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Contents

• Basic properties of DM


• DM model buildings along the SM construction


• Some examples: ; VDM w/ HP and GC  ray;  
; Dark Monopole, VDM and DR; DQCD (WIMP & SIMP), Thermal 

WIMP in  models; Belle II excess in ; AMS02, KM3NeT; two-
component WIMP model free from DD constraints; Higgs-portal assisted Higgs 
inflation; a simple example of chiral dark sector, etc..


• Summary 

U(1)D → Z2 γ
SU(3)D → SU(2)D

U(1)Lμ−Lτ
B+ → K+νν̄



Based on
• Reviews: JKPS, 72 (2018) 449-465;


• My talk will be mostly about “MODEL BUILDING”, and not 
on the detailed DM phenomenology


• Based on a series of works with Seungwon Baek, Wanil Park, 
Myeonghun Park, Hyun Min Lee, Taeil Hur, Soomin Choi, 
Alexander Natale, Eibun Senaha, Dongwon Jung, Jinmian Li, 
Jongkuk Kim, Shu-Yu Ho, Hiroshi Yokoya, Yong Tang, Shu-
Yu Ho, Chih-Ting Lu, Yi-Lei Tang, etc.


• Main message: Phenomenology in the presence of massive 
dark photon can change drastically, w/o and w/ dark Higgs 



What is the DM mass ?
• If very light, DM is long 

lived for the kinematical 
reason


• Axion and light sterile ’s 
are good examples

ν

• Charge/color neutral : no renormalizable int’s w/ 


• Eq of State : 


•  or 

γ, g

ρ ≃ 0 (i . e . p ≃ 0)

τDM ≫ τ (Age of the Universe) ∞

• If not, reasonable to 
assume some conserved 
quantum #, either exactly 
or approximately conserved


• Local or global Dark Sym



General Comments 
on SM Construction



• Only Higgs (~SM) and Nothing Else so far at the LHC 


• Yukawa & Higgs self couplings to be measured and 
tested


• Nature is described by Quantum Gauge Theories


• Unitarity and Gauge Invariance played key roles in 
development of the SM

Current Status of SM



Building Blocks of SM
• Lorentz/Poincare Symmetry


• Local Gauge Symmetry : Gauge Group + Matter 
Representations from Exp’s


• Higgs mechanism for masses of  weak gauge bosons 
and SM chiral fermions


• These principles lead to unsurpassed success of the 
SM in particle physics



Accidental Sym’s of SM
• Renormalizable parts of the SM Lagrangian conserve baryon #, 

lepton # : broken only by dim-6 and dim-5 op’s “longevity 
of proton” and “lightness of neutrinos” becoming Natural 
Consequences of the SM (with conserved color in QCD)


• QCD and QED at low energy conserve P and C, and flavors


• In retrospect, it is strange that P and C are good symmetries of 
QCD and QED at low energy, since the LH and the RH fermions 
in the SM are independent objects


• What is the correct question? “P and C to be conserved or 
not ?” Or “LR sym or not ?”

⟶



How to do Model Building
• Specify local gauge sym, matter contents and their 

representations w/o any global sym [all the global 
symmetries are assumed to be accidental like the SM]


• Write down all the operators upto dim-4


• Check anomaly cancellation [Kaon physics & GIM]


• Consider accidental global symmetries 


• Look for nonrenormalizable operators that break/
conserve the accidental symmetries of the model



• If there are spin-1 particles, extra care 
should be paid : need an agency which 
provides mass to the spin-1 object


• Check if you can write Yukawa couplings 
to the observed fermion


• You may have to introduce additional 
Higgs doublets with new gauge 
interaction if you consider new chiral 
gauge symmetry (Ko, Omura, Yu on chiral 
U(1)’ model for top FB asymmetry)


• Impose various constraints and study 
phenomenology



Local dark gauge symmetry
• Better to use local gauge symmetry for DM stability/

longevity (Baek,Ko,Park,arXiv:1303.4280 )

• Success of the Standard Model 
of Particle Physics lies in “local 
gauge symmetry” without 
imposing any internal global 
symmetries 


• Electron stability : U(1)em gauge 
invariance, electric charge 
conservation, massless photon


• Proton longevity : baryon # is an 
accidental sym of the SM


• No gauge singlets in the SM ; all 
the SM fermions chiral

• Dark sector with (excited) dark 
matter, dark radiation and force 
mediators might have the same 
structure as the SM


• “(Chiral) dark gauge theories 
without any global sym”


•Origin of DM stability/longevity 
from dark gauge sym, and not 
from dark global symmetries, as 
in the SM


• Just like the SM (conservative)



DM Models in literature
• Top-Down: LSP in SUSY models, LKP in KK models, etc.


• Bottom-Up: ad hoc dark  parities


• Massive dark photon with Stueckelberg mechanism (w/o 
dark Higgs boson): sometimes could be problematic [see 
arXiv:2204.04889, for example]


• DM complementarity can be misleading when applied to 
DM effective theory or simplified DM models w/o full SM 
gauge symmetry (and dark gauge symmetry)

Z2, Z3



Crossing & WIMP detection
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mDM /mγ′￼

mDM /mϕ

0

Dark sector parameter space for a fixed mDM

1/2

1/2

1

1
 : dark matter 
 : dark photon 
 : dark Higgs

χ
γ′￼

ϕ

χ + χ → SM + SM χ + χ → γ′￼+ γ′￼

χ + χ → ϕ + ϕ

χ + χ → ϕ + γ′￼

χ + χ → ϕ + γ′￼

DM EFT, including 
Higgs portal DM EFT

Models w/o dark Higgs 
Along the x-axis

P-wave annihilation 
For fermion DM χ

P-wave annihilation 
For scalar DM χ

These two channels are possible for light DM, 
only if we include dark Higgs boson !

Higgs Portal DM 
Along the y-axis



Basic properties of DM
• DM: stable or long-lived ( ): some exact or 

accidental symmetry 


• No global symmetry from the beginning [like the SM. And it is 
believed to be generically violated by gravity. ]


• Then, there are 3 possibilities within QFT:


• Stable due to exact gauge symmetries or topological reasons


• Long-lived due to some accidental sym. (broken @ dim-6)


• Long-lived since it is very light (axion,  ,…) [not in this talk]

τDM ≫ τuniverse

νs



In QFT
• DM could be absolutely stable due to  unbroken local 

gauge symmetry (DM with local , 
 , etc.) or topology (hidden sector 

monopole + vector DM + dark radiation)


• Longevity of DM could be due to some accidental 
symmetries (Strongly interacting hidden sector 
(DQCD), dark  pions and dark baryons : Ko et al 
(2007))


• Kinematically long-lived if DM is very light (axion, 
sterile  , etc..) [not covered in this talk]

U(1)D → Z2, Z3
SU(3)D → SU(2)D

νs



Dark Gauge Symmetry:  
DM Stability/Longevity



Z2 real scalar DM
• Simplest DM model with Z2 symmetry :  

• Global Z2 could be broken by gravity effects (higher dim 
operators)


• e.g. consider Z2 breaking dim-5 op :  


• Lifetime of EW scale mass “S” is too short to be a DM


• Similarly for singlet fermion DM 

S → − S

1
MPlanck

SO(4)
SM

3

not consider dim-3 operators, XRH†H or XIH†H, as-
suming the global dark symmetry GX is broken only by

nonrenormalizable operators.
Then the lifetime of XR or XI decaying into a pair or

photons would be

�(XR(or XI) ! ��) ⇠ 1

4⇡

✓
e2

MPl

◆2

m3
X

⇠ 10�38

✓
mX(GeV)

100

◆3

GeV (3)

This decay rate should be smaller than 10�52GeV, which
is possible only if mX . O(10) keV. If these nonrenor-
malizable operators are induced at lower energy scale
⇤ < MPl, then the DM mass should be lighter than the
above estimate, scaled by (⇤/MPl)2/3. Axion or light di-
lation DM is a good example of this. If these operators
were allowed with O(MPlanck), it would be disastrous for
dark matter physics.

The above argument also applies to global Z2 symme-
try which is invoked very often to stabilize the scalar dark
matter S with the following renormalizable lagrangian :

L =
1

2
@µS@

µS � 1

2
m2

S
S2 � �S

4!
S4 � �SH

2
S2H†H.

The Planck scale suppressed dim-5 operators will make
the weak scale dark matter S decay very fast in this
model too. Namely global Z2 discrete symmetry is not
strong enough to guarantee the stability or longevity of
the scalar dark matter. This is also true for the case of
fermion dark matter, as described in the following sec-
tion.

Local dark gauge symmetry

If dark symmetry U(1)X is unbroken, then the scalar
dark mater will be absolutely stable and there will be a
long range dark force between dark matters. The mass-
less dark photon can contribute to the extra dark radia-
tion at the level of ⇠ 0.06, making slight increase of the

SM prediction for�Ne↵ towards the WMAP9 data. This
issue has been addressed in detail in our recent paper [2],
and we don’t describe it here in any more detail.

If dark symmetry U(1)X is a local symmetry that is
broken spontaneously by h�Xi = v� 6= 0, then the e↵ect
would be similar to the global symmetry breaking with
suitable changes of couplings. The dim-5 operators which
were dangerous in case of global dark symmetry are now
replaced by dim-6 operators since the global dark sym-
metry is implemented to local dark symmetry :

L =
1

M2
Pl

�†
X
XO(4)

SM. (4)

After �X develops nonzero VEV, this operator predicts
that the CDM lifetime is long enough to be safe from
cosmological constraints: However there appears a dim-4
operator which is a disaster for the DM longevity:

L = �XH2�†
X
XH†H +H.c. (5)

After the U(1)X and EWSB, this operator induces a
nonzero VEV for X as well as X ! hh so that X can no
longer be a good CDM candidate.

In order to forbid the above dangerous dim-4 operator,
one has to assign di↵erent U(1)X charges to X and �X :
QX(X) = 1, QX(�X) = 2, for example. Then the model
would possess discrete local Z2 symmetry after U(1)X
breaking, and the lightest U(1)X -charged particle would
be absolutely stable due to the local Z2 symmetry.

L = LSM � 1

4
Xµ⌫X

µ⌫ � 1

2
✏Xµ⌫B

µ⌫ +Dµ�
†
X
Dµ�X � �X

4

⇣
�†
X
�X � v2

�

⌘2
+DµX

†DµX �m2
X
X†X

� �X

4

�
X†X

�2 �
�
µX2�† +H.c.

�
� �XH

4
X†XH†H � ��XH

4
�†
X
�XH†H � �XH

4
X†X�†

X
�X (6)

Due to the µ term, the mass degeneracy between XR and
XI is lifted, and also there could be CP violation from
the µ phase. The model is not so simple compared with
the usual Z2 scalar CDM model:

L =
1

2
@µS@

µS � 1

2
m2

S
S2 � �S

4!
S4 � �SH

2
S2H†H.

Dark matter phenomenology in the model (6) is very rich
and beyond the scope of this letter [1]. On the other
hand, Higgs phenomenology is very simple. There will be
two neutral Higgs-like scalar bosons, the signal strengths
of which are less than 1 independent of decay channels.



Fate of CDM with Z2 sym

• Global Z2 cannot save EW scale DM from decay with long 
enough lifetime

Consider Z2 breaking operators such as

1

MPlanck
SOSM

The lifetime of the Z2 symmetric scalar CDM S is roughly given by

�(S) ⇠ mS

M2
Planck

⇠ (
mS

100GeV
)10�37

GeV

The lifetime is too short for ~100 GeV DM

keeping dim-4 SM 
operators only

3 3

(Baek,Ko,Park,arXiv:1303.4280 )



Fate of CDM with Z2 sym
Spontaneously broken local U(1)X can do the job to some 
extent, but there is still a problem

Let us assume a local U(1)X is spontaneously broken by h�Xi 6= 0 with

QX(�X) = QX(X) = 1

Then, there are two types of dangerous operators:

�†
XXH†H, and �†

XXO(dim�4)
SM

Problematic ! Perfectly fine !

Higgs is not good for DM 
stability/longvity



• These arguments will apply to DM models based on ad 
hoc symmetries (Z2,Z3 etc.)


• One way out is to implement Z2 symmetry as local U(1) 
symmetry (arXiv:1407.6588 with Seungwon Baek and 
Wan-Il Park);


• See a paper by Ko and Tang on local Z3 scalar DM, and 
another by Ko, Omura and Yu on inert 2HDM with local 
U(1)H


• DM phenomenology richer and DM stability/longevity on 
much more solid ground
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We construct a scalar dark matter model where local Z2 symmetry guarantees the stability of
scalar dark matter. When we include the local U(1)X symmetry as the origin of the local Z2

symmetry, the dark matter appears from a complex scalar which has two real fields. After the
U(1)X ! Z2 symmetry breaking, the mass degeneracy between ..................

INTRODUCTION

If Z2 symmetry were global symmetry, it would be bro-

ken by quantum gravity e↵ects which can be described

by MPlanck scale suppressed nonrenormalizable operators

such as

1

MPlanck

�
SFµ⌫F

µ⌫ , S(H†H)
2, ..

�
(1)

MODEL

Let us assume the dark sector has a local U(1)X gauge

which is spontaneously broken into local Z2 symmetry.

This can be achieved with two complex scalar fields �X

and X ⌘ XR + iXI in the dark sector with the U(1)X

charges equal to 2 and 1, respectively, in the following

lagrangian:

QX(�) = 2, QX(X) = 1

L = LSM +�1

4
Xµ⌫X

µ⌫ � 1

2
✏Xµ⌫B

µ⌫
+Dµ�

†
X
Dµ�X � �X

4

⇣
�†
X
�X � v2

�

⌘2
+DµX

†DµX �m2
X
X†X

� �X

4

�
X†X

�2 �
�
µX2�†

+H.c.
�
� �XH

4
X†XH†H � ��XH

4
�†
X
�XH†H � �XH

4
X†X�†

X
�X (2)

After the U(1)X symmetry breaking by nonzero h�Xi =
v� 6= 0, the µ�term generates

(X2
+H.c.) = 2(X2

R
�X2

I
)

which lifts the mass degeneracy between XR and XI .

The lagrangian is invariant under X ! �X even after

U(1)X symmetry breaking.

The covariant derivative on X is defined as

DµX = @µX � igXXµX.

In terms of XI and XR, one has

DµX
†DµX = @µXR@

µXR + @µXI@
µXI + 2igXXµ

(XR@µXI �XI@µXR) + g2
X
XµX

µ
(X2

R
+X2

I
) (3)

If the mass di↵erence of XR and XI is of ⇠ O(1) MeV

and the lifetime of the heavier state is ⇠ 10
26�29

sec,

then

XR ! XI�
⇤
h

followed by �⇤
h
! � ! e+e�

could generates the positrons which would be a source of

511 keV � ray lines observed by INTEGRAL.

Note that the local Z2 symmetry guarantees the sta-

bility of the dark matter even if we consider 1/MPlanck-

suppressed nonrenormalizable operators. This is in sharp

contrast with the case of global Z2. However the local

Z2 symmetry requires extra fields compared with a sin-

glet scalar dark matter model with unbroken global Z2

symmetry.

From the model lagrangian Eq. (2), we can work out

the particle spectra at the tree level:

m2
X

= g2
X
v2
�
, (4)
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X

= g2
X
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�
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etc.

Unbroken Local Z2 symmetry

Gauge models for excited DM

The heavier state decays into the lighter state

The local Z2 model is not that simple as 
the usual 


Z2 scalar DM model (also for the 
fermion CDM)

arXiv:1407.6588 w/ WIPark and SBaek
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XENON1T Excess 
(Scalar XDM, Fermion XDM)



XENON1T Excess
• Excess between 1-7 keV


• Expectated : 232  15 , Observed : 285 


• Deviation ~ 3.5 


• Tritium contamination


• Long half lifetime (12.3 years)


• Abundant in atmosphere and cosmogenically produced in 
Xenon


• Solar axion


• Produced in the Sun


• Favored over bkgd @ 3.5 


• Neutrino magnetic dipole moment


• Favored @ 3.2 

±

σ

σ

σ

Electron recoil



DD/CMB Constraints
• To evade stringent bounds from direct detection expt’s : 

sub GeV DM


• CMB bound excludes thermal DM freeze-out determined 
by S-wave annihilation :  DM annihiliation should be 
mainly in P-wave Planck 2018


R.K.Leane 35 al, PRD2018⟨σv⟩ ∼ a + bv2



Exothermic DM 
• Inelastic exothermic scattering of XDM 


•   by dark photon exchange + 
kinetic mixing


• Excess is determined by 


• Most works are based on effective/toy models where  is put in 
by hand, or ignored dark Higgs


• dim-2 op for scalar DM and dim-3 op for fermion DM : soft and 
explicit breaking of local gauge symmetry), and include massive 
dark photon as well  theoretically inconsistent !

