Freezing-in Cannibal DM during early matter domination

Based on: arXiv:2506.09155

Esau Cervantes

Collaboration with **Andrzej Hryczuk** (supervisor) **Nicolás Bernal** and **Kuldeep Deka**September 24, 2025

Scalars 2025: Higgs bosons and cosmology

Cannibal Dark Matter

SELF-INTERACTING DARK MATTER

ERIC D. CARLSON

Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138

MARIE E. MACHACEK

Department of Physics, Northeastern University, Boston, MA 02115

AND

LAWRENCE J. HALL

Department of Physics, University of California; and Theoretical Physics Group, Physics Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720

Received 1992 March 17; accepted 1992 April 20

Simple realisation with a scalar

field:
$$\frac{g}{3!}\phi^3 + \frac{\lambda}{4!}\phi^4$$

If DM is non-relativestic, $\Gamma_{3\to 2} > \Gamma_{2\to 3}$. The DM fluid **exchanges** particle number for kinetic energy!

Absence of portals leads to $T_{DM} \neq T_{SM}$. Temperature evolution becomes relevant:

• DM is initially relativistic;

- DM is initially relativistic;
- as the DM fluid cools down, the dark sector *exchanges* number of particles for kinetic energy;

- DM is initially relativistic;
- as the DM fluid cools down, the dark sector *exchanges* number of particles for kinetic energy;
- all interactions decouple and the system behaves as a non-relativistic gas.

- DM is initially relativistic;
- as the DM fluid cools down, the dark sector *exchanges* number of particles for kinetic energy;
- all interactions decouple and the system behaves as a non-relativistic gas.

See also Hufnagel, Tygat 22 and Arcadi, Lebedev 19

See EC, A. Hryczuk 24

See EC, A. Hryczuk 24

See EC, A. Hryczuk 24

See EC, A. Hryczuk 24 and also Bernal et.al 15 (SIMP \mathbb{Z}_2 DM)

Toy model:
$$\mathcal{L} \supset -\frac{1}{3!}g_s(S^3 + (S^*)^3) - \frac{\lambda_s}{4}|S|^4 - \lambda_{hs}|S|^2|H|^2$$

DM self interactions (cannibal)

Portal

 m_s [MeV]

$$k := g^2/(3\lambda_s m_s^2)$$

Toy model:
$$\mathcal{L} \supset -\frac{1}{3!}g_s(S^3 + (S^*)^3) - \frac{\lambda_s}{4}|S|^4 - \lambda_{hs}|S|^2|H|^2$$

DM self interactions (cannibal)

Portal

 m_s [MeV]

Inflaton decay and reheating

Transition between matter domination and radiation can be due to a scalar (inflaton) field ϕ that rolls ($a \propto e^{Ht}$) in the potential and subsequently oscillates in the minimum decaying into SM states.

$$\begin{split} \frac{d\rho_{\phi}}{dt} + 3H\rho_{\phi} &= -\Gamma \rho_{\phi}, \\ \frac{d\rho_{R}}{dt} + 4H\rho_{R} &= +\Gamma \rho_{\phi}, \end{split}$$

Inflaton decay and reheating

During reheating $T \propto a^{-3/8}$ (matter domination), and $H \propto T^4$, i.e., rapid expansion of the universe

Inflaton decay and reheating

During reheating $T \propto a^{-3/8}$ (matter domination), and $H \propto T^4$, i.e., rapid expansion of the universe

Production during reheating

Toy model:

$$\mathcal{L} \supset -\frac{1}{3!} g_s(S^3 + (S^*)^3) - \frac{\lambda_s}{4} |S|^4 - \lambda_{hs} |S|^2 |H|^2$$

DM self interactions (cannibal)

Production during reheating

Toy model:

$$\mathcal{L} \supset -\frac{1}{3!} g_s(S^3 + (S^*)^3) - \frac{\lambda_s}{4} |S|^4 - \lambda_{hs} |S|^2 |H|^2$$

DM self interactions (cannibal)

Portal

Production during reheating

Production rate from SM has to catch up with $H \propto T^4$, and ρ_{DM} dilutes during reheating.

Impact on collider phenomenology

- Low T_{rh} leads to detectability;
- The case of instantaneous reheating is studied in Lebedev, Morais, Oliveira, Pasechnik 24.

Self interactions with low T_{rh}

- $T_{\rm rh} = 6 \, {\rm MeV}$ is either excluded or detectable depending on λ_s ;
- $T_{\rm rh} = 11 \, {\rm MeV}$ is either out of reach or detectable depending on λ_s ;
- The peculiar behaviour of the curves is due to the 2 → 3 reaction overproducing DM.

Summary

• SIDM produced via the freeze-in mechanism has a unique evolution in the Early Universe;

• Temperature can have a **non-trivial** impact in such scenarios and **need to be studied** carefully;

• Non-standard cosmologies might be able to test SIDM.

Summary

• SIDM produced via the freeze-in mechanism has a unique evolution in the Early Universe;

• Temperature can have a **non-trivial** impact in such scenarios and **need to be studied** carefully;

• Non-standard cosmologies might be able to test SIDM.

Dziękuję bardzo!

Coupled Boltzmann equations

From the fBE we can obtain a 'temperature' Boltzmann equation:

We define
$$T' := \frac{g_{dm}}{3n} \int \frac{d^3p}{(2\pi)^3} \frac{p^2}{E} f(p);$$

we integrate $g(2\pi)^{-3} \int d^3p \, \frac{p^2}{E} (\partial_t - H\vec{p} \cdot \vec{\nabla}_p) f = g(2\pi)^{-3} \int d^3p \, \frac{p^2}{E} C[f] =: C_2;$
to obtain $\frac{dT'}{da} = -\frac{2T'}{a} + \frac{1}{3a} \left\langle \frac{p^4}{E^3} \right\rangle + \frac{a^2}{3HN} C_2 - \frac{a^2T'}{HN} C_0;$
along with the usual nBE: $\frac{dN}{da} = \frac{a^2}{H} g \int \frac{d^3p}{(2\pi)^3} C[f] =: \frac{a^2}{H} C_0, N = na^3;$
we close the system by assuming $f(E, T') = \frac{n}{n_{eq}} \exp\left[-\frac{E}{T'}\right].$