Illuminating Scalar Dark Matter Co-Scattering with Monophoton Signatures

Abhishek Roy

Based on

arXiv: 2508.06040

In collaboration with Geneviève Bélanger, Manimala Mitra and Rojalin Padhan

Scalars 2025– Warsaw, Poland

24 September 2025

Do we have a good reason to go Beyond the Standard Model?

• SM fails to explain neutrino mass and mixings.

SM doesn't have DM candidate.

SM fails to explain observed baryon asymmetry.

Who can be a DM?

- Should be massive
- Should be electrically neutral
- Should be present in early universe
- Should be stable or at least with half life greater than the age of the universe

 Need a

symmetry

Singlet Scalar Singlet Fermion Scalar in triplet reprise Fermion in triplet reprise ...and many more

Zoo of Dark Matter Candidates

<u> Higgs Portal : Singlet Scalar DM</u>

Simplest extension of the Standard Model...

- \rightarrow dark matter: real scalar singlet (stable due to \mathcal{Z}_2 imposed symmetry)
- phenomenology (at the tree-level) governed by only two parameters
- One coupling (to Higgs) drives all DM observables DM relic, Direct Detection, Indirect Detection.

Higgs Portal: Singlet Scalar DM

Dark matter annihilation into: gauge bosons, Higgs bosons, quarks, leptons.

Higgs Portal: Singlet Scalar DM

Higgs portal interactions give spin-independent nuclear scattering via t-channel Higgs exchange.

Direct detection limits imply that the Higgs-portal coupling must be suppressed.

Higgs Portal: Singlet Scalar DM

Requires large Higgs Portal Couplings

Requires Suppressed Higgs Portal Couplings

 M_{χ} [GeV]

 $(\Gamma/H)_{T=M_\chi}$

• If Singlet Scalar is **viable WIMP DM**, we need alternate production mechanism to realize the observed DM relic density.

DM never thermalizes, it behaves as non-thermal particle

<u>Singlet Scalar DM + dimension-5 Operators</u>

Tree level neutrino mass: forbidden by Z_2 symmetry

$$\mathcal{L}_{eff} \supset 0 \Phi^{\dagger} \Phi \chi^{2} + \frac{c_{5}}{\Lambda} (\overline{L^{c}} \tilde{\Phi}) (\tilde{\Phi}^{\dagger} L) + \frac{Y}{\Lambda} \overline{L} \tilde{\Phi} N \chi + \frac{c_{3}}{\Lambda} \overline{N^{c}} \sigma_{\mu\nu} N B^{\mu\nu}.$$

Suppressed due DD constraint

Introduces additional DM dilution processes

- $\rightarrow \chi$ and $N_{1,2}$ may or may not be in equillibrium with each other.
- $\Omega_{\chi}h^2$ is set either through coannihilation or co-scattering.

Singlet Scalar DM + dimension-5 Operators

Singlet Scalar DM + dimension-5 Operators

Dominant co-annhilation process \blacktriangleleft Contribute less than 1% due to cancellation b/w the Z and γ exchange diagram

	Initial state		Final state		Scaling with couplings
	$N_{1,2}$	$N_{1,2}$	γ, Z	γ, Z	${c_3^{\prime}}^4 (ext{t- channel process}\)$
	N_1	N_2	f	\bar{f}	${c_3^{'}}^2 (ext{s-channel process})$
_	N_1	N_2	W^+	W^-	$c_3^{'2} (ext{s-channel process})$
	N_1	N_2	Z	H	$c_3^{'2}(ext{s-channel process})$

Coscattering equations (conversion-driven freeze-out)

- if DM is very weakly coupled to the SM, DM self-annihilation is negligible
- in the following, 0: SM, 1: N (=N1 + N2), 2: Dark Matter DM

$$\frac{dY_1}{dx} = -\frac{1}{x^2} \frac{s(M_\chi)}{\tilde{H}(M_\chi)} \left[\langle \sigma_{1100} v \rangle (Y_1^2 - Y_1^{eq2}) - \underbrace{\Gamma_{2 \to 1}}_{s} \left(Y_2 - Y_1 \frac{Y_2^{eq}}{Y_1^{eq}} \right) \right],$$
 Inelastic Processes
$$\frac{dY_2}{dx} = -\frac{1}{x^2} \frac{s(M_\chi)}{\tilde{H}(M_\chi)} \left[\frac{\Gamma_{2 \to 1}}{s} \left(Y_2 - Y_1 \frac{Y_2^{eq}}{Y_1^{eq}} \right) \right].$$
 SM SM

 $Y', \lambda \sim \mathcal{O}(10^{-6}-10^{-10})$ DM pair annihilation, co-annihilation, and exchange Process becomes negligible

Coscattering fraction

- When Y' and δ_1 is small, co-scattering keeps χ coupled to the N(=N1+N2).
- without coscattering, DM freezes out very early ⇒ too high relic density
- to quantify when coscattering is necessary to keep χ coupled to the N(=N1+N2).

$$\Delta_{\chi}^{1} \equiv 1 - \frac{\Omega h^{2}(\text{Single})}{\Omega h^{2}(\text{Coupled})}.$$

- → if co-annihilation dominant $\Rightarrow \Delta_{\chi}^{1} = 0 \, (Y > 10^{-7})$
- \rightarrow if co-scattering dominant $\Rightarrow \Delta_{\chi}^{1} = 1 (Y < 10^{-7})$

Numerical results

- "Dark matter + energetic photon in ATLAS (arXiv: 2011.05259): parameter space constraints
- Large δ_2 leads to energetic photons. Hence, stringent constraints.

Numerical results

Summary

Features of co-scattering dark matter:

- small coupling to visible matter
- compressed dark sector
- freeze-out works for a wide range of energies

Singlet Scalar DM + dim-5 operators: consistent with DD, ID & collider bounds

Viable parameter space can be probed at HL-LHC

