Hierarchies and conformal UV Completions

Manfred Lindner

Scalars 2025: Higgs bosons and cosmology

The Success of the Standard Model

The SM is the endpoint of a very successful development: d=4 renormalizable gauge theory

$$\begin{array}{ccc} \mathbf{QED} \Rightarrow & \mathbf{QCD} \Rightarrow & \mathbf{SM} \\ \\ U(1)_{em} \Rightarrow & SU(3)_c \Rightarrow & SU(3)_c \times SU(2)_L \times U(1)_Y \end{array}$$

new ingredient:

Higgs = fundamental scalar

→ spontaneous symmetry breaking

based on QFT in 4d, symmetries & quantum effects

- → excellent agreement of theory and experiment
- → known deficiencies ... → BSM!

Exper. facts, hints, problems:

- Electro-weak scale ≪ Planck scale
- Gauge couplings almost unify
- Neutrino masses & large mixings
- Flavour: Patterns of masses & mixings
- Baryon asymmetry of the Universe
- Dark Matter
- Dark Energy

Theoretical problems:

SM does not exist without cutoff (triviality, vacuum stability)

Gauge hierarchy problem – became worse

Gauge unification & charge quantization

Strong CP problem

Unification with gravity

3 generations, reps., d=4, many parameters

Standard Model Hierarchy Problems

The (old) hierarchy problem: quantum stability of scales

• SM with a cutoff $\Lambda \gg M_H$

$$\delta M_H^2 = \frac{\Lambda^2}{32\pi^2 V^2} \left(6M_W^2 + 3M_Z^2 + 3M_H^2 - 12M_t^2 \right) \sim \Lambda^2 \gg M_H^2$$

- big quantum corrections pull M_H to $\Lambda \rightarrow$ problem!
- SM is renomalizable, no cutoff → no problem!
 Λ ← → new physics (= embedding, typically more scales)

The (new) little hierarchy problem: (so far) nothing showed up

• $\Lambda = \text{scale of some (composite) dynamics: condensates generate GBs, PGBs:}$ $\mathcal{L}_{kin} = f^2 \partial_{\mu} \Sigma^{\dagger} \partial^{\mu} \Sigma \quad \Rightarrow \text{radiative: } M_W, \text{ potential:}$

$$\mu^2 = c \frac{g^2}{16\pi^2} \Lambda^2 \sim c g^2 f^2, \quad \lambda = c' \frac{g^2}{f^2} \frac{1}{16\pi^2} \Lambda^2 \sim c' g^2$$

• $f = 200-300 \text{ GeV} \leftarrow \rightarrow \text{ correct EW scale } (M_W) \rightarrow \Lambda \text{ at most 3 TeV} \leftarrow \rightarrow \text{LHC}$

The Problem: Two or more Scalars (Scales)

- SM has just one scale $\langle \Phi \rangle = v \rightarrow \text{all masses } \sim v$, no problem
- simplest case: scalars φ , Φ with masses m, M and m \ll M
- $\phi^+ \phi$ and $\Phi^+ \Phi$ are singlets \rightarrow portal term $\lambda_{mix}(\phi^+ \phi)(\Phi^+ \Phi)$
- quantum corrections $\sim M^2$ drive m to the (heavy) scale M
 - → vastly different explicit scalar scales are generically unstable

SM embeddings need SSB $\leftarrow \rightarrow$ more scalars

- gauge extensions: LR, PS, GUTs → must be broken...
- even for SUSY GUTS → doublet-triplet splitting...
- also for fashionable Higgs-portal scenarios...
- **→** generic conflict between BSM indications and more scales

Mitigating Hierarchy Problems

central issue: scalar portals: $\lambda_p H^+ H \Phi^+ \Phi$ with $\lambda_p = \mathcal{O}(1)$

 \rightarrow quantum corrections: $\delta(m_H)^2 \sim (M_{\Phi})^2 \rightarrow m_H \ll M_{\Phi}$ is a fine-tuning in general a sum of contributions: $\delta(m_H)^2 = \text{sum of diagrams} \sim \Lambda^2$

postulate:
$$\delta M_H^2 = \frac{\Lambda^2}{32\pi^2 V^2} (6M_W^2 + 3M_Z^2 + 3M_H^2 - 12M_t^2) = 0$$
 Veltman condition

...but there is no reason (symmetry, mechanism) for this relation...

potential directions:

- a) supersymmetry (superpartners)
- b) loop suppression $\leftarrow \rightarrow 1/16\pi^2$, accidental symmetries, composite Φ
- c) unsuppressed portals to dark sectors (invisible BSM)
- d) a natural explanation for a very tiny $\lambda_p \ll 1$ (at quantum level) conformal: $G = G_1 * G_2 + \text{orthogonal representations} + ...$

Experimental Observations

- → SM is a renormalizable QFT like QED w/o hierarchy problem
- \rightarrow Cutoff "\Lambda" has no meaning \rightarrow triviality, vacuum stability

Important observation:

- a remarkable relation between the weak scale, m_t , m_H , gauge couplings and Λ
- connected to <u>log divergences</u> \rightarrow HP?

