop subdiagram can, in

principle, depend nontrivially on which legs carry the
momentum of the sixth loop. However, since any four-
scalar form factor is dimensionless and the theory is
effectively massless for the purpose of computing only
the divergent parts, only the piece of the five-loop form
factor that reduces to a constant in the zero-momentum
limit can contribute. This constant piece must be real
because it constitutes the five-loop renormalization of
the coefficient λ2 of the Hermitian operator ðΦ†

2Φ2Þ2.
This guarantees that the sum of all six-loop diagrams
proportional to J generates the same divergent coefficient
as the sum of all such diagrams proportional to J #, so that
the imaginary part of J cancels in their sum. Finite
imaginary contributions do not necessarily cancel, but they
do not affect the renormalizability of the real 2HDM. We
thus conclude that the type I 2HDM has no divergent CPV
at six loops.
This subdiagram structure is not preserved at seven

loops, and the accidental enhanced symmetry that ensures
the cancelation of the divergent imaginary parts is thus
removed. Diagrams without the subdiagram structure can
be constructed by connecting a propagator between the
original subdiagram and one of the external Φ1 legs, as
shown in Fig. 3. All such diagrams involve one of the
following: (i) a λ3 or λ4 vertex or (ii) a hypercharge or
SUð2ÞL gauge boson exchange.
We thus expect imaginary divergent contributions to λ5

to first appear at the seven-loop level in the type I 2HDM,
with coefficients proportional to λ5ImðJ Þ times these
additional couplings. We have explicitly verified the break-
ing of the subdiagram structure by generating the diagram
topologies involving λ3 or λ4 using QGRAF [28].
We finally note that diagrams contributing radiative

corrections to m2
12 are also guaranteed to take the form

FIG. 2. Subdiagram topology of the six-loop diagrams in the
type I 2HDM.

FIG. 3. Two seven-loop diagrams in the type I 2HDM that
violate the subdiagram topology.

PHYSICAL REVIEW LETTERS 133, 201801 (2024)

201801-3

Predict the parameter dependence of the RGE for Im(λ5)!

d Im(λ5)

d lnµ
=
λ5Im(J )

(16π2)7

[
b1λ3 + b2λ4 + b3g

′2 + b4g
2
]

Heather Logan (Carleton U.) (In)consistency of Real 2HDM SCALARS, Sept 2025

18



Practical consequences?

The imaginary part of λ5 runs starting at 7 loops: Real 2HDM
is formally nonrenormalizable starting at this order.

Estimate size of Im(λ5) assuming Im(λ5) = 0 at Planck scale
(for some unknown reason): take ai, bi ∼ number of diagrams,
get Im(λ5) ∼ 10−22 (versus Re(λ5) ∼ 1).

So tiny that it has no conceivable observable effect!
- Contribution to eEDM orders of magnitude smaller than SM
- Mixing angle between A0 and h0, H0 ≪ 1

Can continue to use the Real 2HDM... but have to accept that
the question of why Im(λ5) = 0 at a high scale is not answered.

Probably more sensible to accept that the 2HDM is likely to be
complex (and somewhat tuned) rather than strictly real.

(
1 TeV

M

)2

Im(λ5)× f(sin2 β, cos2 β) . 0.5− 1%

from |de| < 4.1× 10−30e cm (JILA 2022) Altmannshofer, Gori, Hamer, & Patel, 2020
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Conclusions

Principle of QFT: Can’t impose a symmetry on one part of a

theory if it is violated in another (interacting) part of the theory.

Properties of divergent piece of Feynman diagrams (or sums

thereof) are remarkably constrained by known features of renor-

malization: allows exploitation of overlapping approximate sym-

metries order-by-order to build up required “ingredients” for a

CPV divergence in the scalar potential.

Real 2HDM is an artificial construct... but the CKM structure

together with various approximate symmetries is very effective

at sequestering the CP violation ⇒ RGE starts at 7 loops!
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BACKUP SLIDES
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2HDM without Z2 symmetry:

Compare “Type III” 2HDM without Z2: divergent CPV already

at 1-loop from BSM CPV in flavour-violating Yukawa matrices.

New sources of CPV in flavour-violating Yukawa matrices.