XDM + eatomic → DM + efree

ER ∼ δ = mXDM − mDM

δ

→



Z2 DM models with dark Higgs

• We solve this inconsistency and unitarity issue with 
Krauss-Wilczek mechanism 


• By introducing a dark Higgs, we have many advantages:  


• Dark photon gets massive


• Mass gap  is generated by dark Higgs mechanism


• We can have DM pair annihilation in P-wave involving 
dark Higgs in the final states, unlike in other works

δ



Usual Approaches

• The model is not mathematically consistent, since there is no 
conserved current a dark photon can couple to in the massless limit


• The second term with  breaks  explicitly, although softly Δ2 U(1)X

For example, arXiv:2006.11938 

Similarly for the fermion 
DM case

This term is 
problematic



Relic Density from 

   

(P-wave annihilation)

XX† → Z′￼ * → ff̄
For example, arXiv:2006.11938 



Scalar XDM ( )  XR & XI

role when mDM < mZ0 , as we shall demonstrate in the following. In order to explain the

XENON1T excess in terms of XDM+eatomic ! DM+efree with a kinetic mixing, both dark

photon and (X)DM mass should be sub-GeV, more specifically ⇠ O(100) MeV, in order to

avoid the stringent bounds on the kinetic mixing parameter. For such a light DM, one has

to consider the DM annihilation should be mainly in p-wave, and not in s-wave, in order to

avoid strong constraints from CMB (see [54, 55] and references therein).

For this purpose it is crucial to have dark Higgs (�), since they can play a key roles in

the p-wave annihilations of DM at freeze-out epoch:

XX†
! Z

0⇤
! Z

0
�,

�� ! ��,

where X and � are complex scalar and Dirac fermion DM, respectively. At freeze-out epoch,

the mass gap is too small (�m ⌧ T ) and we can consider DM as complex scalar or Dirac

fermion. In the present Universe, we have T ⌧ �m and so we have to work in the two

component DM picture for XENON1T electron recoil. It can not be emphasized enough

that these channels would not be possible without dark Higgs �, and it would be di�cult to

make the DM pair annihilation be dominated by the p-wave annihilation.

II. MODELS FOR (EXCITED) DM

A. Scalar DM model

The dark sector has a gauged U(1)X symmetry. There are two scalar particles in the dark

sector X and � with U(1)X charges 1 and 2, respectively. They are neutral under the SM

gauge group. After � gets VEV, h�i = v�/
p
2, the gauge symmetry is spontaneously broken

down to discrete Z2. The Z2-odd X becomes the DM candidate. The model Lagrangian is

in the form [51]

L = LSM �
1

4
X̂µ⌫X̂

µ⌫
�

1

2
sin ✏X̂µ⌫B̂

µ⌫ +Dµ�†Dµ�+DµX†DµX �m2
X
X†X +m2

�
�†�

���

�
�†�

�2
� �X

�
X†X

�2
� ��XX

†X�†�� ��H�
†�H†H � �HXX

†XH†H

�µ
�
X2�† +H.c.

�
, (1)

where X̂µ⌫ (Bµ⌫) is the field strength tensors of U(1)X (U(1)Y ) gauge boson in the interaction

basis.

3

Field

U(1) 
charge

2 1 1

ϕ X χ

We decompose the X as

X =
1
p
2
(XR + iXI), (2)

and H and � as

H =

0

@ 0

1p
2
(vH + hH)

1

A , � =
1
p
2
(v� + h�), (3)

in the unitary gauge.

The dark photon mass is given by

m2
Z0 ' (2gXv�)

2, (4)

where we neglected the corrections from the kinetic mixing, which is second order in ✏

parameter. The masses of XR and XI are obtained to be

m2
R
= m2

X
+

1

2
�HXv

2
H
+

1

2
��Xv

2
�
+

µ
p
2
v�,

m2
I
= m2

X
+

1

2
�HXv

2
H
+

1

2
��Xv

2
�
�

µ
p
2
v�, (5)

and the mass di↵erence, � ⌘ mR �mI ' µv�/
p
2mX . Since the original U(1)X symmetry

is restored by taking µ = 0, small µ does not give rise to fine-tuning problem. The mass

spectrum of the scalar Higgs sector can be calculated by diagonalising the mass-squared

matrix
0

@ 2�Hv2H ��HvHv�

��HvHv� 2��v2�

1

A , (6)

which is obtained in the (hH , h�) basis. We denote the mixing angle to be ↵H and the mass

eigenstates to be (H1, H2), where H1 is the SM Higgs-like state and H2(⌘ �) is mostly dark

Higgs boson. Since we work in the small ↵H in this paper, the VEV of � is approximated

to be, v� ' mH2/
p

2��, while ↵H ' ��Hv�/2�HvH .

The mass eigenstates Zµ and Z 0
µ
of the neutral gauge bosons can be obtained using the

procedure shown in Ref. [56]. In the linear order approximation in ✏ we can write the

covariant derivative as

Dµ ' @µ + ieQemAµ + i
⇣
gZ(T

3
�Qems

2
W
) + ✏gXQXsW

⌘
Zµ + i

⇣
gXQX � ✏eQemcW

⌘
Z 0

µ
, (7)

4

the kinetic mixing term given in (1) we get the dark-gauge interactions with the DM and

the electron [56]

L � gXZ
0µ(XR@µXI �XI@µXR)� ✏ ecWZ 0

µ
e�µe, (12)

where cW is the cosine of the Weinberg angle, Z and Z 0 are mass eigenstates, and we

assumed that ✏(⇠ 10�4) is small. The cross section for the inelastic scattering XRe ! XIe

for mX � me and small momentum transfer is given by

�e =
16⇡✏2↵em↵Xc2Wm2

e

m4
Z0

, (13)

where ↵em ' 1/137 is the fine structure constant and ↵X ⌘ g2
X
/4⇡. This can be used to

predict the di↵erential cross section of the dark matter scattering o↵ the xenon atom for the

DM velocity v, which reads

d�v

dER

=
�e

2mev

Z
q+

q�

a20qdqK(ER, q), (14)

where ER is the recoil energy, q is the momentum transfer, K(ER, q) is the atomic excitation

factor. From energy conservation we obtain the relation [9],

ER = � + vq cos ✓ �
q2

2mR

, (15)

where ✓ is the angle between the incoming XR and the momentum transfer q = p0
e
� p

e
.

The integration limits are [9],

q± ' mRv ±
q

m2
R
v2 � 2mR(ER � �), for ER � �,

q± ' ±mRv +
q

m2
R
v2 � 2mR(ER � �), for ER  �. (16)

Then we can obtain the di↵erential event rate for the inelastic scattering of DM with electrons

in the xenon atoms given by

dR

dER

= nTnR

d�v

dER

, (17)

where nT ⇡ 4⇥1027/ton is the number density of xenon atoms and nR ⇡ 0.15GeV/mR/cm3

is the number density of the heavier DM component XR, assuming nR = nI . Integrating

over ER, we get the event rate

R ⇡ 3.69⇥ 109 ✏2 g2
X

✓
1GeV

mR

◆✓
1GeV

mZ0

◆4

/ton/year. (18)
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Since XR is a dark matter component in our model with the same abundance with XI , its

lifetime should be much longer than the age of the universe. It can decay via XR ! XI���

as shown in [9]. Its decay into three-body final state, XR ! XI⌫⌫, is also possible in our

model. The relevant interactions are

L � ✏gXsWZµ(XR@µXI �XI@µXR)�
gZ
2
Zµ⌫L�

µ⌫L. (19)

The decay width is given by

� '
✏2↵Xs2W
5
p
2⇡2

GF �5

m2
Z

' 1.9⇥ 10�49 GeV
⇣ ✏

10�4

⌘2 ⇣ ↵X

0.078

⌘✓
�

2 keV

◆5

. (20)

Although this channel is much more e↵ective than XR ! XI��� considered in [9], the

lifetime of XR is still much longer than the age of the universe.

In the right panel of Fig. 1 , we show the allowed region in the (mZ0 , ✏) plane where we can

explain the XENON1T excess with correct thermal relic density of DM within the standard

freeze-out scenario. For illustration, we chose the DM mass to be mR = 0.1 GeV, and varied

the dark Higgs mass m� = 20, 40, 60, 80 MeV denoted with di↵erent colors. The sharp drops

on the right allowed region is from the kinematic boundary, mZ0+m� < 2mR. It is nontrivial

that we could explain the XENON1T excess with inelastic DM models with spontaneously

broken U(1)X ! Z2 gauge symmetry. In particular it is important to include light dark

Higgs for this explanation. It would be straightfoward to scan over all the parameters to get

the whole allowed region.

B. Fermion DM model

We start from a dark U(1) model, with a Dirac fermion dark matter (DM) � appointed

with a nonzero dark U(1) charge Q� and dark photon. We also introduce a complex dark

Higgs field �, which takes a nonzero vacuum expectation value, generating nonzero mass for

the dark photon. We shall consider a special case where � breaks the dark U(1) symmetry

into a dark Z2 symmetry with a judicious choice of its dark charge Q�.

Then the gauge invariant and renormalizable Lagrangian for this system is given by

L = �
1

4
X̂µ⌫X̂µ⌫ �

1

2
sin ✏X̂µ⌫B

µ⌫ + �
�
i /D �m�

�
�+Dµ�

†Dµ� (21)

� µ2�†�� ��|�|
4
�

1
p
2

⇣
y�†�C�+ h.c.

⌘
� ��H�

†�H†H

8

U(1) → Z2 by vϕ ≠ 0 : X → − X
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FIG. 1: (left) Feynman diagrams relevant for thermal relic density of DM: XX†
! Z 0� and (right)

the region in the (mZ0 , ✏) plane that is allowed for the XENON1T electron recoil excess and the

correct thermal relic density for scalar DM case for � = 2 keV : (a) mDM = 0.1 GeV. Di↵erent

colors represents m� = 20, 40, 60, 80 MeV. The gray areas are excluded by various experiments,

from BaBar [61], E774 [62], E141 [63], Orasay [64], and E137 [65], assuming Z 0
! XRXI is

kinematically forbidden.

where X̂µ⌫ = @µX̂⌫ � @⌫X̂µ. Dµ = @µ + igXQXX̂µ is the covariant derivative, where gX is

the dark coupling constant, and QX denotes the dark charge of � and �: Q� = 2, Q� =

1, respectively. Then U(1)X dark gauge symmetry is spontaneously broken into its Z2

subgroup, and the Dirac DM � is split into two Majorana DM �R and �I defined as

� =
1
p
2
(�R + i�I), (22)

�c =
1
p
2
(�R � i�I), (23)

�c

R
= �R, �c

I
= �I , (24)

with

mR,I = m� ± yv� = m� ±
1

2
�. (25)

We assume y > 0 so that � ⌘ mR � mI = 2yv� > 0. Then the above Lagrangian is

written as

L =
1

2

X

i=R,I

�i

�
i/@ �mi

�
�i � i

gX
2
(Z 0

µ
+ ✏sWZµ) (�R�

µ�I � �I�
µ�R) (26)

�
1

2
yh� (�R�R � �I�I) , (27)

where h� is neutral CP-even component of � as defined in (3).
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P-wave annihilation x-sections

Scalar DM : XX† → Z′￼* → Z′￼ϕ
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Although this channel is much more e↵ective than XR ! XI��� considered in [9], the

lifetime of XR is still much longer than the age of the universe.
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freeze-out scenario. For illustration, we chose the DM mass to be mR = 0.1 GeV, and varied

the dark Higgs mass m� = 20, 40, 60, 80 MeV denoted with di↵erent colors. The sharp drops

on the right allowed region is from the kinematic boundary, mZ0+m� < 2mR. It is nontrivial

that we could explain the XENON1T excess with inelastic DM models with spontaneously

broken U(1)X ! Z2 gauge symmetry. In particular it is important to include light dark

Higgs for this explanation. It would be straightfoward to scan over all the parameters to get

the whole allowed region.

B. Fermion DM model

We start from a dark U(1) model, with a Dirac fermion dark matter (DM) � appointed

with a nonzero dark U(1) charge Q� and dark photon. We also introduce a complex dark

Higgs field �, which takes a nonzero vacuum expectation value, generating nonzero mass for

the dark photon. We shall consider a special case where � breaks the dark U(1) symmetry

into a dark Z2 symmetry with a judicious choice of its dark charge Q�.

Then the gauge invariant and renormalizable Lagrangian for this system is given by

L = �
1

4
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the region in the (mZ0 , ✏) plane that is allowed for the XENON1T electron recoil excess and the

correct thermal relic density for scalar DM case for � = 2 keV : (a) mDM = 0.1 GeV. Di↵erent

colors represents m� = 20, 40, 60, 80 MeV. The gray areas are excluded by various experiments,

from BaBar [61], E774 [62], E141 [63], Orasay [64], and E137 [65], assuming Z 0
! XRXI is

kinematically forbidden.

where X̂µ⌫ = @µX̂⌫ � @⌫X̂µ. Dµ = @µ + igXQXX̂µ is the covariant derivative, where gX is

the dark coupling constant, and QX denotes the dark charge of � and �: Q� = 2, Q� =

1, respectively. Then U(1)X dark gauge symmetry is spontaneously broken into its Z2

subgroup, and the Dirac DM � is split into two Majorana DM �R and �I defined as

� =
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(�R + i�I), (22)
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with
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the dark coupling constant, and QX denotes the dark charge of � and �: Q� = 2, Q� =
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U(1) → Z2 by vϕ ≠ 0 : χ → − χ



Without dark Higgs

• Only the first two diagrams if the mass gap is given by hand


• The third diagram if the mass gap is generated by dark Higgs 
mechanism


• Without the last diagram, the amplitude violates unitarity at 
large  , or in the limit  Eγ′￼

mγ′￼
→ 0

P.Ko, T.Matsui, Yi-Lei Tang, arXiv:1910.04311, Appendix A
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FIG. 2: (top) Feyman diagrams for ��̄ ! ��. (bottom) the region in the (mZ0 , ✏) plane that is

allowed for the XENON1T electron recoil excess and the correct thermal relic density for fermion

DM case for � = 2 keV and the fermion DM mass to be mR = 10 MeV. Di↵erent colors represents

m� = 2, 4, 6, 8 MeV. The gray areas are excluded by various experiments, assuming Z 0
! �R�I

is kinematically allowed, and the experimental constraint is weaker in the ✏ we are interested in,

compared with the scalar DM case in Fig. 1 (right). We also show the current experimental bounds

by NA64 [66].

Note that the kinetic mixing ✏ ⇠ 10�7±1, which is much smaller than the scalar DM case.

We have checked if the gauge coupling gX and the quartic coupling of dark Higgs (��)

remain in the perturbative regime. The solid (dashed) lines denote the region where gX

satisfy (violate) perturbativity condition, depending ↵X < 1 or not. Within this allowed

region, �� remain perturbative. Again it is nontrivial that we could explain the XENON1T

excess with inelastic fermion DM models with spontaneously broken U(1)X ! Z2 gauge

symmetry. In particular it is important to include light dark Higgs for this explanation as

in the scalar DM case.
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P-wave annihilation x-sections

Scalar DM : XX† → Z′￼* → Z′￼ϕ

Fermion DM : χχ → ϕϕ

Crucial to include “dark Higgs” to have 
DM pair annihilation in P-wave



mDM /mγ′￼

mDM /mϕ

0

Dark sector parameter space for a fixed mDM

1/2

1/2

1

1
 : dark matter 
 : dark photon 
 : dark Higgs

χ
γ′￼

ϕ

χ + χ → SM + SM χ + χ → γ′￼+ γ′￼

χ + χ → ϕ + ϕ

χ + χ → ϕ + γ′￼

χ + χ → ϕ + γ′￼

DM EFT, including 
Higgs portal DM EFT

Models w/o dark Higgs 
Along the x-axis

P-wave annihilation 
For fermion DM χ

P-wave annihilation 
For scalar DM χ

These two channels are possible for light DM, 
only if we include dark Higgs boson !

Higgs Portal DM 
Along the y-axis



EWSB and CDM from Strongly 
Interacting Hidden Sector

Hur, Jung, Ko, Lee : 0709.1218, PLB (2011)
Hur, Ko : arXiv:1103.2517,PRL (2011) 

Proceedings for workshops/conferences
during 2007-2011 (DSU,ICFP,ICHEP etc.)

