Deciphering the CP nature of the 95 GeV Higgs boson

Prasenjit Sanyal

24, September 2025

CQUeST, Sogang University, Korea

Outline and Reference

- 95 GeV excesses reported at LHC and LEP ($\gamma\gamma$, $\tau\tau$ and $b\bar{b}$ channels).
- Test the CP nature of a possible new scalar (CP-even, CP-odd, or mixed) in a model independent way
- Construction of observables sensitive to CP-mixing in the $\tau\tau$ decay mode.
- HL-LHC can probe the scalar, pseudoscalar, and mixed cases with good precision.

On the CP Nature of the '95 GeV' Anomalies

Tanmoy Mondal, a Stefano Morettib,c and Prasenjit Sanyald,e

- ^aBirla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
- ^bSchool of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
- ^cDepartment of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- ^dDepartment of Physics, Konkuk University, Seoul 05029, Republic of Korea
- $^eCenter\ for\ Quantum\ Spacetime,\ Sogang\ University,\ 35\ Backbeom-ro,\ Seoul\ 121-742,\ Republic\ of\ Korea$
- E-mail: tanmoy.mondal@pilani.bits-pilani.ac.in, s.moretti@soton.ac.uk, stefano.moretti@physics.uu.se, psanyal@sogang.ac.kr

95 GeV Anomalies

S: 95 GeV spin-0 resonance H: SM Higgs of mass 95 GeV

(1) CMS $\tau\tau$ excess:

$$\mu_{\tau^+\tau^-}^{\rm exp} = \frac{\sigma^{\rm exp}(gg \to S \to \tau^+\tau^-)}{\sigma^{\rm SM}(gg \to H \to \tau^+\tau^-)} = 1.2 \pm 0.5$$

with local (global) significance 2.6 σ (2.3 σ) at $m_{\tau\tau}=95$ GeV.

CMS $\gamma\gamma$ excess:

$$\mu_{\gamma\gamma}^{\rm exp} = \frac{\sigma^{\rm exp}(gg \to S \to \gamma\gamma)}{\sigma^{\rm SM}(gg \to H \to \gamma\gamma)} = 0.6 \pm 0.2$$

with local (global) significance 2.8 σ (1.3 σ) at $m_{\gamma\gamma}=95.3$ GeV.

(3) LEP $b\bar{b}$ excess:

$$\mu_{bb}^{exp} = \frac{\sigma^{exp}(e^+e^- \to ZS \to Zb\bar{b})}{\sigma^{SM}(e^+e^- \to ZH \to Zb\bar{b})} = 0.117 \pm 0.057$$

with local significance 2.3σ at $m_{bb}=98$ GeV.

3

Literature Review

- (1) Mounting Evidence for a 95 GeV Higgs Boson Heinemeyer et al.
 - Studied a two-Higgs-doublet model extended by a real singlet (N2HDM).
 - The lightest CP-even Higgs in Type-II and Type-IV N2HDM can explain $\gamma\gamma$ and $b\bar{b}$ excesses.
 - Type-IV N2HDM can simultaneously explain all the excesses.
- (2) Explaining 95 (or so)GeV Anomalies in the 2-Higgs Doublet Model Type-I Moretti et al.
 - Studied Type-I 2HDM with two solutions:
 - (A) h solution: lightest CP even Higgs as the 95 GeV resonance.
 - (B) h + A **solution:** Superposition of the h and A such that $\mu(h + A)_{\gamma\gamma,\tau\tau} = \mu(h)_{\gamma\gamma,\tau\tau} + \mu(A)_{\gamma\gamma,\tau\tau}$ and $\mu(h)_{b\bar{b}}$
- (3) Superposition of CP-Even and CP-Odd Higgs Resonances: Explaining the 95 GeV Excesses within a Two-Higgs Doublet Model – Moretti et al.
 - Studied the general 2HDM (Type-III) with two solutions:
 - (A) A solution: explains the CMS $\gamma\gamma$ and $\tau\tau$ excesses.
 - (B) h + A solution: explains the CMS $\gamma \gamma$, $\tau \tau$ and LEP $b\bar{b}$ excesses.

Minimal Framework for the 95 GeV Anomalies

- Yukawa Interaction: $\mathcal{L}_{Sf\bar{f}} = -\rho_f^S \frac{m_f}{V} \Big(\cos \alpha \bar{f} f + i \sin \alpha \bar{f} \gamma_5 f \Big) S$, $f = t, b, \tau$ ρ_f^S are the Yukawa coupling modifiers; $\alpha = 0$ (pure scalar), $\pi/2$ (pseudoscalar) and intermediate α CP states.
- Gauge Coupling: to accommodate LEP $e^+e^- \to ZS$, a small effective SVV coupling $q_{SVV} \approx 0.3$ is considered.
- **Production (LHC):** ggF production at NNLO in the large top mass limit is $\sigma(gg \to S) = \rho_1^{S^2} \left(76.35 \cos^2 \alpha + 176.32 \sin^2 \alpha\right)$ pb.
- Decays: $S \to b\bar{b}, \ \tau\tau, \ VV^*, \ gg, \ \gamma\gamma$ and $Z\gamma$.

