Non-Invertible Peccei-Quinn Symmetry, Natural 2HDM Aligment, and the Visible Axion

AD and Seth Koren arXiv:2412.05362

Scalars 2025 25/09/25

Introduction

- During the last forty years there has been a lot of activity in trying to understand the flavour structure of Yukawa matrices:
 - Doing a spurion analysis to understand the hierarchy of masses (Froggat-Nielsen)
 - Using textures to understand the CKM and the PMNS matrices.
 - Botton-tau unification
 - Extra dimensional models.
 - Gauging CP

•

- Recently there has been a lot of activity on Generalized symmetries.
- They extend the usual concept of transformations of point like particles to extended objects like Wilson loops.
- In this talk I will embed the usual PQ symmetry of a 2HDM into a continuous flavour group that upon breaking realizes in a natural way an scenario where one gets the alignment limit. (A light Higgs with SM like properties).
- One extra feature of this model is the realization of the Weinberg-Wilczek visible axion.

Generalized symmetries

• Extended objects (d-dimensions) can couple to d+1 currents.

- In a UV theory with non-trivial dynamics leading to magnetic phases those extended objects can lead to IR theories where symmetries are realized not by standard unitary operators but as non-invertible objects.
- One example are QCD instantons and how the baryon number anomaly leads to a discreet subgroup to be conserved in the SM Z₃
- From the IR one understand the symmetry as the transformation of a extended object that then in the UV is realized in the standard way of invertible symmetries.
- These generalized symmetries have already been used to explain neutrinos mass or as a solution to the strong CP problem. (Koren et al. 2022-2024)

2HDM

The 2HDM is a minimal extension to the SM with one extra Higgs doublet.

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \left[m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{ h.c.} \right]$$

$$+ \frac{1}{2} \lambda_{1} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{1}{2} \lambda_{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) + \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right)$$

$$+ \left\{ \frac{1}{2} \lambda_{5} \left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left[\lambda_{6} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) + \lambda_{7} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) \right] \left(\Phi_{1}^{\dagger} \Phi_{2} \right) + \text{ h.c.} \right\}.$$

$$(2.1)$$

- Depending on the different Yukawa structures you can have different models.
 We are going to work with a type II 2HDM.
- LHC data forces us to have a Higgs which SM-like. 'alignment limit'
- One possibility to realise it is to try to implement a PQ symmetry

$$\mathcal{L} \supset (y_t)^i_j \Phi_1 Q_i \bar{u}^j + (y_b)^i_j \tilde{\Phi}_2 Q_i \bar{d}^j$$

$$m_{12}^2, \lambda_5, \lambda_6, \lambda_7 = 0$$
 all vanish.

We are going to embed this model in a UV SU(3)_H symmetry.

	$SU(3)_C$	$SU(3)_H$	$SU(2)_L$	$U(1)_Y$	$U(1)_{\mathrm{PQ}}$
Q	3	3	2	+1	0
$ar{u}$	$\bar{3}$	$\bar{3}$	_	-4	1
$ar{d}$	$\bar{3}$	3	_	+2	1
Φ_1	_	_	2	-3	-1
Φ_2		_	2	-3	1

Anomalous!!!!!!!!

	$U(1)_{ m PQ}$
m_{12}^2	-2
λ_5	-4
λ_6	-2
λ_7	-2

• With this assignments one recreates one of the exceptional regions of the 2HDM (Ferreira, Haber, Silva 2009) imposing and extra Z₂

- The LHC data suggests that one of the two Higgses has to have SM properties, i.e., alignment limit.
- In the 2HDM one can achieve the alignment w/o decoupling with a far richer phenomenology.
- Haber and Silva have analyzed the different scenarios for such a result:
 - Generalized CP, Peccei-Quinn, Higgs family,...
- Our goal is to try to see if we can embed the PQ symmetry in a UV model making use of some non-invertible symmetry.

- The PQ charges we assigned are anomalous with respect to SU(3).
- QCD instantons will therefore break the symmetry to Z₆
- We are going to asume that there is an UV theory where colour and flavour are unified and embed the left over PQ global symmetry in this way:

$$U(1)_{PQ} \to \mathbb{Z}_2$$
 (invertible) $\times \mathbb{Z}_3$ (non-invertible).

Colour-Flavour model SU(9) Cordova, Hong, Koren '24

	SU(9)	$SU(2)_L$	$U(1)_Y$	$U(1)_{PQ}$
Q	9	2	+1	0
\bar{u}	9		-4	1
$ar{d}$	9		+2	1
Φ_1		2	-3	-1
Φ_2		2	-3	1
Ξ	165		0	0

Higgs breaking of SU(9)

- This model provides an unified set up for colour and flavour as an attempt to explain both the Yukawas and maybe the CP-violaton sector but those details are not important for this talk.
- SU(9) instantons break the non-invertible Z₃ and generates a contribution to m₁₂².
- Instead of doing a naïve NDA to calculate the size of that breaking
- The contribution can be calculated using the technique by Csaki et al.