All the masses (including CDM mass) 
from hidden sector strong dynamics,

and CDM long lived by accidental sym



Nicety of QCD

• Renormalizable

• Asymptotic freedom : no Landau pole

• QM dim transmutation :

• Light hadron masses from QM dynamics

• Flavor & Baryon # conservations : 
accidental symmetries of QCD (pion is 
stable if we switch off EW interaction; 
proton is stable or very long lived)



h-pion & h-baryon DMs

• In most WIMP DM models, DM is stable 
due to some ad hoc Z2 symmetry

• If the hidden sector gauge symmetry is 
confining like ordinary QCD, the lightest 
mesons and the baryons could be stable or 
long-lived >> Good CDM candidates

• If chiral sym breaking in the hidden sector, 
light h-pions can be described by chiral 
Lagrangian in the low energy limit



Key Observation
• If we switch off gauge interactions of the 

SM, then we find 

• Higgs sector ~ Gell-Mann-Levy’s linear 
sigma model which is the EFT for QCD 
describing dynamics of pion, sigma and 
nucleons

• One Higgs doublet in 2HDM could be 
replaced by the GML linear sigma model 
for  hidden sector QCD



Model-I

Potential for H1 and H2

V (H1, H2) = −µ2
1(H

†
1H1) +

λ1

2
(H†

1H1)
2 − µ2

2(H
†
2H2)

+
λ2

2
(H†

2H2)
2 + λ3(H

†
1H1)(H

†
2H2) +

av3
2

2
σh

Stability : λ1,2 > 0 and λ1 + λ2 + 2λ3 > 0

Consider the following phase:

H1 =

(

0
v1+hSM√

2

)

, H2 =

(

π+
h

v2+σh+iπ0
h√

2

)

Correct EWSB : λ1(λ2 + a/2) ≡ λ1λ′
2 > λ2

3

– p.34/50

Not present in the two-
Higgs Doublet model

������������



Relic DensityModel-I : Relic density of πh
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Model-I : Direct detection rate
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tan β = 5 case can be probed to some extent at Super
CDMS
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Model I (Scalar Messenger)

• SM - Messenger - Hidden Sector QCD

• Assume classically scale invariant lagrangian --> No 
mass scale in the beginning

• Chiral Symmetry Breaking in the hQCD generates a 
mass scale, which is injected to the SM by “S”

SM Hidden 
QCD

Singlet 
Scalar S

������������

Hur, Ko, PRL (2011)



Model-II

Introduce a real singlet scalar S

Modified SM with classical scale symmetry

LSM = Lkin −
λH

4
(H†H)2 −

λSH

2
S2 H†H −

λS

4
S4

+
(

Q
i
HY D

ij Dj + Q
i
H̃Y U

ij U j + L
i
HY E

ij Ej

+ L
i
H̃Y N

ij N j + SN iT CY M
ij N j + h.c.

)

Hidden sector lagrangian with new strong interaction

Lhidden = −
1

4
GµνG

µν +
NHF
∑

k=1

Qk(iD · γ − λkS)Qk
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Scale invariant extension of the SM
with strongly interacting hidden sector



Model-II

Effective lagrangian far below Λh,χ ≈ 4πΛh

Lfull = Leff
hidden + LSM + Lmixing

Leff
hidden =

v2
h

4
Tr[∂µΣh∂µΣ†

h] +
v2
h

2
Tr[λSµh(Σh + Σ†

h)]

LSM = −
λ1

2
(H†

1H1)
2 −

λ1S

2
H†

1H1S
2 −

λS

8
S4

Lmixing = −v2
hΛ2

h

[

κH
H†

1H1

Λ2
h

+ κS
S2

Λ2
h

+ κ′
S

S

Λh

+ O(
SH†

1H1

Λ3
h

,
S3

Λ3
h

)

]

≈ −v2
h

[

κHH†
1H1 + κSS2 + Λhκ′

SS
]

– p.43/50
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3 neutral scalars : h,  S and hidden sigma meson
Assume h-sigma is heavy enough for simplicity



Relic densityModel-II: Relic densities of Ωπh
h2

Ωπhh
2 in the (mh1

,mπh) plane for
(a) vh = 500 GeV and tan β = 1,

(b) vh = 1 TeV and tan β = 2.

– p.46/50
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Direct Detection RateModel-II: Direct detection rates
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Vacuum Stability Improved 
by the singlet scalar S

why do we live on the ragged edge of doom?

36

• if you believe in supersymmetry, then this is just a coincidence

• but dismissing striking features of the data as coincidence has 
historically not been a winning strategy...

A. Strumia, Moriond EW 2013

Joseph Lykken                                                                                                                            LHCP 2013, Barcelona, May 18, 2013
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Figure 13. RG-running of couplings as a function of renormalization scale for m1 =

125GeV, m2 = 500GeV and α = 0.1, but λHS = 0, i.e, mixing but no-loop correction.

Red/blue/green/dashed-blue line corresponds to λH/λHS/λ/λS .

Α ! 0
ΛHS ! 0.2
ΛS ! 0.1
Λ ! 0.4

5 10 15
100

200

300

400

500

600

700

800

Log!Μ"GeV#

m
h"
G
eV

m2 ! 500 GeV
Α ! 0.1
ΛHS ! 0
ΛS ! 0.1
Λ ! 0.4

5 10 15
100

200

300

400

500

600

700

800

Log!Μ"GeV#

m
h"
G
eV

Figure 14. The mass bound of SM-like Higgs (m1) as a function of energy scale for

(α,λHS) = (0, 0.2)(left),(0.1, 0)(right) with λS = 0.1 and λ = 0.4. The red/blue line

corresponds to triviality/vacuum-stability bound in SM(dashed) and our model(solid). The

dashed black line corresponds to m1 = 125GeV.

5.4 Brief Summary

In brief summary, the numerical analysis shows that the vacuum stability of Higgs
potential and perturbativity of couplings constrains new dimensionless couplings of

– 29 –

Baek, Ko, Park, Senaha (2012)



Low energy pheno.
• Universal suppression of collider SM signals

• If “mh > 2 m𝜙”, non-SM Higgs decay!

• Tree-level shift of 𝝺H,SM (& loop correction)

If “m𝜙> mh”, vacuum instability can be cured.

↵

SM

�H =

"
1 +

 
m2

�

m2
h

� 1

!
sin2 ↵

#
�SM
H��H )

[S. Baek, P. Ko, WIP & E. Senaha, JHEP(2012)][G. Degrassi et al., 1205.6497]

[See 1112.1847, Seungwon Baek, P. Ko & WIP]



Comparison w/ other model

• Dark gauge symmetry is unbroken (DM is long-lived  
because of accidental flavor symmetry), but confining 
like QCD (No long range dark force and no Dark 
Radiation)

• DM : composite hidden hadrons (mesons and baryons)

• All masses including CDM masses from dynamical sym 
breaking in the hidden sector

• Singlet scalar is necessary to connect the hidden 
sector and the visible sector

• Higgs Signal strengths : universally reduced from one



• Similar to the massless QCD with the 
physical proton mass without finetuning 
problem

• Similar to the BCS mechanism for SC, or 
Technicolor idea

• Eventually we would wish to understand the 
origin of DM and RH neutrino masses, and 
this model is one possible example

• Could consider SUSY version of it 



More issues to study
• DM : strongly interacting composite 

hadrons in the hidden sector >> self-
interacting DM >> can solve the small scale 
problem of DM halo

• TeV scale seesaw : TeV scale leptogenesis, 
or baryogenesis from neutrino oscillations

• Wess-Zumino term: 3 > 2 possible (e.g. 
Hochberg, Kuflik,Murayam, Volansky, Wacker for Sp(N) case)

• Another approach for hQCD ? (For example, 
Kubo, Lindner et al use NJL approach; and AdS/QCD approach with 
H.Hatanaka, D.W.Jung@KIAS)



SIMP Scenario in 
Dark QCD



SIMP paradigm

The SIMP Miracle
====================================================================25% of the authors prefer the title: ‘SIMP Dark Matter’. They are uncomfortable with the term ‘miracle’ in this scenario. Damn democracy!==================================================================.

Yonit Hochberg1,2,⇤ Eric Kuflik3,† Tomer Volansky3,‡ and Jay G. Wacker4§
1
Ernest Orlando Lawrence Berkeley National Laboratory,

University of California, Berkeley, CA 94720, USA
2
Department of Physics, University of California, Berkeley, CA 94720, USA

3
Department of Physics, Tel Aviv University, Tel Aviv, Israel and

4
SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025 USA

We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when
a nearly secluded dark sector is thermalized with the Standard Model after reheating. The freezeout
process is a number-changing 3 ! 2 annihilation of strongly-interacting-massive-particles (SIMPs)
in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary
for maintaining thermal equilibrium with the Standard Model, imply measurable signals that will
allow coverage of a significant part of the parameter space with future indirect- and direct-detection
experiments and via direct production of dark matter at colliders. Moreover, 3 ! 2 annihilations
typically predict sizable 2 ! 2 self-interactions which naturally address the ‘core vs. cusp’ and
‘too-big-to-fail’ small structure problems.

INTRODUCTION

Dark matter (DM) makes up the majority of the mass
in the Universe, however, its identity is unknown. The
few properties known about DM are that it is cold and
massive, it is not electrically charged, it is not colored and
it is not very strongly self-interacting. One possibility for
the identity of DM is that it is a thermal relic from the
early Universe. Cold thermal relics are predicted to have
a mass

mDM ⇠ ↵ann (TeqMPl)
1/2

⇠ TeV , (1)

where ↵ann is the e↵ective coupling constant of the 2 ! 2
DM annihilation cross section, taken to be of order weak
processes ↵ann ' 1/30 above, Teq is the matter-radiation
equality temperature and MPl is the reduced Planck
mass. The emergence of the weak scale from a geomet-
ric mean of two unrelated scales, frequently called the
WIMP miracle, provides an alternate motivation beyond
the hierarchy problem for TeV-scale new physics.

In this work we show that there is another mechanism
that can produce thermal relic DM even if ↵ann ' 0. In
this limit, while thermal DM cannot freeze out through
the standard 2 ! 2 annihilation, it may do so via a 3 ! 2
process, where three DM particles collide and produce
two DM particles. The mass scale that is indicated by
this mechanism is given by a generalized geometric mean,

mDM ⇠ ↵e↵

�
T

2
eqMPl

�1/3
⇠ 100 MeV , (2)

where ↵e↵ is the e↵ective strength of the self-interaction
of the DM which we take as ↵e↵ ' 1 in the above. As
we will see, the 3 ! 2 mechanism points to strongly self-
interacting DM at or below the GeV scale. In similar
fashion, a 4 ! 2 annihilation mechanism, relevant if DM
is charged under a Z2 symmetry, leads to DM in the keV

↵e↵ ' 1 ↵e↵ ' 1

SMDM
3→2 2→2 

✏ � 1

Kin. Eq.

FIG. 1: A schematic description of the SIMP paradigm. The
dark sector consists of DM which annihilates via a 3 ! 2 pro-
cess. Small couplings to the visible sector allow for thermal-
ization of the two sectors, thereby allowing heat to flow from
the dark sector to the visible one. DM self interactions are
naturally predicted to explain small scale structure anomalies
while the couplings to the visible sector predict measurable
consequences.

to MeV mass range. In this case, however, a more com-
plicated production mechanism, such as freeze-out and
decay, is typically needed to evade cosmological bounds.

If the dark sector does not have su�cient couplings
to the visible sector for it to remain in thermal equilib-
rium, the 3 ! 2 annihilations heat up the DM, signif-
icantly altering structure formation [1, 2]. In contrast,
a crucial aspect of the mechanism described here is that
the dark sector is in thermal equilibrium with the Stan-
dard Model (SM), i.e. the DM has a phase-space dis-
tribution given by the temperature of the photon bath.
Thus, the scattering with the SM bath enables the DM to
cool o↵ as heat is being pumped in from the 3 ! 2 pro-
cess. Consequently, the 3 ! 2 thermal freeze-out mech-
anism generically requires measurable couplings between
the DM and visible sectors. A schematic description of
the SIMP paradigm is presented in Fig. 1.

The phenomenological consequences of this paradigm
are two-fold. First, the significant DM self-interactions
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SIMP Conditions
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FIG. 3: The bounds on ✏ vs. mDM. Left, coupling to electrons: The grey regions (outlined by thick dashed lines) represents
the range of parameters in which kinetic equilibrium with the SM is not maintained (lower gray region), and where the standard
2 ! 2 annihilation to the SM is not subdominant to the 3 ! 2 process (upper gray region). Also shown are the exclusion limits
from: direct-detection in Xenon10 [43] (purple region), along with the expected future bound from a germanium-based electron
recoil experiment [44] (dashed-purple); CMB and low red shift data constraints for electrons [45] (blue region); modification
of Ne↵ [46] (red region); indirect detection of �-rays [47] (green region); direct production at LEP for a variety of mediator
mass, M , and width, � (solid-gray) [18]. Right, coupling to photons: The grey regions (outlined by thick dashed lines)
represents the range of parameters in which kinetic equilibrium with the SM is not maintained (lower gray region), and where
the standard 2 ! 2 annihilation with the SM is not subdominant to the 3 ! 2 process (upper gray region). Also shown are the
exclusion limits from: indirect detection of �-rays [47] (green region); conservative CMB and low red shift data constraints [45]
(blue region); modification of Ne↵ [46] (red region).

There are two distinct reasons for this. First, much as
in the standard thermal WIMP scenario, the DM must
be in thermal equilibrium with the visible sector. Conse-
quently, it must have non-negligible couplings to SM par-
ticles, which in turn predict observable signals. Second,
the non-vanishing 5-point interaction required for the
3 ! 2 annihilations also implies sizeable self-couplings
which alter the predictions for structure formation. Be-
low, we briefly summarize these two aspects, postponing
many of the details to future work [6].

We begin with structure formation. The persistent fail-
ure of N-body simulation to reproduce the small-scale
structure of observed galactic halos has led to the ‘core
versus cusp’ and ‘too big to fail’ problems. This moti-
vates self-interacting DM with a strength [20–23]

✓
�scatter

mDM

◆

obs

= (0.1 � 10) cm2
/g . (25)

On the other hand, bullet-cluster constraints [24–26] as
well as recent simulations which reanalyze the constraints
from halo shapes [21, 23], suggest the limits on the DM
self-interacting cross section (at velocities & 300 km/sec)
are

�scatter

mDM
. 1 cm2

/g . (26)

The above constraint leaves a viable region for the pre-
ferred strength of DM self-interactions.

The SIMP scenario naturally predicts a sizable con-
tribution to the above 2 ! 2 scatterings. One may

parametrize it by defining a ⌘ ↵2!2/↵e↵ , such that

�scatter

mDM
=

a
2
↵

2
e↵

m
3
DM

, (27)

and one expects a to be of order unity. This can be
readily checked for the toy model discussed above, where
a = O(1) is found for a wide range of values of the cou-
plings of Eq. (22). For the 3 ! 2 SIMP scenario, the
constraint, Eq. (26), points to the strongly interacting
regime with DM masses at or below the GeV scale. In-
terestingly, this region in parameter space automatically
solves the small-structure anomalies discussed above. In-
deed, one may use Eqs. (25) and (26) together with the
relation Eq. (9) to derive a preferred range of ↵e↵ . Tak-
ing into account the numerical corrections as found using
the Boltzmann equation, we arrive at

0.3
⇣

a

0.2

⌘2
. ↵e↵ . 8

⇣
a

0.2

⌘2
, (28)

where the lower bound above arises from the upper bound
of Eq. (26). The corresponding DM mass is in the range

of 8
�

a
0.2

�2
MeV . mDM . 200

�
a

0.2

�2
MeV. In Fig. 2

we show the full region preferred by the small-scale struc-
ture anomalies, and the region excluded by bullet-cluster
and halo-shape constraints. The colored regions show the
preferred region for a = 1, 0.05, 10�3. The region above
the corresponding gray-dashed lines is excluded by the
bullet-cluster and halo shape constraints, for each value
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There are two distinct reasons for this. First, much as
in the standard thermal WIMP scenario, the DM must
be in thermal equilibrium with the visible sector. Conse-
quently, it must have non-negligible couplings to SM par-
ticles, which in turn predict observable signals. Second,
the non-vanishing 5-point interaction required for the
3 ! 2 annihilations also implies sizeable self-couplings
which alter the predictions for structure formation. Be-
low, we briefly summarize these two aspects, postponing
many of the details to future work [6].