Is there a Message?

- $\lambda(M_X) \simeq 0$? \rightarrow remarkable log cancellations of unrelated parameters
- remember: μ is the only single scale of the SM \rightarrow special role
- if in addition $\mu^2 = 0 \rightarrow V(M_X) \simeq 0 \rightarrow C-SM$ with no scale at all
 - → Mexican hat becomes flat due to conspiring quantum effects

- alternatively: All scalar and Yukawa couplings dissolve i.e. composite scalars → potential dissolves (no metastability issues)
- In both cases tempting:
 LE broken conformal (or shift) symmetry ←→ HP?

UV-Completion & Conformal Symmetry

Successful theories should have a meaningful UV-completion

 \rightarrow vanishing β -functions (UV fixed points) $\leftarrow \rightarrow$ restored scale symmetry

Interacting UV-fixedpoints:

- scalar and Yukawa couplings tend to have Landau poles, instability...
- all couplings... requires carefully selected particle content \rightarrow explanation?

Trivial fixedpoints:

- no fundamental scalars
- no Yukawa couplings
- asymptotically free non-abelian gauge theories w/o scalars -> easy

Higgs Portals to Hidden Sectors

- SM scalar Φ plus some new scalar φ (or more scalars)
- $CS \rightarrow$ no scalar mass terms
- the scalar portal $\lambda_{mix}(\varphi^+\varphi)(\Phi^+\Phi)$ must exist
 - \rightarrow a condensate of $\langle \phi^+ \phi \rangle$ produces $\lambda_{mix} \langle \phi^+ \phi \rangle (\Phi^+ \Phi) = \mu^2 (\Phi^+ \Phi)$
 - \rightarrow effective mass term for Φ
- no CA... \rightarrow breaking only $ln(\Lambda)$
 - \rightarrow implies a TeV-ish condensate for ϕ to obtain $\langle \Phi \rangle = 246 \text{ GeV}$
- Many model building possibilities / phenomenological aspects:
 - φ could be an effective field of some hidden sector DSB
 - further particles could exist in hidden sector; e.g. confining...
 - extra hidden U(1) potentially problematic $\leftarrow \rightarrow$ U(1) mixing
 - avoid Yukawas which couple visible and hidden sector
 - →phenomenology safe due to Higgs portal →suppressed TeV-ish BSM physics!

SM \otimes hidden SU(3)_H Gauge Sector

Holthausen, Kubo, Lim, ML

• hidden $SU(3)_H$:

$$\mathcal{L}_{\mathrm{H}} = -\frac{1}{2} \mathrm{Tr} \; F^2 + \mathrm{Tr} \; \bar{\psi} (i \gamma^{\mu} D_{\mu} - y S) \psi$$

gauge fields; $\psi = 3_H$ with $SU(3)_F$; S = real singlet scalar

• SM coupled by S via a Higgs portal:

$$V_{\text{SM}+S} = \lambda_H (H^{\dagger}H)^2 + \frac{1}{4}\lambda_S S^4 - \frac{1}{2}\lambda_{HS} S^2 (H^{\dagger}H)$$

- no scalar mass terms
- use similarity to QCD, use NJL approximation, ...
- χ -ral symmetry breaking in hidden sector: $SU(3)_L x SU(3)_R \rightarrow SU(3)_V \rightarrow generation of TeV scale$
- → transferred into the SM sector through the singlet S
- → dark pions are PGBs: naturally stable → DM

Many more Models along this Direction

SM + extra singlet or doublet: Φ , φ

Nicolai, Meissner Farzinnia, He, Ren, Foot, Kobakhidze, Volkas, Hill, ...

Minimal B-L extension: $SU(3)c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$ Iso, Okada, Orikasa

SM + high rep. QCD scalar: J. Kubo, K.S. Lim, ML

Minimal LR-model: $SU(3)c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ Holthausen, ML, Schmidt

 $SM \otimes SU(N)_H$ with new N-plet in a hidden sector

Ko, Carone, Ramos, Holthausen, Kubo, Lim, ML, Hambye, Strumia, ...

SM + QCD colored scalar which condenses at TeV scale Kubo, Lim, ML

 $SM \otimes [SU(2)_X \otimes U(1)_X]$

Altmannshofer, Bardeen, Bauer, Carena, Lykken

... more ...

Since SM- does not work → more → observable effects:

- Higgs & other scalars (singlet, hidden sector, ...) \rightarrow little hierarchy is natural
- dark matter candidates ←→ hidden sectors & Higgs portals
- consequences for neutrino masses, ...

