Freezing-in Cannibal DM during early matter domination Based on: arXiv:2506.09155 Esau Cervantes Collaboration with **Andrzej Hryczuk** (supervisor) **Nicolás Bernal** and **Kuldeep Deka**September 24, 2025 Scalars 2025: Higgs bosons and cosmology #### Cannibal Dark Matter #### SELF-INTERACTING DARK MATTER #### ERIC D. CARLSON Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138 #### MARIE E. MACHACEK Department of Physics, Northeastern University, Boston, MA 02115 **AND** #### LAWRENCE J. HALL Department of Physics, University of California; and Theoretical Physics Group, Physics Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 Received 1992 March 17; accepted 1992 April 20 Simple realisation with a scalar field: $$\frac{g}{3!}\phi^3 + \frac{\lambda}{4!}\phi^4$$ If DM is non-relativestic, $\Gamma_{3\to 2} > \Gamma_{2\to 3}$. The DM fluid **exchanges** particle number for kinetic energy! Absence of portals leads to $T_{DM} \neq T_{SM}$. Temperature evolution becomes relevant: • DM is initially relativistic; - DM is initially relativistic; - as the DM fluid cools down, the dark sector *exchanges* number of particles for kinetic energy; - DM is initially relativistic; - as the DM fluid cools down, the dark sector *exchanges* number of particles for kinetic energy; - all interactions decouple and the system behaves as a non-relativistic gas. - DM is initially relativistic; - as the DM fluid cools down, the dark sector *exchanges* number of particles for kinetic energy; - all interactions decouple and the system behaves as a non-relativistic gas. See also Hufnagel, Tygat 22 and Arcadi, Lebedev 19 See EC, A. Hryczuk 24 and also Bernal et.al 15 (SIMP \mathbb{Z}_2 DM) Toy model: $$\mathcal{L} \supset -\frac{1}{3!}g_s(S^3 + (S^*)^3) - \frac{\lambda_s}{4}|S|^4 - \lambda_{hs}|S|^2|H|^2$$ DM self interactions (cannibal) Portal m_s [MeV] $$k := g^2/(3\lambda_s m_s^2)$$ Toy model: $$\mathcal{L} \supset -\frac{1}{3!}g_s(S^3 + (S^*)^3) - \frac{\lambda_s}{4}|S|^4 - \lambda_{hs}|S|^2|H|^2$$ DM self interactions (cannibal) Portal m_s [MeV] # Inflaton decay and reheating Transition between matter domination and radiation can be due to a scalar (inflaton) field ϕ that rolls ($a \propto e^{Ht}$) in the potential and subsequently oscillates in the minimum decaying into SM states. $$\begin{split} \frac{d\rho_{\phi}}{dt} + 3H\rho_{\phi} &= -\Gamma \rho_{\phi}, \\ \frac{d\rho_{R}}{dt} + 4H\rho_{R} &= +\Gamma \rho_{\phi}, \end{split}$$ ## Inflaton decay and reheating During reheating $T \propto a^{-3/8}$ (matter domination), and $H \propto T^4$, i.e., rapid expansion of the universe ## Inflaton decay and reheating During reheating $T \propto a^{-3/8}$ (matter domination), and $H \propto T^4$, i.e., rapid expansion of the universe # Production during reheating Toy model: $$\mathcal{L} \supset -\frac{1}{3!} g_s(S^3 + (S^*)^3) - \frac{\lambda_s}{4} |S|^4 - \lambda_{hs} |S|^2 |H|^2$$ DM self interactions (cannibal) # Production during reheating Toy model: $$\mathcal{L} \supset -\frac{1}{3!} g_s(S^3 + (S^*)^3) - \frac{\lambda_s}{4} |S|^4 - \lambda_{hs} |S|^2 |H|^2$$ DM self interactions (cannibal) Portal ## Production during reheating Production rate from SM has to catch up with $H \propto T^4$, and ρ_{DM} dilutes during reheating. ### Impact on collider phenomenology - Low T_{rh} leads to detectability; - The case of instantaneous reheating is studied in Lebedev, Morais, Oliveira, Pasechnik 24. # Self interactions with low T_{rh} - $T_{\rm rh} = 6 \, {\rm MeV}$ is either excluded or detectable depending on λ_s ; - $T_{\rm rh} = 11 \, {\rm MeV}$ is either out of reach or detectable depending on λ_s ; - The peculiar behaviour of the curves is due to the 2 → 3 reaction overproducing DM. #### Summary • SIDM produced via the freeze-in mechanism has a unique evolution in the Early Universe; • Temperature can have a **non-trivial** impact in such scenarios and **need to be studied** carefully; • Non-standard cosmologies might be able to test SIDM. #### Summary • SIDM produced via the freeze-in mechanism has a unique evolution in the Early Universe; • Temperature can have a **non-trivial** impact in such scenarios and **need to be studied** carefully; • Non-standard cosmologies might be able to test SIDM. Dziękuję bardzo! ## Coupled Boltzmann equations From the fBE we can obtain a 'temperature' Boltzmann equation: We define $$T' := \frac{g_{dm}}{3n} \int \frac{d^3p}{(2\pi)^3} \frac{p^2}{E} f(p);$$ we integrate $g(2\pi)^{-3} \int d^3p \, \frac{p^2}{E} (\partial_t - H\vec{p} \cdot \vec{\nabla}_p) f = g(2\pi)^{-3} \int d^3p \, \frac{p^2}{E} C[f] =: C_2;$ to obtain $\frac{dT'}{da} = -\frac{2T'}{a} + \frac{1}{3a} \left\langle \frac{p^4}{E^3} \right\rangle + \frac{a^2}{3HN} C_2 - \frac{a^2T'}{HN} C_0;$ along with the usual nBE: $\frac{dN}{da} = \frac{a^2}{H} g \int \frac{d^3p}{(2\pi)^3} C[f] =: \frac{a^2}{H} C_0, N = na^3;$ we close the system by assuming $f(E, T') = \frac{n}{n_{eq}} \exp\left[-\frac{E}{T'}\right].$