We begin with structure formation. The persistent fail-
ure of N-body simulation to reproduce the small-scale
structure of observed galactic halos has led to the ‘core
versus cusp’ and ‘too big to fail’ problems. This moti-
vates self-interacting DM with a strength [20–23]
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On the other hand, bullet-cluster constraints [24–26] as
well as recent simulations which reanalyze the constraints
from halo shapes [21, 23], suggest the limits on the DM
self-interacting cross section (at velocities & 300 km/sec)
are
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The above constraint leaves a viable region for the pre-
ferred strength of DM self-interactions.

The SIMP scenario naturally predicts a sizable con-
tribution to the above 2 ! 2 scatterings. One may

parametrize it by defining a ⌘ ↵2!2/↵e↵ , such that
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and one expects a to be of order unity. This can be
readily checked for the toy model discussed above, where
a = O(1) is found for a wide range of values of the cou-
plings of Eq. (22). For the 3 ! 2 SIMP scenario, the
constraint, Eq. (26), points to the strongly interacting
regime with DM masses at or below the GeV scale. In-
terestingly, this region in parameter space automatically
solves the small-structure anomalies discussed above. In-
deed, one may use Eqs. (25) and (26) together with the
relation Eq. (9) to derive a preferred range of ↵e↵ . Tak-
ing into account the numerical corrections as found using
the Boltzmann equation, we arrive at

0.3
⇣

a

0.2

⌘2
. ↵e↵ . 8

⇣
a

0.2

⌘2
, (28)

where the lower bound above arises from the upper bound
of Eq. (26). The corresponding DM mass is in the range
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preferred region for a = 1, 0.05, 10�3. The region above
the corresponding gray-dashed lines is excluded by the
bullet-cluster and halo shape constraints, for each value



Dark QCD + WZW
• Dark flavor symmetry G=SU(Nf)L x SU(Nf)R is SSB into 

diagonal H=SU(Nf)V by dark QCD condensation


• Effective Lagrangian for NG bosons (dark pions) contain 5-

point self interaction : WZW term for ㅠ5 (G/H) = Z (Nf > 2)

�WZW = Eqs.(11) and (13) in my thesis (38)

L1 = TR
⇥
↵̂
3
L↵̂R � ↵̂

3
R↵̂L

⇤
� (⇠L = ⇠R = 1, V = 0, l, r) (39)

L2 = TR [↵̂L↵̂R↵̂L↵̂R]� (⇠L = ⇠R = 1, V = 0, l, r) (40)

L3 = iTr [FV (↵̂L↵̂R � ↵̂R↵̂L]� (⇠L = ⇠R = 1, V = 0, l, r) (41)

L4 = iTr

h
F̂L↵̂L↵̂R � F̂R↵̂R↵̂L

i
� (⇠L = ⇠R = 1, V = 0, l, r) (42)

In the real hadronic world with photon included, one has

�
anom

= �WZ � 15C (L3 + L4 + c1L1 + c2L2)c1�c2=�1 (43)

with

C = �i
Nc

240⇡2

Let us ignore the external gauge fields by setting lµ = rµ = 0 and keep only the pions

and vector mesons Vµ, and discuss pion dynamics including the vector mesons. If we

assume lµ = rµ = 0, then

�WZ = C

Z

M5
d
5
x Tr(↵

5
) with ↵ = dUU

†
. (44)

Also for lµ = rµ = 0, ↵̂L and ↵̂R are simplified as

↵̂L = D⇠L · ⇠†
L
= ↵L � igV (45)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV (46)

1.3 Scalar resonances

It is convenient to define two vector fields from ⇠(x) ⌘ ⇠
†
L
= ⇠R:

⇠(x) ! L⇠(x)U
†
(x) = U(x)⇠(x)R

†
(47)

Aµ(x) ⌘ i

2

h
⇠
†
@µ⇠ � ⇠@µ⇠

†
i

(48)

! U(x)Aµ(x)U
†
(x) (49)

Vµ(x) ⌘ i

2

h
⇠
†
@µ⇠ + ⇠@µ⇠

†
i

(50)

! U(x)Vµ(x)U
†
(x) + U(x)@U

†
(x) (51)

Vµ(x) ! U(x)Vµ(x)U
†
(x) + U(x)@µU

†
(x) (52)

Note that (Vµ�Vµ) transforms homogeneously as U(x)(Vµ�Vµ)U
†
(x), which is a convenient

property for constructing chiral invariant Lagrangians.

4

�WZW = Eqs.(11) and (13) in my thesis (38)

L1 = TR
⇥
↵̂
3
L↵̂R � ↵̂

3
R↵̂L

⇤
� (⇠L = ⇠R = 1, V = 0, l, r) (39)

L2 = TR [↵̂L↵̂R↵̂L↵̂R]� (⇠L = ⇠R = 1, V = 0, l, r) (40)

L3 = iTr [FV (↵̂L↵̂R � ↵̂R↵̂L]� (⇠L = ⇠R = 1, V = 0, l, r) (41)

L4 = iTr

h
F̂L↵̂L↵̂R � F̂R↵̂R↵̂L

i
� (⇠L = ⇠R = 1, V = 0, l, r) (42)

In the real hadronic world with photon included, one has

�
anom

= �WZ � 15C (L3 + L4 + c1L1 + c2L2)c1�c2=�1 (43)

with

C = �i
Nc

240⇡2

Let us ignore the external gauge fields by setting lµ = rµ = 0 and keep only the pions

and vector mesons Vµ, and discuss pion dynamics including the vector mesons. If we

assume lµ = rµ = 0, then

�WZ = C

Z

M5
d
5
x Tr(↵

5
) with ↵ = dUU

†
. (44)

Also for lµ = rµ = 0, ↵̂L and ↵̂R are simplified as

↵̂L = D⇠L · ⇠†
L
= ↵L � igV (45)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV (46)

1.3 Scalar resonances

It is convenient to define two vector fields from ⇠(x) ⌘ ⇠
†
L
= ⇠R:

⇠(x) ! L⇠(x)U
†
(x) = U(x)⇠(x)R

†
(47)

Aµ(x) ⌘ i

2

h
⇠
†
@µ⇠ � ⇠@µ⇠

†
i

(48)

! U(x)Aµ(x)U
†
(x) (49)

Vµ(x) ⌘ i

2

h
⇠
†
@µ⇠ + ⇠@µ⇠

†
i

(50)

! U(x)Vµ(x)U
†
(x) + U(x)@U

†
(x) (51)

Vµ(x) ! U(x)Vµ(x)U
†
(x) + U(x)@µU

†
(x) (52)

Note that (Vµ�Vµ) transforms homogeneously as U(x)(Vµ�Vµ)U
†
(x), which is a convenient

property for constructing chiral invariant Lagrangians.

4

Dark mesons & WZW term
• Dark flavor symmetry G=SU(Nf)x SU(Nf) is SSB into 

diagonal H=SU(Nf) by SU(Nc) QCD-like condensation. 

• Effective action for Goldstone bosons contains a 
5-point self-interaction from Wess-Zumino-
Witten term for π5(G/H)=Z (i.e. Nf ≥3).   

LWZW =
2Nc

15⇡2
✏µ⌫⇢�Tr[⇡@µ⇡@⌫⇡@⇢⇡@�⇡]

Flavor symmetry ensures stability of dark 
mesons,  natural candidates for SIMP.

NC  : topological invariant 
of 5-sphere (Q+Q’) in SU(3)

U = e2i⇡/F , ⇡ ⌘ ⇡aT a

⇡Nf = 3 :

[Wess, Zumino,
1971;Witten, 1983]

Thursday, June 11, 15

in the absence of external gauge fields



SIMP Dark Mesons

• Large color group leads to strong 5-point interactions 
while satifying bounds on self-interactions [Hochberg, 
2014]

SIMP dark mesons
• Large color group leads to strong 5-point interactions 

while satisfying bounds on self-interactions (e.g. Bullet 
cluster, halo shape.)

,

K̃+

K̃�

⇡̃�

⇡̃+

⇡̃0

⇡̃0

⇡̃0

⇡̃0

⇡̃0

[Hochberg et al, 2014]

~const~const

Thursday, June 11, 15

[Hochberg, Kuflik, Murayama, Volansky, Wacker, 1411.3727, PRL (2015)]



SIMP Parameter Space

• DM self scattering :                             


• Validity of ChPT : 
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FIG. 2: Solid curves: the solution to the Boltzmann equation of the 3 ! 2 system, yielding the measured dark matter relic
abundance for the pions, m⇡/f⇡ as a function of the pion mass (left axis). Dashed curves: the self-scattering cross section
along the solution to the Boltzmann equation, �scatter/m⇡ as a function of pion mass (right axis). All curves are for selected
values of Nc and Nf , for an SU(Nc) (top panel) or an O(Nc) (bottom panel) gauge group with a conserved (left panel)
or broken (right panel) SU(Nf ) or SO(Nf ) flavor symmetry, respectively. The solid horizontal line depicts the perturbative
limit of m⇡/f⇡ ⇠< 2⇡, providing a rough upper limit on the pion mass; the dashed horizontal line depicts the bullet-cluster and
halo shape constraints on the self-scattering cross section, Eq. (16), placing a lower limit on the pion mass. Each shaded region
depicts the resulting approximate range for m⇡ for the corresponding symmetry structure.

below those depicted exhibit a tension between the per-
turbativity regime m⇡/f⇡ ⇠

< 2⇡ and the self-interaction
constraint of Eq. (16).
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Large Nc > 3

More serious in NNLO ChPT 
Sannino et al, 1507.01590



Issues in the SIMP w/ hQCD
• Dark flavor sym is not good enough to stabilize dark pion 

(We have to assume dim-5 operator is highly suppressed)


• Dark baryons can make additional contribution to DM of 
the universe (It could produce additional diagrams for 
SIMP)


• Validity region of ChPT : need to include resonances (dark 
rho meson, dark sigma meson, etc.)


• How to achieve Kinetic equilibrium with the SM ? (Dark 
sigma meson or adding singlet scalar S may help. Or 
lifting the mass degeneracy of dark pions can help.)



SIMP + VDM
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FIG. 1: Feynman diagrams contributing to 3 ! 2 processes for the dark pions with the vector meson interactions.

FIG. 2: Contours of relic density (⌦h2 ⇡ 0.119) for m⇡ and m⇡/f⇡ and self-scattering cross section per DM mass in cm2/g as

a function of m⇡. The case without and with vector mesons are shown in black lines and colored lines respectively. We have

imposed the relic density condition for obtaining the contours of self-scattering cross section. Vector meson masses are taken

near the resonances with mV = 2(3)m⇡
p
1 + ✏V on left(right) plots. In both plots, c1 � c2 = �1 and ✏V = 0.1 are taken.

our interest, so we didn’t include it in our analysis.

While the !8 primarily decays to three pions because

m! < 2mK in the usual SM QCD, this is not necessar-

ily true in the case of dark QCD since we can vary the

pion/kaon mass. Since we are assuming all the eight pi-

ons/kaons are degenerate in mass, two-body decays such

as !8 ! KK could be allowed as well as usual three-body

decays such as !8 ! 3⇡. Then we find that the widths

of vector mesons with degenerate masses are identical as

follows,

�V =
a2g2mV

256⇡

✓
1� 4

m2
⇡

m2
V

◆3/2

. (25)

If we chose a QCD-like set of parameters (a ⇡ 2, c1�c2 =

�1 and c3 = 1), the widths of vector mesons would be

sizable for values of m⇡/f⇡ that yield the correct relic

density. However, if a ⌧ 1, then the mass relation, m2
V =

ag2f2
⇡ ⇡ 9m2

⇡ or 4m2
⇡, is maintained with �V /mV ⌧ 1.

For 3 ! 2 processes, we take the vector meson masses

near the resonances and make the thermal average under

the narrow width approximation with �V /mV ⌧ 1 in

Eq. (23). Then, the thermal averaged 3 ! 2 annihilation

cross section becomes [33]

h�v2iR ⇡

(
81⇡
128 ✏4V x

3e�
3
2 ✏V x, mV ⇡ 3m⇡,

8
3

p
⇡ ✏3/2V x1/2 e�✏V x, mV ⇡ 2m⇡,

(26)

where the e↵ective 3 ! 2 cross section before ther-

mal average is taken to be (�v2) = bV �V

(✏V �u2)2+�2
V
, with

 being the velocity-independent coe�cient, (✏V , �V ) =

(m
2
V �4m2

⇡
4m2

⇡
, mV �V

4m2
⇡

) and u2 = 1
2 (v

2
1 + v22) �

1
4v

2
3 for two-

pion resonances or (✏V , �V ) = (m
2
V �9m2

⇡
9m2

⇡
, mV �V

9m2
⇡

) and

With Soo Min Choi, Hyun Min Lee, Alexander Natale, 
arXiv:1801.07726, PRD (2018)



SIMP + VM

3

vector meson masses are given by LB :

LB = m
2
V
TrVµV

µ
� 2igV ⇡⇡Tr (Vµ[@

µ
⇡,⇡]) (21)

m
2
V
= ag

2
f
2
⇡

(22)

gV ⇡⇡ =
1

2
ag (23)

In ordinary hadron system a ' 2, but this can be con-

sidered a free parameter in general. Before we show the

anomalous WZW Lagrangian, it is convenient to define

the following objects:

↵̂L = D⇠L · ⇠
†
L
= ↵L � igV + il̂ (24)

↵̂R = D⇠R · ⇠
†
R
= ↵R � igV + ir̂ (25)

↵L = d⇠L · ⇠
†
L
, (26)

↵R = d⇠R · ⇠
†
R

(27)

FV = dV � igV
2 (28)

The anomalous WZW in the presence of light vector

mesons are given by

�anom = �WZW +
4X

i=1

ciLi (29)

L1 = Tr
⇥
↵̂
3
L
↵̂R � ↵̂

3
R
↵̂L

⇤
(30)

L2 = Tr [↵̂L↵̂R↵̂L↵̂R] (31)

L3 = iTr [FV (↵̂L↵̂R � ↵̂R↵̂L)] (32)

L4 = iTr
h
F̂L↵̂L↵̂R � F̂R↵̂R↵̂L

i
. (33)

Let us ignore the external gauge fields by setting lµ =

rµ = 0 and keep only the pions and vector mesons Vµ,

thus L3,4 are zero. Under these assumptions then

�anom = LWZW � 15C (c1L1 + c2L2)c1�c2=�1 (34)

with

C = �i
Nc

240⇡2
, (35)

and LWZW is the familiar Wess-Zumino-Witten term for

pions [10–12]:

LWZW =
2Nc

15⇡2f5
⇡

✏
µ⌫⇢�

Tr[⇡@µ⇡@⌫⇡@⇢⇡@�⇡] (36)

Expanding ↵L,R in terms of ⇡ up to O(g/f3
⇡
) results in

L1 = �
4c1gC

f3
⇡

✏
µ⌫⇢�

Tr[@µ⇡@⌫⇡@⇢⇡V�] (37)

and

L2 =
4c2gC

f3
⇡

✏
µ⌫⇢�

Tr[Vµ@⌫⇡@⇢⇡@�⇡@⇢⇡] (38)

where C is defined in Eq. 35. These new vector meson

terms generate additional 3-to-2 interactions between the

pions, as illustrated in Fig. 1.

An important constraint on the model is the 2-to-

2 scattering cross section. The bullet cluster con-

straints place an upper limit of around 1 cm
2
/g on

�scatter/mDM [6]. In our model this 2-to-2 cross section

can be calculated by the ChPT Lagrangian:

�scatter =
m

2
⇡

192⇡f4
⇡
m

4
V

⇥

(81a4g4f4
⇡
+ 216a2f2

⇡
g
2
m

2
V
+ 154m4

V
)

(39)

where the degenerate pion (vector meson masses) are

given by m⇡ (mV ). In the limit where the vector mesons

decouple, �scatter reduces to the value found in Ref. [8].

The upper bounds on �scatter/m⇡ places a lower bound

on m⇡; in the minimal QCD-like model without vec-

tor mesons, this produces a tension between the require-

ments that m⇡/f⇡ < 2⇡ and the lower bound of m⇡ [8].

Relic Density.—In the SIMP model, where the 3 ! 2

number-changing processes are dominant, the resulting

Boltzmann equation for one species of DM is given by

dnDM

dt
+ 3HnDM = �h�v

2
i3!2(n

3
DM

� n
2
DM

n
eq

DM
).