Conformal Little Higgs

conformal little Higgs: Ahmed, ML, Saake, 2309.07845, PRD 109.075041

- 1) All scalars (including Higgs) are GBs or PGBs
 - \rightarrow scale $\Lambda \simeq 10$ TeV little Higgs model
 - → symmetry explanation of the LHP
 - \rightarrow all λ 's and Yukawa couplings dissolve at Λ
- 2) conformal non-abelian UV completion
 - \rightarrow Λ becomes scale of a dimensional transmutation
 - \rightarrow no new scalars or scales $\leftarrow \rightarrow$ HP

Remarks:

- realized for SM, but works for extended Higgs sectors
- can be combined with neutrino masses, DM, BAU, ...
- gravity comments if time allows

A little Higgs reminder

Λ = scale of some (composite) dynamics

$$\mu^2 = c \frac{g^2}{16\pi^2} \Lambda^2 \sim c g^2 f^2, \quad \lambda = c' \frac{g^2}{f^2} \frac{1}{16\pi^2} \Lambda^2 \sim c' g^2$$

- $f = 200-300 \text{ GeV} \leftarrow \rightarrow \text{ correct EW scale } (M_W)$

 $\rightarrow \Lambda$ at most 2-3 TeV: exp. excluded operators

→ spectrum may contain lower lying states? c.f. techni- ρ in technicolor \rightarrow S parameter...

- **little Higgs:** f can be $O(TeV) \rightarrow \Lambda = 5-10 \text{ TeV}$

$$v_{\rm EW} = \frac{\pi_{\psi}}{h}$$

$$\mu^2 \sim \frac{g^2}{16\pi^2} f^2 \log \frac{\Lambda^2}{f^2} \sim \frac{g^2}{8\pi^2} f^2 \log(4\pi)$$
- important: *all* scalar dof are GBs or PGBs
- lower lying bound states more remote

Conformal UV Completion

Conformal Little Higgs Models

Ahmed, ML, Saake, arXiv: 2309.07845, PRD 109.075041

Exemplification for ``bested little Higgs'' model:

- → UV completion without introducing any elementary/fundamental scalars
- confining non-abelian gauge symmetry $SU(N_c)$ we take $N_c = 2$
- new fermions:
 → ``technifermions''
 four light flavors

	$SU(N_c)$	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$
$ ilde{\psi} \equiv egin{pmatrix} \psi_1 \ \psi_2 \end{pmatrix}$		1		0
$\psi'\equiv \begin{pmatrix} \psi_3 \ \psi_4 \end{pmatrix}$		1	1 1	$-rac{1}{2} + rac{1}{2}$
$\chi \times N_m$		1	1	0

- $SU(2)_L \subset SU(4)_L$ and the custodial group $SU(2)_L' \subset SU(4)_L$, respectively
- conjugate fields transform under the subgroups of $SU(4)_R$
- global symmetry breaking coset $SU(4)_L \times SU(4)_R / SU(4)_V$
- condensation → flavor symmetry breaking

The Higgs Sector

- condensation → 15 Goldstone bosons
- transform under the custodial symmetry $SO(4) \simeq SU(2)_L \times SU(2)_R \subset SU(4)V$ as $15_{SU(4)V} = (2,2) + (2,2) + (3,1) + (1,3) + (1,1)$
- Goldstone matrix: $U=\exp\left[i\Pi/\sqrt{2}f\right]$
- where $\Pi = \begin{pmatrix} \sigma^a \Delta_1^a + \eta/\sqrt{2} & -i\Phi_H \\ i\Phi_H^\dagger & \sigma^a \Delta_2^a \eta/\sqrt{2} \end{pmatrix}$
- with bi-doublet $\Phi_H \equiv \left(\widetilde{H}_1 + i\widetilde{H}_2, \quad H_1 + iH_2
 ight); \;\; \widetilde{H}_i \; \equiv \; i\sigma_2 H_i^*$ where ${\rm H_i}$ are Higgs doublets under SU(2)L
- and the triplets $\sigma^a\Delta^a=\left(egin{array}{cc}\Delta^0&\sqrt{2}\Delta^+\\\sqrt{2}\Delta^-&-\Delta^0\end{array}
 ight)$

Including the Planck Scale

The Planck Scale from CS Breaking

Conformal Gravity (C-GR):

- more symmetry → power counting renormalizable
- C-GR may have a ghost → ...
- spontaneous generation of $M_{Pl} \rightarrow$ Einstein-Hilbert gravity
- most economic and simple way:

$$\frac{\xi_S}{2} S^2 R \to \frac{\xi_S}{2} \langle S \rangle^2 R \to \frac{M_{\rm Pl}^2}{2} R$$
 $M_{\rm Pl} = \sqrt{\xi_S} \langle S \rangle$

Brans+Dicke,'61; Fujii,'74; Englert+Truffin+Grastmans,'76; Minkowsky,'77;.....