Λ₉ is the b.c.
 ν₉ is the vev
 b₀ the beta function coef.
 C₉ the instanton density factor

$$m_{12}^2 \sim y_t y_b C_9 \left(\frac{8\pi^2}{g(v_9)^2}\right)^{2\cdot 9} \int \frac{d\rho}{\rho^5} (\Lambda_9 \rho)^{b_0} e^{-2\pi^2 \rho^2 v_9^2} \rho^2$$

Instanton size

$$m_{12}^2 \sim y_t y_b v_9^2 \frac{C_9 \pi^2}{(\sqrt{2}\pi)^{b_0}} \left(\frac{8\pi^2}{g(v_9)^2}\right)^{18} e^{-\frac{8\pi^2}{g(v_9)^2}} \Gamma\left(\frac{b_0}{2} - 1\right)$$

m₁₂ much smaller than v₉

λ₆ generated via loops

Spectrum

To lowest order our scenario is a softly broken ERPS4 from Haber and Silva

$$\begin{split} m_A^2 &= m_{12}^2 \frac{2}{s_{2\beta}} \\ m_{H^{\pm}}^2 &= m_A^2 - \frac{1}{2} \lambda_4 v^2 \\ m_{h,H}^2 &= \frac{1}{2} \left[m_A^2 + \lambda v^2 \pm \sqrt{\left[m_A^2 - \lambda v^2 \left(c_{2\beta}^2 + R s_{2\beta}^2 \right) \right]^2 + \lambda^2 s_{2\beta}^2 c_{2\beta}^2 (1 - R)^2 v^4} \right] \\ c_{2\beta} &= \frac{m_{22}^2 - m_{11}^2}{m_{22}^2 + m_{11}^2 + \lambda v^2}, \\ \lambda_1 &= \lambda_2 \equiv \lambda \text{ and } R = (\lambda_3 + \lambda_4) / \lambda \end{split}$$

$$\cos(\beta - \alpha) = \frac{\lambda v^2 s_{2\beta} c_{2\beta} (1 - R)}{2\sqrt{(m_H^2 - m_h^2) \left[m_H^2 - \lambda v^2 (1 - \frac{1}{2} s_{2\beta}^2 (1 - R)) \right]}}$$

- LHC data imposes the m_A to be greater than m_h/2 to avoid an invisible decay for the Higgs.
- The current limit on the alignment angle is $\cos(\alpha-\beta)<0.05$
- We are going to require also tan β>5
- That implies deviating from the exact Z₂ limit which it is broken by yukawa couplings.
- m_A>120 GeV
- $m_H > m_A$
- $\lambda = 2\lambda_{SM}$

Visible axion

- The CP odd scalar A could be a realization of the visible axion proposed by Weinberg & Wilczek.
- One can embed this IR model into a complete UV model trying to address both the flavour structure of the SM and also as a possible solution to the strong CP problem.
- The only breaking of the PQ symmetry should only come from the instantons from SU(9).
- The IR PQ symmetry is a non-invertible realization of the UV fundamental PQ symmetry.

Lack of quality problem

$$\mathcal{L} \supset a_6 \left(\Phi_1^{\dagger} \Phi_2\right)^3 / M_{\rm pl}^2$$

$$V(a) \sim m_{12}^4 \left(1 - \cos(2a)\right) + v_{\text{EW}}^4 \left(\frac{v_{\text{EW}}}{M_{\text{pl}}}\right)^2 \left(1 - \cos(6a + \varphi_6)\right)$$

$$\mathcal{L} \supset a_2 \left(\Phi_1^{\dagger} \Phi_2\right) |\Xi|^4 / M_{\rm pl}^2$$

$$V(a) \sim m_{12}^4 \left(1 - \cos(2a)\right) + v_{\text{EW}}^2 v_9^2 \left(\frac{v_9}{M_{\text{pl}}}\right)^2 \left(1 - \cos(2a + \varphi_2)\right)$$

$$v_9^2/M_{\rm Pl}^2 \lesssim 10^{-10} v_{\rm EW}^2/v_9^2 \leftrightarrow v_9 \lesssim 10^8 \ {\rm GeV}$$

Conclusions

- Symmetries are a fundamental tool to understand Nature.
- Generalized symmetries provide with a extra handle to try to build models to explain the fundamental structure of particle physics.
- In this talk I have introduce the concept of non-invertible symmetries and then I have applied it to the PQ symmetry in a 2HDM.
- One can embed a 2HDM effective model into a UV complete model based on a SU(9) flavour-colour unification model.

- SU(9) instantons break the non-invertible Z₃ and generates a contribution to m₁₂².
- The spectrum generated is in the alignment without decoupling limit of the 2HDM providing a very interesting phenomenology.
- It can even serve as an example of a visible axion solving the strong CP problem.
- Lots of possibility in model building and LHC signals.