In the presence of an exact flavor symmetry there are

N⇡ = 8 mass degenerate pions, and suppose n1 = n2 =

. . . = n8 = n, we can define nDM =
P8

i=1 ni. Thus the

resulting Boltzmann equation for the total DM density

is

Y
0
DM

= �
⇢⌃h�v2i

N3
⇡
x5

(Y 3
DM

� Y
2
DM

Y
eq

DM
). (40)

where ⌃h�v2i is the sum of the relevant sub-processes af-

ter thermal averaging, with Y = nDM/s, ⇢ = s
2(m⇡)
H(m⇡)

, and

x = m⇡/T . The SIMP paradigm requires that the dark

sector remains in kinetic equilibrium with the SM [7],

this is accomplished via a dark Higgs [13] or additional

dark gauge bosons such as the Z
0 [14, 15], which are not

discussed further in this work.

In the case of a resonance (mV ⇡ 3m⇡) the thermal av-

erage takes a Breit-Wigner form as discussed in Ref. [16]:

h�ijk!mnv
2
iR =

3

4
⇡x

3
1X

l=0

bl

l!
Gl(zR;x), (41)

with zR = ✏ + i�, � = mV �
9m2

⇡
, and ✏ = m

2
V �9m2

⇡
9m2

⇡
. In

the case of SIMP mesons with a significant vector meson

We choose a small epsilon [say, 0.1 (near resonance) ] 
and a small gamma (NWA)

New diagrams involving dark vector mesons

⇡+⇡�⇡0 ! ! ! K+K�(K0K0)

(for 3 pi resonance case)



Results

•The allowed parameter space is in a better 
shape now, especially for 2 pi resonance 
case
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FIG. 1: Feynman diagrams contributing to 3 ! 2 processes for the dark pions with the vector meson interactions.
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FIG. 2: Contours of relic density (⌦h2 ⇡ 0.119) for m⇡ and m⇡/f⇡ and self-scattering cross section per DM mass in cm2/g as

a function of m⇡. The case without and with vector mesons are shown in black lines and colored lines respectively. We have

imposed the relic density condition for obtaining the contours of self-scattering cross section. Vector meson masses are taken

near the resonances with mV = 2(3)m⇡
p
1 + ✏V on left(right) plots. In both plots, c1 � c2 = �1 and ✏V = 0.1 are taken.

our interest, so we didn’t include it in our analysis.

While the !8 primarily decays to three pions because

m! < 2mK in the usual SM QCD, this is not necessar-

ily true in the case of dark QCD since we can vary the

pion/kaon mass. Since we are assuming all the eight pi-

ons/kaons are degenerate in mass, two-body decays such

as !8 ! KK could be allowed as well as usual three-body

decays such as !8 ! 3⇡. Then we find that the widths

of vector mesons with degenerate masses are identical as

follows,

�V =
a2g2mV

256⇡

✓
1� 4

m2
⇡

m2
V

◆3/2

. (25)

If we chose a QCD-like set of parameters (a ⇡ 2, c1�c2 =

�1 and c3 = 1), the widths of vector mesons would be

sizable for values of m⇡/f⇡ that yield the correct relic

density. However, if a ⌧ 1, then the mass relation, m2
V =

ag2f2
⇡ ⇡ 9m2

⇡ or 4m2
⇡, is maintained with �V /mV ⌧ 1.

For 3 ! 2 processes, we take the vector meson masses

near the resonances and make the thermal average under

the narrow width approximation with �V /mV ⌧ 1 in

Eq. (23). Then, the thermal averaged 3 ! 2 annihilation

cross section becomes [33]

h�v2iR ⇡

(
81⇡
128 ✏4V x

3e�
3
2 ✏V x, mV ⇡ 3m⇡,

8
3

p
⇡ ✏3/2V x1/2 e�✏V x, mV ⇡ 2m⇡,

(26)

where the e↵ective 3 ! 2 cross section before ther-

mal average is taken to be (�v2) = bV �V

(✏V �u2)2+�2
V
, with

 being the velocity-independent coe�cient, (✏V , �V ) =

(m
2
V �4m2

⇡
4m2

⇡
, mV �V

4m2
⇡

) and u2 = 1
2 (v

2
1 + v22) �

1
4v

2
3 for two-

pion resonances or (✏V , �V ) = (m
2
V �9m2

⇡
9m2

⇡
, mV �V

9m2
⇡

) and



Conclusion
• Hidden (dark) QCD models make an interesting possibility 

to study the origin of EWSB, (C)DM


• WIMP scenario is still viable, and will be tested to some 
extent by precise measurements of the Higgs signal 
strength and by discovery of the singlet scalar, which is 
however a formidable task unless we are very lucky


• SIMP scenario using 3->2 scattering via WZW term is 
interesting, but there are a few issues which ask for 
further study (dark resonance could play an important role 
for thermal relic and kinetic contact with the SM sector)
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Decaying DM

If we use the SM Higgs for , strong constraints 

from gamma ray and antiproton flux data

ϕ

Can we make use of light 

dark Higgs instead ?

I. INTRODUCTION

Positron excess in the energy range E > 10GeV have been observed by PAMELA, FERMI

and AMS02 [1–5]. Assuming its DM-origin 1, this excess can by explained by annihilating

DM with thermally-averaged cross section h�vi ⇠ 10�23cm3/s or decaying DM with decay

width � ⇠ 10�26s�1. It is also well-known that for annihilating DM a large boost factor

⇠ 103 [9–26] is needed, which however is strongly constrained by the CMB data [27–31] and

Fermi/LAT gamma ray measurements [32–38]. On the other hand, O(TeV) DM decaying

into leptons [39–47] can give a consistent explanation, especially for µ± channel.

In this paper, we discuss that the various decay modes resulted from the following e↵ective

operator for decaying fermion DM � can explain positron data,

�L = �e↵ �̄�⌫,

with �e↵ ⇠ 10�26, where � is a new light scalar field that can decay to light lepton pairs and

⌫ is the SM neutrino field. To explain the smallness of �e↵, we construct an underlying dark

matter model with local dark gauge symmetry, where one can induce the above e↵ective

dim-4 operator suppressed by heavy masses.

If identify � as the SM higgs, operator �e↵ �̄h⌫ [48] will also induce � ! Z⌫ and � !

W±e⌥ that may give additonal potential dangerous antiproton or �-ray flux. In this paper,

we focus on the light � case(2me± < m� < 2m⇡0), which is also motivated to give large

self-interaction for DM-DM elastic scattering, see Ref. [49] for example.

This paper is organized as follows. In Sec. II, we propose a model for decaying dark

matter based on local U(1)X gauge symmetry, and show the e↵ective operators generated

after symmetry breaking. In Sec. III, we discuss the main decay modes for DM. Then in

Sec. IV, we present several variant models. In Sec. V, we compare the theoretical calculations

for e± spectra with the experimantal data from PAMELA, FERMI and AMS02. Finally, we

make a conclusion.

1 Note that that this excess could be also explained by astrophysical processes [6–8].
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FIG. 1: Feynman diagram that generates the e↵ector operator �̄��H̃L.

II. MODEL

We consider a local dark gauge symmetry U(1)X with dark Higgs � and two di↵erent

Dirac fermions in the dark sector, � and  . Assign U(1)X charges to the dark fields as

follows:

(Q�, Q , Q�) = (2, 1, 1),

we can write down the possible renormalizable interactions including singlet right-handed

neutrinos N for the model,
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2
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where L↵ is left-handed SM SU(2) lepton doublet (⌫↵ l↵)T , ↵ = e, µ, ⌧ , H is the SM Higgs

doublet, Xµ⌫ is the field strengh tensor of dark gauge field Xµ, Xµ⌫ = @µX⌫ � @⌫Xµ, F
µ⌫

Y

is for SM hypercharge U(1)Y , ✏ is the kinetic mixing parameter, covariant derivatives are

defined as

DµC = (@µ � igXQCXµ)C,C = �, ,�.

and the scalar potential
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To explain the neutrino oscillation, at least two Ns need to be introduced to have two non-

zero neutrino masses. However, for our interested positron excess, we can only focus on the

case with one N . From now on, we shall omit the lower indices for NI , L↵, mN , y↵I and gI .
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III. DECAY MODES

The dim-3 operator, eq. 2.6, is a mass term and would induce a tiny mixing between �

and ⌫ with the mixing angle,

� '
yfg

4
p
2

v2
�
vH

m mNm�

. (3.1)

Then the gauge interactions for � and ⌫ will generate the decay channels,

� ! Z 0⌫, Z⌫, l±W⌥, (3.2)

with decay width ratio ⇠ v2
H
: v2

�
: v2

�
.

And dim-4 operators, eq. 2.7, lead to decays,

� ! h⌫,�⌫, (3.3)

with decay width ratio v2
�
: 4v2

H
. Since mh � m� normally imply vH � v�, we would expect

��!�⌫ � ��!h⌫ . It is also straightforward to get the branch ratio,

Br(� ! �⌫) : Br(� ! Z 0⌫) = 22 : 1. (3.4)

The factor 22 results from 2 in the numerator of the second operator in eq. 2.7, which stems

from two �s in the dim-6 operator in eq. 2.3. On-shell �/Z 0 then decays to light charged

lepton pair, as shown in Fig. 2.

In this model, we can estimate

�e↵ ⇠
yfg

4
p
2

v�
m 

vH
mN

⇠ 10�26. (3.5)

This can be easily achieved if we chose the parameters as

v� ⇠ O(100)MeV, mN ⇠ m� ⇠ 1014GeV, yfg ⇠ 1. (3.6)

5

neutrino N in Fig. 3, the following dim-5 operators would be generated:

yf

mN

�̄�H̃L. (4.2)

Then the e↵ective �e↵ is

�e↵ ⇠
yf

2

vH
mN

⇠ 10�26. (4.3)

In this model we have a di↵erent branch ratio,

Br(�! �⌫) : Br(�! Z 0⌫) = 1 : 1. (4.4)

If the symmetry is global rather than local, then we do not have the gauge boson Z 0,

and correspondingly Br(�! �⌫) ' 1. However, in this case, in the early Universe � is not

thermalized at TeV in the minimal setup and we may also need to add new fields to deal

with the goldstone mode, which is beyond our discussion in this paper.

From the previous discussion, it is easy to see that we can generalize the above mechanism

with n low-scale  s by assigning the U(1)X charges as

(Q�, Q n , ..., Q 1 ,�) = (n+ 1, n, ..., 1, 1). (4.5)

Then the following e↵ective operator will be generated,

yg

(n+ 1)!mN

fn · · · f1
m n · · ·m 1

�̄�n+1H̃L. (4.6)

Feynman diagram is shown in Fig. 4. In this case branching ratio for our interest would be

Br(�! �⌫) : Br(�! Z 0⌫) = n2 : 1. (4.7)

V. POSITRON FRACTION AND FLUX

In this section we calculate the e± flux at earth �e± , which is the sum of two contributions

from DM decay and astrophysical background, �± = �DM
e± +�bkg

e± , and will compare with the

experimental observation. We use PPPC4DMID [51] to compute �DM
e± , and adopt the Einasto

density profile for DM halo profile [52]:

⇢DM = ⇢sexp


�
2

↵

✓
r

rs

�↵
� 1

◆�
, (5.1)
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FIG. 4: Feynman diagram that generates the e↵ector operator �̄�n+1H̃L.

Three-body-decay channels are induced by the dim-5 operators, eq. 2.8, � ! ��⌫ and

�! �h⌫. The decay width is less dominant than two-body decays if m� . 3TeV due to

�3-body

�2-body
/

1

(4⇡)2
m2

�

v2
H

. (3.7)

The 1/(4⇡)2 supression factor comes from the phase space integration. Four-body-decay

�! ��h⌫ is then even suppressed if m� . 3TeV.

IV. VARIANT MODELS

One can consider some variations of the model discussed in the previous section, by

modifying the U(1)X charge assigments to the dark fields, thereby changing the relative

branching ratios of the DM decays into �+ ⌫ and H + ⌫.

Let us first consider the following assignments:

(Q�, Q�) = (1, 1). (4.1)

Then we can have Yukawa interaction term f �̄�N , and we do not need  to induce � to

decay. However, in this case, we need tiny Yukawa couplings. Integrating out the heavy RH
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In this model we have a di↵erent branch ratio,

Br(�! �⌫) : Br(�! Z 0⌫) = 1 : 1. (4.4)

If the dark symmetry were global rather than local, then we would not have the dark

gauge boson Z 0, and correspondingly Br(� ! �⌫) ' 1. However, in this case, in the early

Universe � would not be thermalized at TeV in the minimal setup and we may also need

to add new fields to deal with the Goldstone mode, which is beyond our discussion in this

paper.

From the previous discussion, it is easy to see that we can generalize the above mechanism

with n low-scale  ’s by assigning the U(1)X charges as

(Q�, Q n , ..., Q 1 ,�) = (n+ 1, n, ..., 1, 1). (4.5)

Then the following e↵ective operator will be generated,
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(n+ 1)!mN
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Feynman diagram is shown in Fig. 4. In this case branching ratio for our interest would be

Br(�! �⌫) : Br(�! Z 0⌫) = n2 : 1. (4.7)

V. POSITRON FRACTION AND FLUX

In this section we calculate the e± flux (�e±) on earth. It is the sum of two contributions

from DM decay 2 and astrophysical background, �± = �DM
e± + �bkg

e± , and will compare with

2 In principle both �� pair annihilation and � decay can give rise to e±. However in our interested parameter

ranges, we have checked that � decay is the dominant one even taking the enhancement factor into account

for � pair annihilation. Therefore we shall only focus on the signature from � decays.
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After gauge sym breaking, 
these operators are generated

that the dark Higgs boson decays dominantly into heavier particles, thus being naturally

flavor dependent, unlike the dark photon Z
0
. DM �’s scattering o↵ nucleus then is possible

by exchanging a � or Z 0, whose cross section depends on ��H , ✏, v�,m�,mZ0 . It is easy to

choose these parameters and evade the stringent constrains from DM direct detection, see

Ref. [47] for example.

Typically, for mZ0 ⇠ O(100)MeV, the kinetic mixing parameter ✏ should be around

[10�10, 10�7], where the upper and the lower bounds come from low energy beam dump

experiments [54] and from BBN and supernovae constraints [55], respectively. On the other

hand, the Higgs portal coupling ��H can be much larger than ✏. ��H in the range 10�7 .
��H . 10�3 would be small enough to give Br(h ! ��) . 2%, but su�ciently large to

thermalize the dark sector around TeV in the early Universe.

After spontaneous gauge symmetry breaking, we have several dimensional e↵ective oper-

ators as follows:

dim-3 :
v2
�
vH

m mN

�̄⌫ , (2.6)

dim-4 :
v2
�

m mN

�̄h⌫ ,
2v�vH
m mN

�̄�⌫, (2.7)

dim-5 :
vH

m mN

�̄��⌫ ,
2v�

m mN

�̄�h⌫, (2.8)

dim-6 :
1

m mN

�̄��h⌫ . (2.9)

omitting the common factor
yfg

4
p
2
.

Discussion of �̄h⌫ operator has been presented in Ref. [51] in great detail. As we shall

see in the next section, it is the operator �̄�⌫ rather than �̄h⌫ that gives the dominant

contribution to the positron flux in our model, if we assume m� ⌧ mH . Then our model

does not su↵er much from the constraints from antiproton and gamma-ray fluxes on the

dark matter decays.

III. DECAY MODES

The dim-3 operator, Eq. (2.6), is a mass term and would induce a tiny mixing between

� and ⌫ with the mixing angle,

� '
yfg

4
p
2
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m mNm�

. (3.1)
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focus only on the case with one N without loss of generality. Therefore, we shall omit the

lower indices for NI , L↵, mN , y↵I and gI from now on.

We are interested in the case where m� ⇠ TeV and v� ⇠ O(100)MeV while mN and m 

are much heavier. Integrate both  and N , we get an interesting dim-6 operator:

yfg

m mN

�̄��H̃L . (2.3)

Diagrammatically, it can be represented as the Feynman diagram in Fig. 1.

The local gauge symmetry of this model is broken by the following vacuum configurations:

hHi =
1
p
2

0

@ 0

vH

1

A , h�i =
v�
p
2
, (2.4)

where vH ' 246GeV and v� ⇠ O(100)MeV for our interest. v� ⇠ O(100)MeV is motivated

for having light mediators in the dark sector such that they can only decay into e±/µ± and

provide a large DM self-scattering cross section [53]. The model Lagrangian (2.1) is basically

the same as the one discussed in Ref. [53] by the present authors, except that the hidden

sector fermions carry definite U(1)X charges and one of them  is very heavy ⇠ 1014GeV in

this work.