Idea: Generate M_{Planck} from conformal gravity \otimes SU(N)

⇒ gauge assisted condensate via SU(N) field ⇒ M_{Planck} = effective scale Kubo, ML, Schmitz, Yamada similar ideas: Donoghue, Menezes, ...

$$S_{\rm C} = \int d^4x \sqrt{-g} \left[-\hat{\beta} S^{\dagger} S R + \hat{\gamma} R^2 - \frac{1}{2} \operatorname{Tr} F^2 + g^{\mu\nu} (D_{\mu} S)^{\dagger} D_{\nu} S - \hat{\lambda} (S^{\dagger} S)^2 + a R_{\mu\nu} R^{\mu\nu} + b R_{\mu\nu\alpha\beta} R^{\mu\nu\alpha\beta} \right]$$

R = Ricci curvature scalar, $R_{\mu\nu}$ = Ricci tensor, $R_{\mu\nu\alpha\beta}$ = Riemann tensor

F = field-strength tensor of the $SU(N_c)$ gauge theory, $S = complex scalar in fund. rep. <math>\rightarrow N_c$

→ most general diffeomorphism invariance, gauge invariance, and global scale invariance

Condensation in SU(N_c) gauge sector

 \rightarrow dimensional transmutation: $\langle S^+S \rangle \rightarrow$ effective Planck mass

$$\mathbf{M}_{\text{planck}} = 2 \beta f_0 = \frac{N_c \beta}{16\pi^2} (2 \lambda f_0) \left(1 + 2 \ln \frac{2 \lambda f_0}{\Lambda^2} \right) \quad \text{with} \quad f_0 = \langle S^+ S \rangle$$

 \rightarrow Effectively normal gravity with a dynamically generated M_{Planck}

What about the portal of S with the SM scalar Φ ? \rightarrow effective S + gravity suppresses portal de Boer, Kubo, ML, Reinig to appear soon...

Dilaton-Scalaron Inflation

Effective Jordan-frame Lagrangian:

$$\frac{\mathcal{L}_{\text{eff}}^{J}}{\sqrt{-g_{J}}} = -\frac{1}{2} B\left(\chi\right) M_{\text{Pl}}^{2} R_{J} + G\left(\chi\right) R_{J}^{2} + \frac{1}{2} g_{J}^{\mu\nu} \partial_{\mu} \chi \, \partial_{\nu} \chi - U\left(\chi\right) \quad \Rightarrow \text{ auxiliary field } \Psi \Rightarrow$$

$$\frac{\mathcal{L}_{\text{eff}}^{J}}{\sqrt{-g_{J}}} = -\left[\frac{1}{2}B\left(\chi\right)M_{\text{Pl}}^{2} - 2G\left(\chi\right)\psi\right]R_{J} + \frac{1}{2}g_{J}^{\mu\nu}\partial_{\mu}\chi\,\partial_{\nu}\chi - U\left(\chi\right) - G\left(\chi\right)\psi^{2}$$

$$g_{\mu\nu} = \Omega^2 \, g_{\mu\nu}^J$$

$$\Omega^2 = e^{\Phi(\phi)} \,,$$

Weyl rescaling:
$$g_{\mu\nu} = \Omega^2 g_{\mu\nu}^J$$
 $\Omega^2 = e^{\Phi(\phi)}$, $\Phi(\phi) = \frac{\sqrt{2} \phi}{\sqrt{3} M_{\rm Pl}}$

Einstein-frame scalar potential:

$$V\left(\chi,\phi\right) = e^{-2\Phi(\phi)} \left[U\left(\chi\right) + \frac{M_{\rm Pl}^4}{16G\left(\chi\right)} \left(B\left(\chi\right) - e^{\Phi(\phi)} \right)^2 \right]$$

- → Slow role inflation
- → fits data very well!

Conclusions

The Standard Model

- → works perfectly no problems besides triviality, metastability
- → list of unanswered questions / problems ← → BSM
- → lots of progress: DM, v's, GR waves, ... + many new ideas
- → hierarchy problem worsened due to the little hierarchy problem
- → remarkable coincidence of parameters: flat Higgs potential @HE

Conformal portals to dark sectors

 \rightarrow dimensional transmutation in dark sector + portal O(1) \rightarrow SM

Conformal little Higgs

- → a natural explanation of LHP: all scalar dof are GBs or PGBs
- → conformal UV completion: avoid to reintroduce problems (fund. scalars)
- → non-abelian gauge theory with fermions, gauge bosons and no scale
 - → dimensional transmutation at multi Tev-ish Λ

Including the Planck scale

→ conformal gravity with dimensional transmutation