Probing the CP nature of the 95 GeV resonance

• The differential decay width of S into a pair of au leptons

$$d\Gamma_{S \to \tau^+ \tau^-} \propto 1 - \frac{\pi^2}{16} b(E_+) b(E_-) \cos(\phi_{\rm CP} - 2\alpha)$$

 $\phi_{\rm CP}=$ signed acoplanarity angle and $b(E_\pm)=$ spin analyzing power.

Hadronic decay mode:

- (1) $\tau^-\tau^+ \rightarrow (\pi^-\nu_\tau)(\pi^+\bar{\nu}_\tau)$ IP method
- (2) $\tau^-\tau^+ \to (\rho^-\nu_\tau \to \pi^-\pi^0\nu_\tau)(\rho^+\bar{\nu}_\tau \to \pi^+\pi^0\bar{\nu}_\tau)$ ρ method
- (3) $\tau^- \tau^+ \rightarrow (\pi^- \nu_\tau)(\rho^+ \bar{\nu}_\tau \rightarrow \pi^+ \pi^0 \bar{\nu}_\tau)$ IP- ρ method

Semi-leptonic decay mode:

- (1) $\tau^- \tau^+ \rightarrow (\ell^- \bar{\nu}_\ell \nu_\tau)(\pi^+ \bar{\nu}_\tau)$ IP method
- (2) $\tau^- \tau^+ \rightarrow (\ell^- \bar{\nu}_\ell \nu_\tau) (\rho^+ \bar{\nu}_\tau \rightarrow \pi^+ \pi^0 \bar{\nu}_\tau)$ IP- ρ method

IP method

ρ method

IP- ρ method

• ϕ_{CP} distributions for CP-even, CP-odd and maximal CP mixed states $\alpha = \pm \pi/4$.

• Decay modes of the au leptons, with the associated method to construct the $\phi_{\sf CP}$ observable and the fraction of events to all di-au decays.

Decay channel	Method	Fraction in all $ au$ -pair decays
$ au_{lep} au_{had}$	IP	8.1%
	IP–ρ	18.3%
$ au_{had} au_{had}$	IP	1.3%
	ρ	6.7%
	IP-ρ	6.0%

• Event selection: $p_T^{\tau\tau} >$ 200 GeV, 60 < $m_{\tau\tau} <$ 120 GeV at 13 TeV LHC with 3000 fb⁻¹ luminosity.

 $^{\bullet}$ Signal (green) and background (yellow) $\phi_{\rm CP}$ distributions considering all the hadronic modes.

* Signal (green) and background (yellow) $\phi_{\rm CP}$ distributions considering all the semi-leptonic modes.

$$\bullet \ \chi^2(\alpha) = \sum_{\text{Modes}} \ \sum_{i \in \text{Bins}} \frac{\left(S_i^{\alpha H} - \frac{n_S}{\Gamma} \frac{d\Gamma}{d\phi_{\text{CP}}}(\alpha)\right)^2}{(\delta S_i)^2 + (\delta_{\text{Sys}}^2)}$$

$$^{\bullet} \ \delta S_{i} = \sqrt{S_{i}}; \quad \delta S_{sys} = \epsilon \frac{N_{Bkg}}{N_{Bins}}, \quad \epsilon = 0.5\%, \ 1\%.$$

• HL-LHC: best-fit $\alpha \pm$ 0.27 rad (0.5%) or \pm 0.47 rad (1%) at 90% CL.

Moretti, Mondal and Sanyal 2412.00474

Conclusions

- Assuming a spin-0 resonance explains the LHC $(\tau\tau,\gamma\gamma)$ and LEP $(b\bar{b})$ excesses, characterizing its CP nature becomes essential.
- The ττ channel of a 95 GeV Higgs-like state provides a direct CP probe, allowing us to distinguish CP-even, CP-odd, or CP-mixed scenarios.
- Using hadronic and semi-leptonic τ decays, we employ the IP method, the ρ method, and their combined IP-ρ method to build CP sensitive observable.
- At the High-Luminosity LHC, the CP-mixing angle can be determined with a precision of ±(0.27-0.47) radian at 90% CL with a background systematic uncertainties of 0.5% and 1%.

Conclusions

- Assuming a spin-0 resonance explains the LHC $(\tau\tau,\gamma\gamma)$ and LEP $(b\bar{b})$ excesses, characterizing its CP nature becomes essential.
- The ττ channel of a 95 GeV Higgs-like state provides a direct CP probe, allowing us to distinguish CP-even, CP-odd, or CP-mixed scenarios.
- Using hadronic and semi-leptonic τ decays, we employ the IP method, the ρ method, and their combined IP-ρ method to build CP sensitive observable.
- At the High-Luminosity LHC, the CP-mixing angle can be determined with a precision of ±(0.27-0.47) radian at 90% CL with a background systematic uncertainties of 0.5% and 1%.