In the unitarity gauge, we can replace the scalar fields with

H !
1
p
2

0

@ 0

vH + h(x)

1

A and �X !
v� + �(x)

p
2

, (2.5)

where h and � are two real scalar fields which mix with each other because of the Higgs-portal

interaction, ��HH†H�†�. Through this mixing, dark Higgs � can decay into SM particles.

Another mixing is concerned with three neutral gauge bosons, photon Aµ, Zµ and Xµ. Such

a mixture enable an extra mass eigenstate Z 0
µ
(mostly Xµ) to decay SM fermion pairs. Note

4

Integrating out  and N, we getψ

that the dark Higgs boson decays dominantly into heavier particles, thus being naturally

flavor dependent, unlike the dark photon Z
0
. DM �’s scattering o↵ nucleus then is possible

by exchanging a � or Z 0, whose cross section depends on ��H , ✏, v�,m�,mZ0 . It is easy to

choose these parameters and evade the stringent constrains from DM direct detection, see

Ref. [47] for example.

Typically, for mZ0 ⇠ O(100)MeV, the kinetic mixing parameter ✏ should be around

[10�10, 10�7], where the upper and the lower bounds come from low energy beam dump

experiments [54] and from BBN and supernovae constraints [55], respectively. On the other

hand, the Higgs portal coupling ��H can be much larger than ✏. ��H in the range 10�7 .
��H . 10�3 would be small enough to give Br(h ! ��) . 2%, but su�ciently large to

thermalize the dark sector around TeV in the early Universe.

After spontaneous gauge symmetry breaking, we have several dimensional e↵ective oper-

ators as follows:

dim-3 :
v2
�
vH

m mN

�̄⌫ , (2.6)

dim-4 :
v2
�

m mN

�̄h⌫ ,
2v�vH
m mN

�̄�⌫, (2.7)

dim-5 :
vH

m mN

�̄��⌫ ,
2v�

m mN

�̄�h⌫, (2.8)

dim-6 :
1

m mN

�̄��h⌫ . (2.9)

omitting the common factor
yfg

4
p
2
.

Discussion of �̄h⌫ operator has been presented in Ref. [51] in great detail. As we shall

see in the next section, it is the operator �̄�⌫ rather than �̄h⌫ that gives the dominant

contribution to the positron flux in our model, if we assume m� ⌧ mH . Then our model

does not su↵er much from the constraints from antiproton and gamma-ray fluxes on the

dark matter decays.

III. DECAY MODES

The dim-3 operator, Eq. (2.6), is a mass term and would induce a tiny mixing between

� and ⌫ with the mixing angle,

� '
yfg

4
p
2

v2
�
vH

m mNm�

. (3.1)
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Then  is dominant over  for  !  χ̄ϕν χ̄hν mϕ ≪ mH
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FIG. 5: Positron fraction in three di↵erent sets of parameters. MDM and total decay width � are

chosen to visually match the positron fraction data. Data are extracted from Ref. [58].

and the fluxes for following three cases in Fig. 5,

1 : MDM = 2.0TeV, � = 0.16⇥ 10�26s�1, Br = 0.5, (5.6)

2 : MDM = 3.0TeV, � = 0.20⇥ 10�26s�1, Br = 0.8, (5.7)

3 : MDM = 3.5TeV, � = 0.24⇥ 10�26s�1, Br = 1.0. (5.8)

Cases 1 and 2 correspond to the e↵ective operators with local gauge symmetry, ��H̃L and

���H̃L, respectively, whereas case 3 corresponds to the ��H̃L with global symmetry or

��nH̃L when n is very large (see Eq. (4.7)).

As shown in Fig. 5 for positron fraction, when the branching ratio of � ! �⌫ increases,

we need to increase the DM mass MDM and decay width � too. This feature can be easily

understood as follows. Since Z 0
! e+e� gives harder e± spectra than � ! µ+µ� does,

decreasing the contribution of Z 0
! e+e� would need to be compensated by larger MDM

and �.

For completeness, we also show the positron flux �e+ and the electron+positron total

flux �e�+e+ in Fig. 6 with the same sets of parameters chosen above. Note that there is

no considerable di↵erence in three cases we considered, except in the high energy regime

& 500GeV. Since µ+µ� is the dominant channel (µ+µ� : e+e� & 3.7 : 1), we would expect
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FIG. 6: Positron flux (left) and electron+positron flux (right) [59–61] for three di↵erent sets of

parameters described in the text, Eqs. (5.6)-(5.8).

that all cases can give reasonable fits to both �e+ and �e�+e+ .

Since our discussions are focused in the mass range, 2mµ < mZ0/� < 2m⇡0 , there is no

hadronic decay modes for Z 0/�. Then it would not generate additional antiproton flux. The

potential constraints come from the �-ray flux which are generated by the e± and µ±. It is

expected that constraint would be more stringent for smaller Br(� ! �⌫), since e± gives

larger �-ray flux than µ± does. The constraint from the �-ray, especially from the galaxy

center region in case of DM pair annihilation, is also largely dependent on the assumed DM

density profile. For example, the gamma-ray constraint from the galaxy center will exclude

the preferred region if NFW profile is assumed [27]. However, the bound could be much

weaker if a flatter Einasto-like profile is used. And the �-ray constraint is even weaker for

decaying dark matter scenario (see Ref. [62] for comparison for example). Therefore, in

our scenario with decaying DM for AMS02 positron excess, the µ±-channel should be safely

allowed.
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FIG. 2. Neutrino flux from DM �’s decay with m� ⇠ 5PeV and lifetime ⌧� = 1/� ⇠ 2 ⇥ 1028s
and IceCube Data [1]. The left (right) panel used a broken (unbroken) power law (BPL) for
astrophysical neutrino flux with a red dot-dashed curve. DM’s contributions and total flux are
labeled with purple dashed and blue solid curves, respectively. See details in the text.
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FIG. 3. Same as Fig. 2 but with preliminary updated results based on 4-year data [61], with
J
BPL
0 = 5.6⇥10�8GeV/cm2/s/sr and ⌧� ⇠ 1.5⇥1028s (left) , and J

UPL
0 = 2.1⇥10�8GeV/cm2/s/sr

and ⌧� ⇠ 2⇥ 1028s (right).

There are some crucial di↵erences between our model and some others in the literature.
For example, the authors in Ref. [23, 29] considered the e↵ective operator, yL̄ eH� with
y ⇠ 10�30, which induces mainly two-body decay of DM �,

� ! ⌫h, ⌫Z, l
±
W

µ
.

In this scenario, the neutrino spectrum shows that there should be no gap between 400 TeV ⇠

1 PeV [26]. Our model predicts that the dominant decay mode are

� ! �/Z
0 + h+ ⌫, �/Z

0 + Z + ⌫, �/Z
0 +W

± + l
⌥
,
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II. MODEL

We consider a dark sector with a dark Higgs field � and a Dirac fermion DM � associated
U(1)X gauge symmetry. Their U(1)X charges are assigned as follows 2:

(Q�, Q�) = (1, 1).

We begin with the following renormalizable and gauge invariant Lagrangian including just
one singlet right-handed (RH) neutrino N and one lepton flavor (more Ns and/or flavors
can be easily generalized):

L =LSM +
1

2
N̄i/@N �

✓
1

2
mNN̄

c
N + yL̄ eHN + h.c.

◆
�

1

4
Xµ⌫X

µ⌫
�

1

2
sin ✏Xµ⌫F

µ⌫

Y

+Dµ�
†
D

µ�� V (�, H) + �̄
�
i /D �m�

�
�� (f �̄�N + h.c.) , (2.1)

where L = (⌫ l)T is a left-handed (LH) SM SU(2) lepton doublet, H is the SM Higgs
doublet, Xµ⌫ = @µX⌫ � @⌫Xµ is the field strength for U(1)X gauge field Xµ, F

µ⌫

Y
is for SM

hypercharge U(1)Y , and ✏ is the kinetic mixing parameter. Two types of Yukawa couplings,
y and f , can be taken as real parameters, ignoring CP violation for simplicity. We define
covariant derivative as Dµ = @µ � igXXµ. Since we are interested in explaining the IceCube
PeV events in terms of DM � decay, we shall take m� ⇠ PeV. Other parameters in our
model are free variables.

The scalar potential V of this model is given by

V = �H

✓
H

†
H �

v
2
H

2

◆2

+ ��H

✓
H

†
H �

v
2
H

2

◆✓
�†��

v
2
�

2

◆
+ ��

✓
�†��

v
2
�

2

◆2

, (2.2)

Both electroweak and dark gauge symmetries are spontaneously broken by the nonzero

vacuum expectations values of H and �: hHi =
�
0, vH/

p
2
�T

, h�i = v�/
p
2 . Here vH '

246GeV is the same as SM value but v� might be taken as a free parameter. In the unitarity
gauge, we can replace the scalar fields with

H !
1
p
2

✓
0

vH + h(x)

◆
and � !

v� + �(x)
p
2

. (2.3)

Note that h and � shall mix with each other thanks to the Higgs-portal operator, (the ��H

term) 3. Through this mixing, � can decay into SM particles. Another important mixing
happens among three neutral gauge bosons, photon Aµ, Zµ and Xµ. Such a mixture would
enable an extra mass eigenstate Z

0
µ
(mostly Xµ) to decay SM fermion pairs. Then DM

� scattering o↵ nucleus is possible by the Z
0 exchange, and the cross section essentially

depends on ✏, v�,mZ0 . It is easy to choose small ✏, or heavy masses to evade the constraints
from DM direct detection [54].

When the right-handed neutrino N is much heavier than �, we can integrate it out and
obtain an e↵ective operator,

yf

mN

�̄�H†
L+ h.c., (2.4)

2 A similar setup with di↵erent dark charge assignments has been considered for the AMS02 positron

excess [48]. One may also use discrete symmetries, see Ref. [49] for example.
3 The �h� term can also help to stabilize the electroweak vacuum [50–53].
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3

Integrating out the RH neutrino, we get

which would make � decay possible but long lived. After spontaneous gauge symmetry
breaking, we have several higher dimensional e↵ective operators from the aforementioned
operator Eq. (2.4) as follows:

v�vH

mN

�̄⌫,
v�

mN

�̄h⌫,
vH

mN

�̄�⌫,
1

mN

�̄�h⌫, (2.5)

with the common factor
yf

2
for all these operators. If kinematically allowed, all the above

operators induce � decays into di↵erent channels with fixed relative branching ratios. Within
the heavy � limit, m� � m�,mZ0 ,mh,mZ ,mW , the mass operator �̄⌫ in Eq. (2.5) would
induce a tiny mixing between � and ⌫ with the mixing angle � approximately given by

� '
yf

2

v�vH

mNm�

. (2.6)

Then the gauge interactions for � and ⌫ will generate the decay channels,

� ! Z
0
⌫, Z⌫,W

⌥
l
±
, (2.7)

with their branching ratios being proportional to ⇠ v
2
H

: v2
�
: 2v2

�
. Two dim-4 operators,

�̄h⌫ and �̄�⌫, would lead � to the following decays,

� ! h⌫,�⌫, (2.8)

with their branching ratios being proportional to ⇠ v
2
�
: v2

H
. It is also straightforward to get

the following relation for the branching ratios,

Br(� ! �⌫) : Br(� ! Z
0
⌫) ' 1 : 1 . (2.9)

Therefore, all the decay branching ratios are basically calculable and completely fixed in
this model 4. Note that the decay modes with Z

0 or � are unique features of DM models
with dark gauge symmetries 5.

Another interesting phenomenon in this model is that three body decay channel � ! �h⌫

is dominant over all other channels when m� � v�:

�3 (� ! �h⌫)

�2 (� ! h⌫,�⌫)
'

1

16⇡2

m
2
�

v
2
�
+ v

2
H

� 1, (2.10)

since we actually have an enhancement from heavy m� even though there is a phase space
suppression from three-body final states. There are another three-body decay channels that
are equally important:

� ! �/Z
0 + h+ ⌫, �/Z

0 + Z + ⌫, �/Z
0 +W

± + l
⌥
,

with branching ratios 1 : 1 : 2 due to the Goldstone boson equivalence theorem. In the
following, if not otherwise stated explicitly, we use � ! �h⌫ to represent all these channels
and in numerical calculations we take all of them into account.

4 This is also true in the model for the AMS02 positron excess [48].
5 This is also true of three-body decays of DM discussed in the following paragraph.

4

After EW and DG SB, we get

� ! Z 0⌫, Z⌫,W⌥l± ⇠ v2
H

: v2
�
: 2v2

�

� ! h⌫,�⌫ ⇠ v2
�
: v2

H

� ! �⌫, Z 0⌫ ⇠ 1 : 1



which would make � decay possible but long lived. After spontaneous gauge symmetry
breaking, we have several higher dimensional e↵ective operators from the aforementioned
operator Eq. (2.4) as follows:

v�vH

mN

�̄⌫,
v�

mN

�̄h⌫,
vH

mN

�̄�⌫,
1

mN

�̄�h⌫, (2.5)

with the common factor
yf

2
for all these operators. If kinematically allowed, all the above

operators induce � decays into di↵erent channels with fixed relative branching ratios. Within
the heavy � limit, m� � m�,mZ0 ,mh,mZ ,mW , the mass operator �̄⌫ in Eq. (2.5) would
induce a tiny mixing between � and ⌫ with the mixing angle � approximately given by

� '
yf

2

v�vH

mNm�

. (2.6)

Then the gauge interactions for � and ⌫ will generate the decay channels,

� ! Z
0
⌫, Z⌫,W

⌥
l
±
, (2.7)

with their branching ratios being proportional to ⇠ v
2
H

: v2
�
: 2v2

�
. Two dim-4 operators,

�̄h⌫ and �̄�⌫, would lead � to the following decays,

� ! h⌫,�⌫, (2.8)

with their branching ratios being proportional to ⇠ v
2
�
: v2

H
. It is also straightforward to get

the following relation for the branching ratios,

Br(� ! �⌫) : Br(� ! Z
0
⌫) ' 1 : 1 . (2.9)

Therefore, all the decay branching ratios are basically calculable and completely fixed in
this model 4. Note that the decay modes with Z

0 or � are unique features of DM models
with dark gauge symmetries 5.

Another interesting phenomenon in this model is that three body decay channel � ! �h⌫

is dominant over all other channels when m� � v�:

�3 (� ! �h⌫)

�2 (� ! h⌫,�⌫)
'

1

16⇡2

m
2
�

v
2
�
+ v

2
H

� 1, (2.10)

since we actually have an enhancement from heavy m� even though there is a phase space
suppression from three-body final states. There are another three-body decay channels that
are equally important:

� ! �/Z
0 + h+ ⌫, �/Z

0 + Z + ⌫, �/Z
0 +W

± + l
⌥
,

with branching ratios 1 : 1 : 2 due to the Goldstone boson equivalence theorem. In the
following, if not otherwise stated explicitly, we use � ! �h⌫ to represent all these channels
and in numerical calculations we take all of them into account.

4 This is also true in the model for the AMS02 positron excess [48].
5 This is also true of three-body decays of DM discussed in the following paragraph.
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FIG. 2. Neutrino flux from DM �’s decay with m� ⇠ 5PeV and lifetime ⌧� = 1/� ⇠ 2 ⇥ 1028s
and IceCube Data [1]. The left (right) panel used a broken (unbroken) power law (BPL) for
astrophysical neutrino flux with a red dot-dashed curve. DM’s contributions and total flux are
labeled with purple dashed and blue solid curves, respectively. See details in the text.
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FIG. 3. Same as Fig. 2 but with preliminary updated results based on 4-year data [61], with
J
BPL
0 = 5.6⇥10�8GeV/cm2/s/sr and ⌧� ⇠ 1.5⇥1028s (left) , and J

UPL
0 = 2.1⇥10�8GeV/cm2/s/sr

and ⌧� ⇠ 2⇥ 1028s (right).

There are some crucial di↵erences between our model and some others in the literature.
For example, the authors in Ref. [23, 29] considered the e↵ective operator, yL̄ eH� with
y ⇠ 10�30, which induces mainly two-body decay of DM �,

� ! ⌫h, ⌫Z, l
±
W

µ
.