VII. CONCLUSION

In this paper, we studied the conditions under which the
CP violation in the CKM matrix can give rise to imaginary
divergent radiative corrections to parameters in the scalar
potential of the real 2HDM with natural flavor conserva-
tion. Working in the unbroken phase, we demonstrated that
such corrections cannot arise from diagrams involving
Yukawa insertions alone because the Yukawa couplings
preserve a global Uð1ÞPQ symmetry under which the
potentially complex λ5 and m2

12 Lagrangian parameters
are not invariant. Breaking this symmetry requires an
insertion of the tree-level coupling λ5, pushing the calcu-
lation to the six-loop level. This also implies that the
2HDM in which natural flavor conservation is enforced by
a softly brokenUð1ÞPQ symmetry, which requires λ5 ¼ 0 at
tree level, is guaranteed to be free from imaginary divergent
radiative corrections to the scalar potential. The importance

of natural flavor conservation to these results is highlighted
by the fact that in the general 2HDM without natural flavor
conservation, the CP violation from the Yukawa couplings
gives rise to imaginary divergent radiative corrections to the
scalar potential parameters already at one loop.
We further showed that the six-loop diagrams that would

be expected to generate imaginary divergent corrections
instead possess enhanced symmetries in both the type I and
II 2HDMs, which lead to complete cancellations of the
imaginary divergent contributions at this order. Extending
the analysis to seven loops, we identify the classes of
diagrams that violate the enhanced symmetries that were
present at six loops. We find no evidence at seven loops for
any remaining mechanism by which the imaginary diver-
gent contributions would cancel. The expected RG evolu-
tion for Imðλ5Þ starting at the seven-loop level can then be
written as

d Imðλ5Þ
d ln μ

¼ λ5ImðJ Þ
ð16π2Þ7

(
½aðλÞðλ1 − λ2Þ þ aðg

0Þg02 þ aðyÞðy2t − y2b þ…Þ& ðtype IIÞ
½bðλ3Þλ3 þ bðλ4Þλ4 þ bðg

0Þg02 þ bðgÞg2& ðtype IÞ
: ð7:1Þ

We also show that the imaginary divergent radiative
corrections to m2

12 are obtained starting at eight loops by
dressing the seven-loop correction to λ5 with an additional
m2'

12 insertion.
Interpreted in the context of RG evolution of the scalar

potential parameters from an accidentally real potential at
some high scale, these seven-loop CP-violating effects are
so tiny as to be entirely phenomenologically irrelevant.
Indeed, finite imaginary contributions to the scalar poten-
tial, which we expect to appear starting at lower orders, will
likely be numerically more important. However, unless
some as-yet-unidentified symmetry forces the imaginary
divergent contributions to the scalar potential parameters to
be zero to all orders, the real 2HDM with softly broken Z2

symmetry is formally inconsistent under renormalization
because it lacks counterterms for the imaginary parts of λ5
and m2

12.
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APPENDIX A: LEAKS OF CP VIOLATION AT
ONE LOOP IN THE GENERAL 2HDM

An illustrative example highlighting the risk of assuming
CP conservation in the scalar potential is provided by the
general 2HDM of Sec. II A, in which both Higgs doublets
couple to all quarks. We work in the unbroken phase and
consider the one-loop contributions to O5 ≡Φ†

1Φ2Φ†
1Φ2

and O12 ≡Φ†
1Φ2. For simplicity, we consider only the

diagrams involving up-type quarks shown in Fig. 12. There
is an analogous contribution from down-type quarks.

FIG. 12. Sample diagrams contributing to λ5 and m2
12 at one-loop level in the general 2HDM.
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(δλ5)div ∝ Tr
(
Y

(1)
u Y

(2)†
u Y

(1)
u Y

(2)†
u

)
+ · · ·

Has a nonzero imaginary part in general, already at 1-loop.
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Symmetries of the 2HDM and the role of λ5

Corollary: If one wants a real 2HDM that is guaranteed in an ob-

vious way to be safe from CPV “leaks” (and hence theoretically

consistent), use the softly-broken-U(1)PQ 2HDM (with λ5 = 0).

- Scalar mass spectrum is more constrained than in softly-broken-

Z2 model due to perturbativity and bounded-from-below con-

straints, but still fully viable phenomenologically.

- One coupling degree of freedom is removed from triple- and

quartic-scalar couplings: U(1)PQ model is more predictive (less

general) than Z2 version.

λ5 dependence shows up in triple-Higgs couplings including h0H+H−

coupling: U(1)PQ restricts the charged Higgs contribution to

h0 → γγ.
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J and the Jarlskog invariant

We define J in the unbroken phase as

J = Tr
(
ĤuĤdĤ

2
uĤ

2
d

)
where Ĥu = YuY

†
u , Ĥd = YdY

†
d

(following Botella & Silva, 1995)

This is related to the original Jarlskog invariant J according to
(in Type II):

Im(J ) =
26

v6
1v

6
2

Im
{

Tr
(
V †M2

UVM
2
DV
†M4

UVM
4
D

)}

=
26

v6
1v

6
2
T (M2

U)B(M2
D) J,

where

T (M2
U) = (m2

t −m2
c )(m2

t −m2
u)(m2

c −m2
u),

B(M2
D) = (m2

b −m
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In terms of measured CKM elements and quark masses, this gives

Im(J ) ' 2× 10−24/ sin6 β cos6 β

(For Type I, replace v1 → v2 and cosβ → sinβ.)

Heather Logan (Carleton U.) (In)consistency of Real 2HDM SCALARS, Sept 2025
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