In this scenario, the neutrino spectrum shows that there should be no gap between 400 TeV ⇠

1 PeV [26]. Our model predicts that the dominant decay mode are

� ! �/Z
0 + h+ ⌫, �/Z

0 + Z + ⌫, �/Z
0 +W

± + l
⌥
,
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The left panel shows individual contribution of di↵erent final states from �’s decay, ⌫ (blue dot-
dashed curve) and h/� (red dashed curve), respectively. The right panel presents the galactic (blue
dashed curve) and extragalactic (red dot-dashed curve) neutrino flux.

10�6GeV/cm3 and ⌦� ' 0.27 is DM �’s fraction. The Hubble parameter H is related to its
present value through

H = H0

p
⌦⇤ + ⌦m(1 + z)3 + ⌦r(1 + z)4,

⌦�, ⌦m and ⌦r are energy fractions of dark energy, all matter, and radiations, respectively.
We shall use the latest results from Planck [57] for numerical evaluation.

IV. NUMERICAL RESULTS

To compute the neutrino flux from DM decay, we first need to calculate the total and
di↵erential three-body decay width for � ! �+h+⌫. In the heavy � limit, we have obtained
the total width

� '
m

3
�

768⇡3

✓
yf

mN

◆2

, (4.1)

and normalized di↵erential decay widths

1

�

d�

dE⌫

' 24E2
⌫
/m

3
�
, 0 < E⌫ < m�/2, (4.2)

1

�

d�

dEh

' 12Eh (m� � Eh) /m
3
�
, 0 < Eh < m�/2, (4.3)

1

�

d�

dE�

' 12E� (m� � E�) /m
3
�
, 0 < E� < m�/2. (4.4)

The details of the calculation are given in the Appendix where complete formulas with
nonzero mass parameters are also presented. The above di↵erential widths are essential
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FIG. 3. Same as Fig. 2 but with preliminary updated results based on 4-year data [61], with
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0 = 5.6⇥10�8GeV/cm2/s/sr and ⌧� ⇠ 1.5⇥1028s (left) , and J

UPL
0 = 2.1⇥10�8GeV/cm2/s/sr

and ⌧� ⇠ 2⇥ 1028s (right).

There are some crucial di↵erences between our model and some others in the literature.
For example, the authors in Ref. [23, 29] considered the e↵ective operator, yL̄ eH� with
y ⇠ 10�30, which induces mainly two-body decay of DM �,

� ! ⌫h, ⌫Z, l
±
W

µ
.

In this scenario, the neutrino spectrum shows that there should be no gap between 400 TeV ⇠

1 PeV [26]. Our model predicts that the dominant decay mode are

� ! �/Z
0 + h+ ⌫, �/Z

0 + Z + ⌫, �/Z
0 +W

± + l
⌥
,
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FIG. 4. Same as the right panel of Fig. 3 but with m� = 8PeV, ⌧� ⇠ 1.7 ⇥ 1028s (left), and
m� = 10PeV, ⌧� ⇠ 1.5⇥ 1028s (right).

.

which is a consequence of U(1)X dark gauge symmetry and the dark charge assignments of
the dark Higgs and dark matter fermion �. The neutrino spectra from primary � decay and
the secondary decays of h and � have di↵erent shapes and could account for the possible
gap. However, we should note that the current data can not favor one over another yet due
to its low statistics. Also the neutrino flux in our model is softer than the one predicted in
Ref. [23, 29], for example.

In Ref. [32], leptophilic three-body decay induced by dimension-six L̄↵l�L̄�� was consid-
ered with global U(1) or A4 flavor symmetries. Besides the neutrino spectrum di↵erence,
our model involves an additional gauge boson which mediates the DM-nucleon scattering,
and could be tested by DM direct searches.

Our scenario is also di↵erent from those in which DM decay is also responsible for the
low-energy flux [24]. The DM lifetime in Ref. [24] should be around 2 ⇥ 1027s, as mainly
determined by the low energy part of events. This is partly due to the reason that the
branching ratio into neutrinos and bb̄ there should be about 10% and 90%, respectively, to
account for the possible gap. On the other hand, in our scenario 1/2 of the decay channels
have prompt neutrinos. Another main di↵erence is that three-body-decay usually gives
broader spectra at PeV range than two-body-decay considered in Ref. [24], but more data
is required in order to discriminate this di↵erence.

Assuming the dark photon Xµ is much heavier than Z, the DM-nucleon scattering cross
section can be roughly estimated as

��N ⇠

✓
m

2
Z

m
2
X

◆2

sin2
✏⇥ 10�39cm2

. (4.8)

10�39cm2 is the typical cross section value for SM Z-mediating DM-nucleon process. Com-
paring it with the direct detection bound for 100GeV DM, we should have

��N < 10�45cm2
⇥

m�

100GeV
, (4.9)
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Relic density of χ

• : above the Unitarity bound for 
thermal DM


• Nonthermal productions (freeze-in), gravitational 
productions, etc..


• See the paper for an explicit example

mχ ∼ O(1 − 10) PeV
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FIG. 5. The gamma-ray flux from DM decay with m� ⇠ 5PeV and lifetime ⌧� ⇠ 2 ⇥ 1028s,
confronted with constraints from Fermi-LAT [67] and KASCADE [68] data.
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APPENDIX

Here we show the complete di↵erential decay width for � ! h+ �+ ⌫. Throughout the
calculation, we work in the rest frame of �, so �’s momentum is (m�, 0, 0, 0). For unpolarized
�, we have

d� =
1

(2⇡)3
1

8m�

X

pol

|M|2dE⌫dEh =
1

(2⇡)3

✓
yf

2mN

◆2

E⌫dE⌫dEh, (6.1)

where we have used the averaged, squared matrix element,

X

pol

|M|
2 = 2

✓
yf

mN

◆2 �
m�E⌫ �m

2
⌫

�
' 2

✓
yf

mN

◆2

m�E⌫ .
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The detector was in this configuration from 23 September 2022 until 11 
September 2023, when seven further lines were installed. After remov-
ing data acquired in the detector commissioning phase and during 
detector calibration periods, 287.4 days of data taking were selected for 
analysis with this configuration. During this period, about 110 million 
events were triggered and KM3-230213A is the highest-energy event 
observed. KM3-230213A is visualized in Fig. 1. A total of 28,086 hits 
were registered by the 21 detection lines. Owing to the large amount of 
detected light, the PMTs closest to the muon trajectory are saturated. 
As expected for very-high-energy muons, at least three large showers, 
probably because of energy-loss processes, are observed along the 
track (more details are provided in the Supplementary Materials).

The muon trajectory is reconstructed from the measured times and 
positions of the first hits recorded on the PMTs, using a maximum- 
likelihood algorithm, described in Methods. KM3-230213A is the event 
with the best track log-likelihood among all those collected in this detec-
tor configuration, indicative of a highly relativistic muon travelling 
several hundreds of metres through the detector. The direction of KM3-
230213A is reconstructed as near-horizontal, originating 0.6° above 
the horizon at an azimuth of 259.8° (azimuth angles increase clock-
wise, with north at 0°). The uncertainty on the direction is estimated  
to be 1.5° (68% confidence level), dominated by the present systematic 
uncertainty on the absolute orientation of the detector. The origin of 
this uncertainty is described in Methods. A dedicated sea campaign 
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Fig. 1 | Views of the event. a, Side and top views of the event. The reconstructed 
trajectory of the muon is shown as a red line, along with an artist’s representation 
of the Cherenkov light cone. The hits of individual PMTs are represented by 
spheres stacked along the direction of the PMT orientations. Only the first  
five hits on each PMT are shown. As indicated in the legend, the spheres are 
coloured according to the detection time relative to the first triggered hit. The 
size of the spheres is proportional to the number of photons detected by the 

corresponding PMT. The locations of the secondary cascades, discussed in 
the Supplementary Material, are indicated by the black spheres along the muon 
trajectory. The north direction is indicated by a red arrow. A 100-m scale and 
the Eiffel Tower (330 m height, 125 m base width) are shown for size comparison. 
b, Zoomed-in view of the optical modules that are close to the first two observed 
secondary showers in the event. Here light-blue spheres represent hits that 
arrive within −5 to 25 ns of the expected Cherenkov arrival times.
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observed at the coordinates of KM3-230213A and 90% confidence level 
upper limits on the one-flavour neutrino flux normalization at 1 GeV, 
Φν ν+

1GeV, assuming a neutrino spectrum of Φ E Φ E( ) = ( (GeV))ν ν ν ν+ +
1GeV −2,  

were set and are reported in Methods. The most stringent limit on the 
point-source origin is 1.2 × 10−9 GeV−1 cm−2 s−1. Although these searches 
are also sensitive to very-high-energy events, the signal for an E−2 spec-
trum is expected in the TeV–PeV range and the reported limits are 
therefore applicable in this area.

Cosmic neutrino flux
To associate a flux to the event, the exposure of the detector for very- 
high-quality and high-energy tracks is computed through simulations. 
The exposure corresponds to selection criteria that require a good 
track-reconstruction likelihood (log-likelihood ratio larger than 500), 
a long track length within the detector (larger than 250 m) and 
N > 1,500trig

PMT .
Considering the central (90%) 72 PeV–2.6 EeV energy range, the 

steady isotropic flux that would produce one event is

E Φ E( ) = 5.8 × 10 GeV cm s sr ,2
−3.7
+10.1 −8 −2 −1 −1

for which the confidence intervals are computed according to  
ref. 26. The 95% and 99.7% confidence level intervals are [0.30–29.8] 
and [0.02–47.7] × 10−8 GeV cm−2 s−1 sr−1, respectively. This represents 
the KM3NeT standalone flux measurement in the 335 days of livetime 
of ARCA with 19 and 21 detection lines.

In Fig. 5, the flux measurement is compared with measured and 
predicted neutrino fluxes and limits. The KM3NeT standalone flux 
measurement exceeds present limits from IceCube27 and Auger28. A pos-
sible interpretation is that the KM3NeT event is an upward fluctuation.  

In such a scenario, described in Methods, one event such as KM3-
230213A would be expected in 70 years of observation with this detec-
tor configuration, and the event is an upward fluctuation at the level 
of 2.2σ.

The expected event rates in ARCA for various extrapolations of the 
flux measured by IceCube are discussed in the Supplementary Mate-
rial. Considering extrapolations of the power-law fit of the IceCube 
measurements, these would yield at most 0.12 events in the 335 days of 
analysed KM3NeT data with 19 and 21 detection lines after the selection 
for track events described above. The observation of KM3-230213A, 
marginally consistent with such expectation, may hint at the emergence 
of a new component in the flux.

A viable alternative hypothesis is cosmogenic neutrino produc-
tion8,29,30, in which neutrinos are generated by the interaction of cosmic 
rays with extragalactic background light or the cosmic microwave back-
ground. The expected number of cosmogenic events in the selected 
data varies between 1.5 × 10−3 (ref. 31) and 0.47 (ref. 32), depending on 
the assumed injection spectrum and cosmic-ray mass composition, 
as well as the cosmological evolution of sources31–40. The envelope of 
a selection of cosmogenic models is shown as a grey-shaded band in 
Fig. 5. Other scenarios of diffuse emission from neutrino production 
in the source environment are shown as the yellow-shaded band in 
Fig. 5. Among these are transient emitters such as gamma-ray-bursts 
and tidal-disruption events34,39,41–44, low-luminosity BL Lacs45 and 
flat-spectrum radio quasars46.

Overall, the detection of a muon neutrino with an energy greater 
than 100 PeV provides evidence for the existence of ultra-high-energy 
neutrinos in nature. The new multiPMT optical module design and the 
excellent optical properties of Mediterranean seawater have allowed 
the characterization of the neutrino interaction and have facilitated 
this breakthrough in neutrino astronomy.
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Fig. 5 | Comparison with models and earlier measurements. Shown is the 
energy-squared per-flavour astrophysical flux derived from the observation  
of KM3-230213A with measurements and theoretical predictions, assuming 
equipartition (νe:νµ:ν% = 1:1:1). The blue cross corresponds to the flux needed  
to achieve one expected event after the track selection described in the text,  
in the central 90% neutrino energy range associated with KM3-230213A, 
illustrated with the horizontal span; the vertical bars represent the 1σ, 2σ and 3σ 
Feldman–Cousins confidence intervals on this estimate. The purple and pink 
shaded regions represent the 68% confidence level contours of the IceCube 
single-power-law (SPL) fits (Northern Sky Tracks, NST5) and High-Energy 
Starting Events (HESE)7, respectively: the darker-shaded regions are the 
respective 90% central energy range at the best fit (dashed line), whereas the 

lighter-shaded regions are extrapolations to higher energies. The purple and 
pink crosses are the piece-wise fit from the same analyses, whereas the orange 
cross corresponds to the IceCube Glashow resonance event11. The dotted lines 
are upper limits from ANTARES (95% confidence level47), Pierre Auger (90% 
confidence level, for an E−2 neutrino spectrum28, corrected to convert from 
limits in half-decade to one-decade bins) and IceCube (90% confidence level, 
estimated assuming an E−1 neutrino spectrum in sliding one-decade bins27). The 
grey-shaded band comprises a variety of cosmogenic neutrino expectations 
following several models of cosmic-ray acceleration and propagation, whereas 
the yellow-shaded band comprises several scenarios of diffuse transient and 
variable extragalactic sources, both reported in the Supplementary Material.
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230213A event. In this model, we also include super-heavy right-handed (RH) neutrinos.
Such RH neutrinos appear in the type-I seesaw mechanism, which explains the origin of light
neutrino masses. It is worth mentioning that among the three RH neutrinos, two account for
the light neutrino masses, while the remaining one assists in the long-lived DM decay and its
production through an effective operator generated by super-heavy RH neutrino. Since a very
high value of the VEV v� is required in enhancing the two-body decay of DM over the three-
body decay, which demands v� � M�, where M� is the DM mass, typically in the O(100)
PeV scale for explaining the KM3NeT signal. Such a heavy VEV leads to detection prospects
of the present scenario at future GW detectors. Moreover, we have also produced such heavy
DM candidates by the freeze-in mechanism through an effective higher-dimensional operator.
We have found that such a high-mass regime can be easily achieved for such high values of
the VEV without fine-tuning the model parameters. In other words, we can explain the DM
relic density and lifetime using the model parameters described in Sec. 2, with TR ⇠ 1010

GeV,  ⇠ 10�4, MN ⇠ 1012 GeV, and y ⇠ 10�22. The parameters value are natural for the
freeze-in kind of DM production, and a tiny value of y is needed to ensure a DM lifetime of
O(1029) sec, which is typical for all DM scenarios requiring a decaying DM particle.

This paper is organized as follows. In Sec. 2 we introduce our DM model with dark
U(1)X gauge symmetry, heavy right-handed neutrino portal and Higgs portal interactions.
In Sec. 3 we outline the general formalism for calculating neutrino flux from galactic and
extragalactic DM decay. We present both total and differential decay widths for the relevant
three-body decay in our model and compare the numerical results with IceCube data. In
Sec. 5 we discuss a possible mechanism to generate the correct relic density for DM within
our scenario of decaying heavy Dirac fermion DM and detection constraints. In Sec. 4, we
discuss gravitational signature induced by cosmic strings. Finally, we conlcude in Sec. 6.

2 Dark U(1)X model

In this section, we recapitulate the decaying heavy Dirac fermion DM model proposed in Ref.
[39]. Let us start with dark U(1)X gauge symmetry including a Dirac fermion DM � and a
dark Higgs field � [39]. Their charge assignments under the dark U(1)X symmetry are as
follows: (Q�, Q�) = (1, 1). We consider the renormalizable and gauge-invariant Lagrangian
that includes singlet right-handed (RH) neutrinos N ’s which are gauge singlets:

L = LSM +
1

2
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where L = (⌫, l)T denotes the left-handed (LH) SM lepton doublet, and H is the SM Higgs
doublet. The field strength tensor of the U(1)X gauge field Xµ is given by Xµ⌫ = @µX⌫�@⌫Xµ,
while F

µ⌫

Y
corresponds to that of the SM gauge field for U(1)Y hypercharge. The parameter ✏

represents the kinetic mixing between the SM hypercharge and the new U(1)X gauge boson.
The covariant derivative is defined as Dµ = @µ� igXQXXµ. Here we introduce two new types
of Yukawa couplings, y and , which are assumed to be real for simplicity.

The scalar potential V (�, H), including the dark Higgs field �, is given by

V (�, H) = �H

✓
H

†
H � v

2
H

2

◆2

+��H

✓
H

†
H � v

2
H

2

◆ 
�†��

v
2
�

2

!
+��

 
�†��

v
2
�

2

!2

. (2.2)

– 3 –

Both electroweak (EW) and dark gauge symmetries are spontaneously broken by the nonzero
vacuum expectation values of H and �. In the unitarity gauge, the scalar fields read

H =
1p
2

✓
0

vH + h

◆
and � =

v� + �p
2

. (2.3)

Two electrically neutral scalars h and � can mix with each other due to the Higgs-portal
coupling, ��H . Thanks to this mixing, dark Higgs � can decay into SM particles.

Likewise, three neutral gauge bosons, photon Aµ, Zµ and Xµ can mix with each other
due to the kinetic mixing ✏. Here we take the kinetic mixing to be small, ✏ ⌧ 1. New physical
gauge boson Z

0
µ in the mass eigenstate is mostly dark photon Xµ which can decay SM fermion

pairs.
When the RH neutrino NR is significantly heavier than the dark matter �, it can be

integrated out, yielding the dim–5 effective operator [39]:

y

mN

�̄�H†
L+ h.c. (2.4)

This term enables the decay of � by allowing it to couple to light particles. However, dark
matter can remain long-lived due to the superheavy RH neutrino masses and the appropriate
choice of Yukawa coupling constants. After the spontaneous breaking of gauge symmetries, the
operator in Eq. (2.4) leads to the emergence of various higher-dimensional effective operators
[39]:
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If kinematically allowed, all of the above operators induce � decays into various channels with
fixed relative branching ratios. Under the assumption that � is much heavier than �, Z 0, h, Z,
and W , the mass operator �̄⌫ in Eq. (2.5) gives rise to a suppressed mixing between DM and
the active neutrino. The mixing angle ✓ between DM and active neutrino is approximately
given by
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Consequently, the gauge interactions of � and ⌫ induce decay modes for � as follows:
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with their branching ratios being proportional to ⇠ v
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�
. The dim-4 operators �̄h⌫

and �̄�⌫ in Eq. (2.5) induce the following decays of �:

� ! h⌫,�⌫, (2.8)

with their branching ratios being proportional to ⇠ v
2
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: v2

H
. Therefore, we can evaluate all

the decay branching ratios in this model.
Additionally, this model permits the three-body decay � ! �h⌫, which can dominate

depending on the mass hierarchy between � and v�. We can compare two body decay channel
to � ! �h⌫ three body decay channel:
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Results

Figure 1. Neutrino (left-panel) and Gamma-ray (right-panel) spectra from DM ω decay with
Mω = 440PeV and lifetime εω = 1/! = 5 → 1029s. In the left panel, bounds come from IceCube
[43, 44]. Blue cross corresponds to KM3NeT with 3ϑ C.L [1]. It presents the galactic (blue dotted
curve) and extragalactic (red dotted curve) neutrino flux. In the right panel, orange crosses correspond
to gamma-ray constraints from LHAASO-KM2A [45] whereas EAS-MSU [46] and PAO [47] limits are
shown in brown and green arrows, respectively.

where the critical energy density ϖc =
3H2

0
8ωG = 5.5 → 10→6GeV/cm3 and ”ε ↑ 0.27 is DM ω’s

fraction, ”!, ”m and ”r are energy fractions of dark energy, total matter, and radiations,
respectively. We have adopted the Planck results [41] for the numerical evaluation. Lastly,
sϑ(Eϑ , z) is the neutrino opacity of the Universe, assuming that the neutrinos are massless.
The neutrino opacity sϑ(Eϑ , z) is given by [42]

sϑ(Eϑ , z) =

{
7.4→ 10→17(1 + z)7/2 (Eϑ/TeV) , for 1 ↓ z < zeq
1.7→ 10→14(1 + z)3 (Eϑ/TeV) , for z ↔ zeq

(3.8)

where zeq ↗ 3200 [41] is the redshift value corresponds to the matter-radiation equality epoch
during the Universe evolution.

Now we discuss neutrino and gamma-ray fluxes induced by decaying heavy DM. In the
left panel (LP) of Fig. 1, we show the neutrino flux originated from both our galaxy,(ϱ, b) =
(210.06↑,↘11.13↑), and extragalaxy. The neutrino flavor ratio arriving at the Earth is as-
sumed to be 1 : 1 : 1. Here we consider the arrival direction (RA: 94.3↑, Dec: ↘ 7.8↑) of
KM3-230213A with an angular uncertainty of ±1.5↑ with 1ϑ C.L [1]. In the left panel, we
describe the neutrino spectra from the heavy DM decay. Red crosses denote the IceCube data
[43, 44]. Left dashed line represents the bound coming from the ANTARES data [48]. Right
dashed lines above ↗ 10PeV are upper limits of neutrino flux coming from no-observations of
neutrinos beyond that in IceCube and Auger [43, 44]. The orange cross is the most energetic
neutrino event detected by IceCube neutrino telescope [49]. We also show the preferred flux
of the KM3-230213A event by Blue cross with 3ϑ C.L. Blue and red dotted lines show galactic
and extragalactic contributions from heavy decaying DM, respectively. We can explain the
neutrino event detected by the KM3-NeT neutrino telescope through the decaying heavy DM.

On the other hand, heavy DM ω decay can generate secondary gamma-ray flux. In the
right panel (RP) of Fig. 1, we show the gamma-ray spectra induced by the heavy DM decay,
including photons from the cascade decays. We compute the gamma-ray spectra from the
inner Galactic plane, 15↑ < ϱ < 125↑, ↘ 5↑ < b < 5↑. The orange crosses correspond to
LHAASO-KM2A data [45]. Upper limites from EAS-MSU [46] and PAO [47] Collaborations

– 6 –



GW production from string

Figure 2. Variation of relic GW density with frequency for di!erent values of string tension. Di!erent
colours represent the sensitivity prospects of various future GW detectors. EPTA data excludes cosmic
string tensions Gµ > 2→ 10→11.

where the contribution to the GW from an individual frequency mode is given by [60],
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In the above expression, Fω = 0.1 denotes the fraction of energy released by long strings
into loops. The parameter tF is the time when the string network reaches the scaling regime,
which occurs shortly after cosmic string formation during symmetry breaking. The quantity
t0 denotes the present time, and t̃ is the time of GW emission, over which the integration runs
from tF to t0. The function Ceff (t(k)i) takes the value 5.5 during the radiation-dominated era
and 0.41 during the matter-dominated era in the early Universe, as obtained from simulation
[58, 59, 61, 62]. The loop formation time contributing to mode k is given by

t
(k)
i

(
t̃, f

)
=

1

ε+ ”Gµ

[
2k

f

a(t̃)

a(t0)
+ ”Gµt̃

]
. (4.8)

In determining the relic GW spectra with the frequency as given in Eq. 4.7, we have used
micrOMEGAs [63] for computing the scale factor a(t) which depends on the relativistic d.o.f
of the universe as well as we have used the inbuilt integration routine in micrOMEGAs for
computing the integration.

In Fig. 2, we show the prospects for GW produced from cosmic strings, as detectable
by various proposed future detectors. In the plot, the low-frequency GW regime primarily
originates from the matter-dominated era, while the high-frequency regime arises from the
radiation-dominated era [60]. The string tension Gµ > 2→10→11 is already in tension with the
EPTA data [37], so we consider Gµ < 10→11 in our analysis. This upper limit is already more
stringent than the bound from the CMB, which is Gµ < 2 → 10→7 [64]. As shown, di!erent
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 by UV freeze-inΩχh2

Figure 3. In the left panel (LP), we show the scatter plot in the (Mω,
ε2

MN
) plane, whereas the right

panel (RP) displays the scatter plot in the (MN , y) plane. The color gradient in the LP represents
di!erent values of the reheating temperature TR, while in the RP, it corresponds to di!erent values of
the coupling ω. The other parameters, which are not shown, have been varied as listed in Eq.(5.10).

Universe due to large Dark Higgs VEV. It has detection prospects at future gravitational
wave detectors.

In the LP of Fig. 3, we show the scatter plot in the (Mω,
ε
2

MN
) plane after imposing the

requirement that the DM mass and its fractional contribution lie within the (1–100)% range,
providing the correct value of ϑω

fω
necessary to explain the KM3NeT signal. An anti-correlation

between Mω and ε
2

MN
is observed, which can be understood from Eqs. (5.8) and (5.9). These

equations show that the DM relic density is proportional to MωTR

(
2ε2

MN

)2
. Therefore, to

achieve a fixed relic density, an increase in one parameter must be compensated by a decrease
in the other, leading to the observed anti-correlation. From the color bar, we also observe
that as ε

2

MN
increases, lower values of TR are required (as seen along the y-axis). Similarly,

along the x-axis, as Mω increases, the required TR also decreases to maintain the correct relic
density. In the RP, we present the scatter plot in the (MN , y) plane, with the color bar
representing di!erent values of ω. The parameters in this plot are related to both the DM
relic density and decay width. As MN increases, the relic density tends to decrease, while it
increases with larger ω. On the other hand, the decay width increases with increasing y. To
obtain the correct value of 1

fω!ω
for explaining the KM3NeT signal, we observe a correlated

variation between MN and y: an increase in MN lowers fω, while an increase in y raises !ω,
keeping the product fω!ω approximately constant. Furthermore, to obtain the correct DM
relic density, MN and ω must also vary in a correlated (roughly linear) manner, as indicated
by the color gradient.

In the LP and RP of Fig. 4, we show the allowed regions in the (Gµ, y) and (fω, εω)
planes, respectively. The color variation in the LP indicates di!erent values of the DM lifetime
εω, while in the RP, it corresponds to the values of ω2/MN . In the LP, we observe an anti-
correlation between Gµ = (vϖ/Mpl)2 and the Yukawa coupling y. This is because the decay
width is proportional to (yvϖ)2; thus, for larger values of Gµ, a smaller value of y is required
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Figure 2. Variation of relic GW density with frequency for different values of string tension. Different
colours represent the sensitivity prospects of various future GW detectors. EPTA data excludes cosmic
string tensions Gµ > 2⇥ 10�11.

5 Dark Mater Production

In this section, we study the relic density estimation of the heavy DM using the freeze-
in mechanism from ultraviolet dependent physics. For O(100) PeV scale DM, the thermal
freeze-out mechanism fails to generate the correct relic density due to the violation of unitarity
bounds [67]. Therefore, we consider an alternative production mechanism, known as freeze-in
[68]. In our model, the right-handed (RH) neutrino is very heavy and beyond the relevant
scale of our study, so it can be integrated out safely. As a result, the interactions between the
DM and other particles are mediated via dimension-5 operators. We consider a UV freeze-in
mechanism for DM production where DM relic density depends on the UV physics e.g. reheat
temperature TR. The squared amplitude for the DM production process �� ! �̄�̄ is given
by:

|M|2
��!��̄

= 2

✓
22

MN

◆2 �
s� 4M2

�

�
(5.1)

and the corresponding cross section is:

���!��̄ =
1

8⇡s

✓
22

MN

◆2
"
s� 4M2

�

s� 4M2
�

#1/2 �
s� 4M2

�

�
(5.2)

where we assume MN � M�,M�. DM production is dominated at very high temperatures,
T � M�,M�, allowing us to safely neglect the masses of the particles compared to the
center-of-mass energy

p
s. Under this approximation, the cross section simplifies to:

���!��̄ =
1

8⇡

✓
22

MN

◆2

. (5.3)
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More plots

Figure 4. The LP and RP show scatter plots in the (Gµ, y) and (fω, ωω) planes, respectively. In
the LP, the color gradient represents di!erent values of ωω, while in the RP, it corresponds to values
of ε2

/MN .

to achieve the correct decay width that explains the KM3NeT signal. Consequently, since
the DM lifetime ωω = 1/!ω → 1/(yvε)2, we find that ωω decreases with increasing Gµ and
also with increasing y, consistent with the color gradient in the plot. The cyan region in the
LP corresponds to Gµ < 10→19, which lies below the sensitivity of future GW detectors such
as BBO and hence cannot be probed. However, the other parameter values fall within the
reach of proposed GW detectors, as discussed in Sec. 4. In the RP, we display the scatter
plot in the (fω, ωω) plane, where a sharp correlation emerges, reflecting the requirement to
explain the KM3NeT signal. The DM relic density scales as ”ωh

2 → (ε2/MN )2, while the
DM lifetime follows ωω → 1/(ε/M2

N
). Since both relic density and lifetime also depend on

other parameters such as the DM mass Mω, Dirac Yukawa coupling y, and the VEV vε, we
observe a mixed color distribution—e.g., combinations of green and magenta points—within
the same region of parameter space. As mentioned earlier, all the points shown in Figs. 3
and 4 are consistent with the KM3NeT signal, satisfy the allowed relic density range, and lie
within the reach of future gravitational wave detectors.

6 Conclusion

In this work, we explore dark U(1)X gauge symmetry. This DM model can resolve the KM3-
230213A event in terms of DM decay. Thanks to the heavy RH neutrino portal interaction,
we can naturally obtain very tiny couplings between DM and SM particles. This heavy RH
neutrino can induce DM decays into SM particles, including active neturinos. In the case
of vε ↑ mω, the dominant DM decay channels are ϑ ↓ ϖh, ϖZ, ϱ

±
W

↑ but for the opposite
regime vε ↔ mω DM dominantly decays to three body which case has not been explored in the
present study. To explain the KM3NeT signal, we have considered DM mass at mω = 440 PeV
and its lifetime ωω = 5↗1029 sec as the benchmark point. In calculating the neutrino flux, we
have considered both galactic and extragalactic contributions in determining the neutrino flux
and found the peak at the neutrino energy Eϑ = 220 PeV which can explain the KM3-230213A
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data. In determining the extragalactic contribution we have taken into account the redshift
effect due the matter dilution, dimming of sources and proper length. Moreover, we have also
considered neutrino opacity in determining the extragalactic contribution which reduced the
flux strength by 20%. Additionally, we have also estimated the photon flux predicted by our
work which are below the LHAASO-KM2A and EAS-MSU data. In determining the neutrino
flux as well as the photon flux, we have used the HDMspectra package.

As said we have focussed on v� � m� for the two body dominant decay which results in
the cosmic string production in the early in the detectable range. We have found that cosmic
strings tension in the range Gµ = 10�11 to 10�19 (corresponds to v� ⇠ 1014 GeV to 108 GeV)
can be detected at the different proposed experiments like SKA, BBA/DECIGO, LISA, ET
and CE. The same set of Gµ range can predict the DM mass and lifetime in the correct range
which can explain the KM3NeT data. In estimating the GW spectra in particular the scale
factor and numerical integration we have used the popular package micrOMEGAs. Finally, we
have discussed in detail the PeV-scale DM production using the UV freeze-in mechanism.
We have �� ! �̄� process, suppressed by the heavy right-handed neutrino mass, which is
dimension-5 operator and produces DM in the early Universe dominantly. We have found
that TR ⇠ 1010 GeV,  ⇠ 10�4, MN ⇠ 1012, v� = 1013 GeV and y ⇠ 10�20, we can produce
the DM in the correct range and the low value of y is needed to make the DM decay lifetime
O(1029) sec. We have shown a few scatter plots which can predict DM in the (1 � 100)%
range and at the same time can explain the KM3NeT signal and future possibility to detect
at different GW detectors.
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Conclusion
• Heavy spin-1/2 decaying DM with RHN portals can accommodate 

AMS02/PAMELA positron excess, IceCUBE, and KM3-230213A HE 
neutrino events thanks to 2-body or 3-body decays involving (dark) 
Higgs boson and/or dark photon, depending on  


• For KM3, assuming , the dominant decay channels are 
, all in the SM particles


• Interesting GW from string networks with  , 
, which is in the sensitivity ranges of 

current/future GW detectors


• It is important to impose dark gauge symmetry and dark Higgs boson for 
correct phenomenology

vϕ > = < mχ

vϕ ≫ mχ
χ → hν, Zν, W±l∓

10−19 < Gμ < 10−11

(1010 GeV < vϕ < 1014 GeV)



Old Wine in a New Bottle
• Following the SM construction, I discussed dark gauge symmetry to 

accommodate absolutely stable or long-lived EW mass scale DM particles


• Mathematically consistent models (nothing under the rug)


• Inelastic DM with dark Higgs boson (XENON1T excess)


• DQCD w/ scale sym: EWSB and CDM from DQCD sector


• Decaying heavy spin-1/2 DM for AMS02, IceCUBE, KM3


• Chiral dark sector (750GeV diphoton excess=dark Higgs) 


• These anomalies are all gone, but the underlying models may be useful in 
the future


